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Object  categorisation  is a research  area  with  significant  challenges,  especially  in  conditions  with  bad
lighting,  occlusions,  different  poses  and similar  objects.  This  makes  systems  that  rely on precise infor-
mation  unable  to perform  efficiently,  like  a robotic  arm  that  needs  to  know  which  objects  it  can  reach.
We  propose  a biologically  inspired  object  detection  and  categorisation  framework  that  relies  on robust
low-level  object  shape.  Using  only  edge  conspicuity  and  disparity  features  for scene  figure-ground  segre-
gation  and  object  categorisation,  a trained  neural  network  classifier  can  quickly  categorise  broad  object
families  and consequently  bootstrap  a low-level  scene  gist  system.  We  argue  that  similar  processing  is
possibly  located  in  the  parietal  pathway  leading  to the  LIP cortex  and,  via  areas  V5/MT  and  MST,  providing
useful  information  to  the  superior  colliculus  for eye  and  head  control.

©  2015  Elsevier  Ireland  Ltd.  All  rights  reserved.
igure-ground
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. Introduction

There are many visual pathways related to object categorisation
nd recognition, especially focusing on quick shape categorisation,
hich is essential for scene gist. Obvious information sources for

bject shape and segregation are colour, texture, motion and depth
rom stereo. However, much richer information is available. Apart
rom depth from stereo, velocity gradients of optical flow can be
sed to locally encode ordinal depth at surface borders and also, but

lobally, ego-motion (Raudies et al., 2013). In addition, in case of
cclusions, figure-ground segregation by local (and often intricate)
order-ownership relations of e.g. vertex (keypoint) structures is
lso possible, as hypothesised in the discussion paper by Kogo
nd Wagemans (2013), which attracted many comments. How our

∗ Corresponding author. Tel.: +351 2898001007751.
E-mail address: jamartins@ualg.pt (J.A. Martins).

ttp://dx.doi.org/10.1016/j.biosystems.2015.07.001
303-2647/© 2015 Elsevier Ireland Ltd. All rights reserved.
visual system extracts and integrates all information is still rather
speculative.

In this paper we focus on the transition between low-level syn-
tax and low-level semantics, using elementary information such as
surface lighting, colour and stereo disparity. The goal is to develop
an integrated system for fast local gist vision: which types of objects
are about where in a scene. This is necessary to bootstrap and guide,
even alleviate, the processing in the ventral and dorsal data streams.
These streams are known to serve two  goals: the dorsal stream,
also called the where or vision-for-action stream, is mostly devoted
to optical flow and stereo disparity, whereas the ventral stream,
also called the what or vision-for-perception stream, is devoted to
object categorisation and recognition (Konen and Kastner, 2008;

Farivar, 2009). However, the dorsal stream can also play a very
important role in fast object categorisation (Gottlieb, 2007; Janssen
et al., 2008; Konen and Kastner, 2008), which is the main focus of
this paper.

dx.doi.org/10.1016/j.biosystems.2015.07.001
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2015.07.001&domain=pdf
mailto:jamartins@ualg.pt
dx.doi.org/10.1016/j.biosystems.2015.07.001
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Nomenclature

AIT anterior inferotemporal cortex
AUC area under ROC
CMC  cumulative match characteristic
DEM disparity-energy model
DET detection error trade-off
DoG difference-of-Gaussians
EER equal error rate
FAR false acceptance rate
FoA focus-of-attention
FRR false rejection rate
HTER half total error rate
IT inferior temporal cortex
LGN lateral geniculate nucleus
LIP lateral intraparietal cortex
MST  medial superior temporal cortex
PIT posterior inferior temporal cortex
RF receptive field
ROC receiver operating characteristic
ROR rank-one recognition
SC superior colliculus
SVM support vector machine
V1 primary (striate) visual cortex
V2 secondary (prestriate) visual cortex
V4 visual area V4 of the extrastriate visual cortex
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V5/MT visual area V5 of the middle temporal visual cortex

An integrated system must first solve two hard problems: (a) the
rst one is of paradoxical nature, as precise object categorisation
nd recognition in the ventral stream requires object segregation,
ut object segregation has usually been regarded only possible if the
ystem already knows what the object is (assuming of course that
bjects are complex and that they are seen against equally com-
lex backgrounds). Consequently, we explore the possibility for a
ystem to segregate an image region or an object even before know-
ng what it is, based on robust low-level and local shape features
ike edge conspicuity and disparity. (b) The second problem is that
bject categorisation and recognition is a sequential process: while
xating one object, its features must be routed to normalised object
emplates held in memory. This routing blocks the system until
ategorisation and recognition have been achieved, after which
he system is released for dealing with another object. Therefore
ensink (2000) proposed the concept of proto-object tied to a non-
ttentional “scene schema,” consisting of concurrent spatial-layout
nd gist subsystems which both drive attentional object categori-
ation and recognition, all employing proto-object shapes resulting
rom low-level vision. Gist vision addressed so far mostly concerns
lobal gist of entire scenes (Bar, 2004; Siagian and Itti, 2007; Ross
nd Oliva, 2010; Rodrigues and du Buf, 2011). However, there is
lready some research into local parts of scenes that allow a quick
re-categorisation of geometrically shaped objects (Martins et al.,
012). Here we  extend the use of fixed geometric shapes and aim
t representing any kind of proto-object shape.

The use of depth information has shown good results in the
ontext of general object detection (Quigley et al., 2009), as depth
nformation is resilient to lighting and tonal variations, provides
eometrical hints and is efficient for separating foreground from
ackground. Most recent categorisation and recognition methods
se RGB-D images and employ sophisticated features such as spin
mages for 3D point clouds (Johnson and Hebert, 1998), SIFT for
D images (Lai et al., 2011), neural networks with deep learning
Socher et al., 2012), specific colour, shape or geometry features
Bo et al., 2011; Lu and Rasmussen, 2012) or even log-Gabor PCA
s 135 (2015) 35–49

(Gopalakrishna et al., 2014). Previous work on low-level shape fea-
ture extraction, detailed in Martins et al. (2012), used adaptive
feature detectors for extracting corners, edges (bars) and curvature
information from objects and defined simple but efficient rules for
classification based on geometric relationships between those fea-
tures. It was shown that many man-made objects with geometric
properties obey those rules, yielding good results. We now pro-
pose a more elaborate and generic shape extraction method that
can define a shape feature vector without explicitly constricting
the feature-search space, generalising the process of object cate-
gorisation, also without needing to define geometric relationships
between features. This method is then used for categorising 300
different objects of the RGB-D Object Dataset (Lai et al., 2011)
(explained below) with 51 object classes.

Our main contribution is a biologically inspired framework for
quick object detection and categorisation. It relies on salient scene
information to simultaneously detect foreground objects, retrieve
object shapes and disregard superfluous information. Proto-objects
are built using normalised shapes, resulting from low-level atten-
tional edge conspicuity and disparity processes. Edge conspicuity
is a measure for object salience that highlights the transitions
in colour/lighting at the borders of objects. It relies heavily on
simultaneous colour and luminance contrast of an object with its
background, so it is able to represent both salience and shape
information. When combined with disparity information, there
is often sufficient evidence for object detection, inhibiting the
background of scenes and highlighting conspicuous objects in the
foreground, so that robust object shape feature vectors can be
obtained. These can then be used in a feed-forward processing
scheme, like a neural network, to quickly assess a shape category,
effectively being a type of “proto-object” representation that only
needs few data points. This is especially useful for constrained
processing systems that have limited resources and must first pri-
oritise image regions or shapes to process, which is common in
robotics. Apart from conspicuity, disparity information is also of
paramount importance for shape categorisation and recognition,
since it is only mildly affected by variations in pose and illumina-
tion. We  also aim to prove that structural object information that is
available from biologically inspired salience methods can success-
fully be applied to recognise objects with good accuracy, and is also
capable of yielding information unavailable in luminance-based
methods.

Section 2 explains the used databases, Section 3 details the steps
necessary for the detection of objects and encoding of their shapes,
Section 4 explains the experimental conditions and categorisation
processes, Section 5 presents the evaluation trials and Section 6
the discussion and conclusions based on the data.

2. Object categorisation databases

An ideal database for the present research would need to fulfil
four conditions: (I) Have RGB camera-rectified stereo image pairs
of objects with (II) full object revolutions, (III) supply a large collec-
tion of objects with different categories and (IV) be actively used by
several authors for object categorisation research, so that results
can be compared and validated. Unfortunately, at present time,
there is no database that complies to all, so we needed to use two
databases, each for a different purpose.

2.1. CSCLAB Image Database
The CSCLAB Image Database (CSCLAB ID) (Murphy-Chutorian
and Triesch, 2005) is one of the few to satisfy condition I but
unfortunately not II–IV. It was created at the Complex Systems
and Cognition Laboratory at the University of California, San Diego.
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Fig. 1. Examples of objects. Top: CSCLAB image database; left stereogram images of 10 example objects with each of the 10 different backgrounds (first row: blue table,
b  poster
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ookshelf,  computer desk, couch and green table; second row: plants,  poster table, robot
t  0◦ turntable position and 30◦ camera angle.

t consists of a single view of 50 mundane objects for training
nd 498 heterogeneous scenes for testing, each containing from

 to 7 objects, with similar poses in 10 different backgrounds.
bjects can be significantly occluded and display subtle differ-
nces in scale, viewpoint and illumination conditions. Data consists
f RGB camera-rectified stereograms of objects in frontal views.
his database is used here to illustrate the first part of our work,
ealing with foregound/background segregation, object detection,
egmentation and shape extraction, on different kinds of complex
cenes/backgrounds (Section 3).

.2. RGB-D Object Dataset

The RGB-D Object Dataset (RGB-D OD) (Lai et al., 2011) satis-
es conditions II–IV but not I. It contains visual and depth images
f 300 distinct objects of 51 categories, with many views, cho-
en from those commonly found in home and office environments
here personal robots are expected to operate. Objects are orga-
ised into a hierarchy taken from WordNet hypernym/hyponym
elations, which is a subset of the categories in ImageNet. Data
as recorded with the cameras mounted at three different angles

elative to a turntable where the object was located, at angles of
pproximately 30◦, 45◦ and 60◦ with the horizontal plane. One
evolution of each object was recorded at each angle. Each video
equence was recorded at 20 frames per second and contains about
50 frames, for a total of 250,000 RGB + Depth frames counting all
bjects. Unfortunately, this dataset only contains single RGB images
no stereo pairs), but with matching depth images for each object.
ence, it cannot be used for obtaining stereo disparities from the
GB images, forcing the use of the supplied depth images. We  use
his dataset to compare our object categorisation performances
ith those obtained by others. Since RGB-D OD was  created by
sing a high-resolution RGB camera and an IR light pattern to mea-
ure disparity (a prototype RGB-D PrimeSense camera, similar to
icrosoft’s Kinect), it allows us to establish a baseline for expected

erformance of a system which employs precise depth information.

Examples of used object data are shown in Fig. 1. The top two

ows show CSCLAB ID stereo-rectified images of objects in all 10
ifferent backgrounds (only left viewpoint images are shown).
e use the stereo image pairs for exemplifying our whole object
,  table and tea table). Bottom: RGB-D object database; five apples and five cellphones

processing algorithm, from detection to shape extraction, using dis-
parity and conspicuity mechanisms. RGB-D OD contains cropped
object images with corresponding range maps. Fig. 1 (bottom row)
shows five example objects of categories “apple” and “cellphone.”
We use both range maps and RGB data to detect and extract object
shape information and then estimate categorisation performance.

3. Object detection and shape coding framework

This section describes how low-level features can be combined
to detect an object in a complex scene, yielding a binary segmenta-
tion mask of the object’s outline. This mask is then used to extract
a shape feature vector that describes the object’s contour which
is independent of object size, but dependent on object perspec-
tive. We  will illustrate this process using images from the CSCLAB
Image Database (Murphy-Chutorian and Triesch, 2005), that has
each object in 10 different backgrounds. Below we introduce our
biological disparity model, the edge conspicuity model (border
saliency), the classifiers used and the classification rules in case
of identification and verification experiments. For having a com-
pletely biological framework we will also consider – apart from the
two disparity cell populations used, one for encoding and another
for decoding – a third population: a neural-network classifier.

3.1. Disparity-based background inhibition

First, we apply a disparity energy model (DEM) implementation
optimised for real-world images. It extracts disparity maps from all
stereograms in the CSCLAB database. Since a detailed explanation
is beyond the scope of this paper, we  refer the reader to Martins
et al. (2015, 2011), where this DEM implementation is thoroughly
explained. Obtained disparities D(x, y) for CSCLAB object number
107, a beer bottle (Fig. 2a), are exemplified in Fig. 2(b).

This disparity is then used for a foreground/background segre-

gation, based on statistical properties of the scene. First, we discard
areas where wrong disparity estimates are most commonly found:
the top and bottom strips of the disparity maps (each strip with
1/6th of the vertical image size v), along with the left strip (1/8th of
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ig. 2. Beer bottle on tea table shape extraction. (a) Left image of the stereo pair;
oreground scene conspicuity map; (f) foreground object region disparity; (g) foreg
egregation using the shape mask applied to the left stereogram image.

he horizontal image size h), resulting in the selected area S(x, y),
efined ∀x, y as:

(x, y) �
{
D(x, y), if (x > h/8) ∧ (v/6 < y < 5v/6)

OFF, otherwise.

rom S(x, y), we assign as foreground all disparities higher than the
ean plus 0.1 times the standard deviation1 and lesser than the
ean plus two  times the standard deviation (wrong estimates).

he remaining disparity values are discarded. Mathematically, for
n image of size h × v, this results in a foreground – only disparity
mage Dfg, defined as:

fg(x, y) �

{
S(x, y), if S̄ + 0.1�S < S(x, y) < S̄ + 2�S

OFF, otherwise.

he notation ¯( · ) reflects the mean and �(·) the standard devia-
ion. The OFF state represents discarded image data, which will
ither be the background or wrong disparity estimates. Overall,

his step serves effectively as a disparity-based global scene pre-
egmentation process that allows for posterior processing of only
oreground regions. An example result can be seen in Fig. 2(c).

1 The 0.1 threshold was  chosen as a good compromise for most cases. This is
ompatible with a scenario where a robot has to detect objects within a certain
ange, relying on calibrated stereo cameras for disparity extraction.
EM disparity map; (c) foreground disparity map; (d) scene edge conspicuity; (e)
 object region conspicuity; (h) object conspicuity; (i) object shape mask; (j) object

3.2. Edge conspicuity model

Edge conspicuity has been shown to yield good results in object
shape discrimination, using luminance and colour differences to
differentiate object shapes (Martins et al., 2009, 2012).

Succinctly, this model starts with adaptive colour smoothing,
removing redundant information which is not necessary for shape
detection, while preserving any local boundaries. This helps to sta-
bilise differences between the inside and outside of objects. This is
done using a cell layer that outputs a result similar to an adap-
tive difference-of-Gaussians (DoG) filter with edge preservation
(for an in-depth discussion, please refer to Martins et al. (2012)).
The resulting colour image from this step is defined as I(x, y).

Considering the above step as a low-level process in the pri-
mary visual cortex (area V1), we  encode I(x, y) in CIELUV colour
space2 as I˛(x, y), with  ̨ ∈ {L, u, v}. Conspicuity C̃ is then defined
as an edge salience measure that represents the maximum differ-
ence between colour triplets in I˛(x, y), at four pairs of symmetric
positions from point (x, y), i.e., on horizontal, vertical and two diag-
onal lines (Martins et al., 2012). Conspicuity C̃(x, y) is defined as the
maximum Euclidean distance of all four pairs,

C̃(x, y) �
4

max

√∑
[I˛((x, y) − ıi) − I˛((x, y) + ıi)]

2.

i=1

˛

The (x, y) coordinates of vector ıi are (1, 0), (1, 1), (0, 1) and (− 1, 1).

2 CIELUV is a colour space built to attain perceptual uniformity of colour represen-
tations and mimics the double-opponent colour cells found in human vision, making
it  very useful for estimating the perceptual differences between image regions.
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Only responses higher than 10% of max(C̃) are kept, in order
o remove low-activity responses due to noise and also gradients
aused by non-uniform illumination. This yields conspicuity edge
ositions

(x, y) �
{
C̃(x, y), if C̃(x, y) > 0.1 · max(C̃)

OFF, otherwise;

ee Fig. 2(d).

.3. Foreground object detection

At this stage, we use a combination of conspicuity and disparity
nformation to estimate possible foreground object locations. For
he present work, we are only interested in processing the most
onspicuous foreground object in each scene, i.e., the most salient,
o other possible object locations are discarded. However, future
esearch should address multiple salient objects for local gist vision,
till as a fast and parallel process. This process could bootstrap
nother, but sequential, process in which overt attention by focus-
f-attention (FoA) can scrutinise different regions for precise object
ecognition. Here, foreground objects are detected in two  steps:

Foreground conspicuity. Since disparity and conspicuity extrac-
ion are done in parallel by two different cell populations, we
lso envision a quick V1/V2 low-level process that combines them
or signalling important regions for low-level attention (Rensink,
000) and FoA gaze. Since the Dfg map  has all foreground pixel
ositions, the map

fg(x, y) �

{
C(x, y), if Dfg(x, y) /= OFF

OFF, otherwise,

ill contain only the foreground conspicuity values. This is exem-
lified in Fig. 2.

Object region detection. The goal of this step is to detect the clos-
st and most conspicuous regions in a scene, where possible objects
an be located. It combines information from both foreground dis-
arity and conspicuity maps. First, we count the number of active
oreground conspicuity cells for each possible disparity 3-plane
lice3 (d − 1, > d, > d + 1), with Dmin

fg ≤ d ≤ Dmax
fg . This can be defined

s

C (d) �
d+1∑
i=d−1

∑
x,y

{
[
Cfg(x, y) /= OFF

]
∧

[
Dfg(x, y) = i

]
},

here [·] denotes a (binary) cell set.
Next, we select a single disparity plane slice ı using two  simulta-

eous conditions: it is the closest possible disparity plane (highest
) with the highest cell count (highest AC(d) value for ı = d). For this
e use a weighted criterion, such that ı satisfies

 � arg max
d

(AC (d) · d4) : Dmin
fg ≤ d ≤ Dmax

fg .

he disparity value ı therefore represents the closest disparity
lane slice that simultaneously has the most active conspicuity

ells, and is also the best candidate for the closest foreground object.
ince we wish to expand the disparity slice to encompass all pos-
ible disparity values of the object in question, as objects rarely
ccupy only a single disparity plane, we define a range parameter r
uch that the final disparity object slice will be in

[
ı − r, ı + r

]
, with

3 or 2-plane slice for the lower and upper limits, (d, > d + 1) and (d − 1, > d) respec-
ively.
s 135 (2015) 35–49 39

r � �S/2.5 (the parameter 2.5 was  empirically chosen4). The region
of foreground disparity ranges where the object is located is then
defined as

DObjReg(x, y) �

{
Dfg(x, y), if ı − r ≤ Dfg(x, y) ≤ ı + r

OFF, otherwise.

This is illustrated in Fig. 2(f). We can see that only disparity values
corresponding to the bottle’s range are preserved, while the rest is
discarded.

Object detection. The next object detection process selects only
the conspicuity values of the foreground object, within the previous
region. We  determine CObjReg, which represents the significantly
active conspicuity cells inside the object region, i.e., active-above-
average, by

 (x, y) �

{
C(x, y), if DObjReg(x, y) /= OFF

OFF, otherwise;

CObjReg(x, y) �
{
 (x, y), if  (x, y) >  ̄

OFF, otherwise.

The result of this step is shown in Fig. 2(g): pixels darker than
the background (which corresponds to the average  ̄) represent
the less-than-average conspicuity values and are discarded, while
pixels brighter than the background represent the most active con-
spicuity cells in the object’s region and are kept in the CObjReg map.

Border refinement. There is now a further refinement step to see
if all active conspicuity cells in the object’s region effectively belong
to a single object or if they can also correspond to parts of nearby
objects, which should be discarded. This is done by keeping only the
biggest connected area (i.e., a single object) in a four times morpho-
logically disk-dilated (radius one) binary map where  (x,  y) /= OFF,
which closes small gaps between active conspicuity cells. All pixels
within this area in CObjReg are selected to form a single object con-
spicuity image CObj. The result is shown in Fig. 2(h), where a small
dash to the right of the bottle was  eliminated. This process can also
be explained biologically using an equivalent higher-level group-
ing cell population with big receptive fields (RFs), for example in
cortical area V2, which only activates when the lower CObjReg layer
has enough active cells within each higher-level RF region.

3.4. Object mask

The next step uses the CObj cells, which are now segregated from
everything else, to extract an object mask, which is useful for both
segmentation and shape categorisation. This is done in two steps:

Non-maximum suppression. A cell layer CMObj is built on top of the
CObj layer. It applies non-maximum suppression in order to extract
the positions where CObj has a local maximum in horizontal, ver-
tical and diagonal directions, in 3 × 3 cell neighbourhoods. This is
achieved by four oriented cell clusters plus one grouping cell at the
output. For details, see Martins et al. (2012).

Contour continuity and filling. Contour gaps of CMObj are closed
using a process similar to morphological closing (four binary
dilations followed by four erosions, using a radius-1 disk as struc-
turing element). This results in FObj. The aim is to get a closed object
contour, so that FObj can be used for segregation. The inside of the

shape is then filled, yielding a binary segmentation mask. If the
object’s contour is still unconnected, there is only a partial fill (or
none), depending on whether there were inside contours and those
could be filled. All closed contours are filled, even those spaced

4 This value is proportional to the expected depth range of objects and is used to
prevent clipping of object details that are not at the object’s main disparity ı.
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part. In this case, the areas of all are calculated and those with an
rea less than 1/5th of the maximum are discarded. This allows for,
t least, a partial object mask to be kept. An example mask is shown
n Fig. 2(i). When applied to image (a) it results in image (j), with
ust the segregated object.

Fig. 3 shows results of the beer bottle shape in the other nine
ifferent backgrounds of CSCLAB ID. In only one case (poster table)
he pattern on the table close to the bottle is so complex that seg-
egation using only disparity and conspicuity information is not
ufficient.

.5. Shape feature vectors

Humans can recognise objects using several vision cues, even
hen seeing different views of the same object. We  know that

hapes of objects depend on the observer’s perspective: the shape
f a particular object can be rather stable when the observer’s view-
oint rotates around it, e.g., an orange, or it can change significantly,
.g., a statue. Also, objects can appear with any arbitrary rotation,
ike upside-down or a bottle lying flat on a table, which is also a
omplication that must be solved.

For the scope of this paper, we chose to address the problem
f observer perspective using canonical object poses, since it is the
ost relevant case for local gist processing, probably even hard-

oded in a very quick proto-object neural pathway (Yanulevskaya
t al., 2013; Martin and von der Heydt, 2013). It also makes sense
rom an evolutionary, survival perspective – predators in upright
r running poses are much more dangerous than when they are
ying down or even upside-down. Our approach combines the infor-

ation to solve the shape-encoding problem using a hypothetical
roto-object shape feature vector that represents shape from a
ommon-oriented perspective viewpoint.

For implementation, our shape representation builds upon the
entroidal-profiles methodology (Davies, 2004), which represents
hape boundary distances in a polar coordinate system. For retriev-
ng a shape vector s we first calculate the object’s centroid
oordinates. This is then assigned position (0, 0). The perimeter
f the object is then followed counter-clockwise, from −180◦ to
80◦. The retrieved perimeter positions are then converted to polar
oordinates, yielding a rotation angle � ∈ [−180◦, 180◦] and a cor-
esponding distance �� . The retrieved values are sampled within

 1◦ interval, between
[
�, � + 1◦], storing for each interval the

max
[�,�+1◦]

and �min
[�,�+1◦]

values. The first describes the outer-shape

f the object and the second the inner-shape. Since general objects
re not always star-shaped (i.e., with only a single intersection for
ach angle), both are needed to characterise objects and to make
hapes immune to outliers. We  then define vector s as

 �
(
�max

[�,�+1◦]|
�=179◦
�=−180◦ , �min

[�,�+1◦]|
�=179◦
�=−180◦

)
.

his is a vector of 720 elements, 360 from �max and 360 from �min.
or the final feature vector values, we normalise s to be invariant
o specific object sizes by subtracting the mean s̄ and dividing by
he standard deviation �s ,

N � s − s̄
�s

.

xamples of normalised shape vectors for the beer bottle can be
een in Fig. 4, for the different backgrounds. We  note that the shape
ectors are very consistent, with the exception of the poster table
ackground in plot (g) where the centroid was incorrect, as the

bject was not properly detected and segregated.

The implicit encoding of local shape features is exemplified in
ig. 4(a) and can be seen if we consider the derivatives of the curves:
ositive or negative slopes represent bars/edges or curves, a zero
s 135 (2015) 35–49

slope being a perfectly circular curvature. Spikes and signal changes
are zero-crossings of the second derivative and represent corners.
In case of the beer bottle (Fig. 4a), one can recognise, following
the contour anti-clockwise, the bottle’s left side (0◦), bottom (90◦),
right side (180◦) and cap (270◦), finally ending at the left side (360◦).
Hence, this shape coding scheme generalises our earlier gist model
Martins et al. (2012) without using explicit geometric relations for
encoding low-level features. A matrix of correlation plots between
all vector pairs is shown in Fig. 5. The poster table vector was the
only one that did not have a statistically significant positive corre-
lation (p < 0.05) with the other vectors.

4. Object shape categorisation framework

For the experimental object categorisation setup, we  used arti-
ficial neural networks to classify all 300 objects from the RGB-D
Object Dataset (Lai et al., 2011), into 51 categories. Before detailing
this process, we  first introduce the classification rules used.

4.1. Classification rules

Generally, an object classification system can operate in either
verification mode or in identification mode. In verification, the goal
is to accept or reject an identity claim that is being presented to
the system. In identification there is no identity claim; the system
must find the object class which best matches the input object. In
both cases there will be true and false positives and negatives, and
the goal is to minimise the false ones. We  will detail classification
performance for both cases.

Verification mode. As mentioned above, this mode serves to ver-
ify the identity of an object whose representation is being presented
to the system. The output feature vector v is a (trained) function of
the actual input u. For a trained neural network, v is the output of
the network with dimension N, the number of known object classes,
i.e., N � 51.

Feature vector v must be compared with a class template fea-
ture vector vc if the claimed identity is Uc, with c ∈ {1, 2, . . . N}.
The class template feature vector vc is the mean of a network’s
output responses from the training data of each class, for the dif-
ferent input data types of uc. The result R of the comparison is
binary: either accept (1) or reject (0) the identity claim, consider-
ing a chosen acceptance threshold � (Štruc and Pavešić, 2010). This
is formulated as

R �

{
1, if �(v, vc) ≥ �

0, otherwise,

where �(· , ·) is a similarity function, for which we  use the cosine
similarity measure (Štruc and Pavešić, 2010),

�cos(v, vc) � − vTvc
‖v‖‖vc‖ .

For experimental evaluation, the acceptance threshold � will be
varied in order to determine false-rejection vs. false-acceptance
curves.

Identification mode. A system running in this mode tries to iden-
tify an object by finding in the database the class template feature
vector vc that best matches the input feature vector v, above an
acceptance threshold � (Štruc and Pavešić, 2010):{

Uc, if c = arg max
�∈{1,...,N}

[�cos(v, v�)] : �cos(v, v�) ≥ �

U �

UN+1, otherwise.

Now UN+1 is the case when the input vector v cannot be matched
to any of the N � 51 objects in the database. Since only cumulative
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Fig. 3. Beer bottle shape extraction with the other nine different backgrounds of CSCLAB ID. Left to right: left image of the stereo pair; foreground object region disparity;
object  conspicuity; shape mask; and object segregation.
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ig. 4. Beer bottle’s 720-element normalised shape vectors sN , for the 10 different b
max and the next 360 elements to the inner shape distances �min.

atch characteristic (CMC) curves will be measured in the exper-
mental evaluation (see below), the acceptance threshold will be
ero and therefore UN+1 will not be considered.

.2. Experimental setup

For the experimental object categorisation setup, we  used the
GB-D Object Dataset (Lai et al., 2011). The predominant reasons

or using this dataset are: (a) its sheer volume of object data – 300
bjects with full revolution data, taken at angles of approximately
0◦, 45◦ and 60◦ above the horizon – a total of 250,000 RGB plus
epth frames, and (b) the availability of several published results
y different authors, which allows for a quantitative comparison.

The RGB-D Object Dataset has 300 objects in 51 categories. We

ampled the turntable data exactly as in Lai et al. (2011), using only
very 5th video frame, for a total of 41,942 RGB-D images.5 For
very one of the 51 categories, we left the first object out for testing
nd used all the remaining ones for training. Thus, our training set,

5 From here onwards we will use the term range instead of disparity to avoid
onfusion with the previous DEM-obtained disparity data, as it is now extracted
irectly from the dataset.
unds. The first 360 elements of each vector correspond to the outer shape distances

per experimental condition, consists of 34,921 images, while the
test set counts 7021 images.

We applied seven experimental conditions on the training and
test sets, each condition using a specific data type (i.e., luminance,
colour, conspicuity, range, or shape), and combinations of these.
Thus, we measured categorisation performance using: (1) lumi-
nance of the cropped objects; (2) colour; (3) conspicuity; (4) range;
(5) shape; (6) shape plus range; and (7) shape plus luminance, con-
spicuity and range. For extracting the shape vectors we used the
methodology and empirical parameters as detailed in the previous
section.

4.3. Data pre-processing

Prior to classification, there are three pre-processing steps done
for all training and test set images: (a) As RGB-D images are already

cropped to the object area, there is no need for a detection step;
they are just rescaled to 60 × 60 pixels (because each object crop
has a different size).6 (b) Luminance images IL are created from the

6 This is often done in computer vision to reduce the number of neurons in a
neural network classifier. It also has a biological background, as object templates
stored in memory are normalised in size (DiCarlo et al., 2012).
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Fig. 5. Matrix of plots showing Pearson correlations between all pairs of the beer bottle’s shape vectors. The main diagonal shows each vector’s histogram, while the remaining
cells  show scatter plots of the vector pairs. Each cell has a least-squares reference line with slope equal to the Pearson’s correlation coefficient. Significant positive correlations
(p  < 0.05) are highlighted in red. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

Fig. 6. Examples of RGB-D OD objects used for classification trials, with respective data types (luminance and colour images, conspicuity and range maps, binary masks and
shape  vectors extracted from each mask). Top to bottom: apple, banana, bellpepper and cup. (For interpretation of the references to color in this legend, the reader is referred
to  the web version of the article.)
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ig. 7. Neural network topology used for RGB-D OD classification. Two-layer, fee
og-sigmoid output layer. The input vector is either of size 720 for shape vectors, 36

riginal RGB images IC, by reducing these to grayscale format. (c)
ll images are normalised by subtracting their mean and dividing
y their standard deviation, which yields: luminance INL , colour INC ,
onspicuity CN and range RN maps. Shape vectors sN are already
ormalised, so they are used with all their 720 components. Exam-
les of each data type are shown in Fig. 6.

.4. Classifiers

We  applied artificial neural networks (NNs) as classifiers, which
ave a biological background. By using NNs we can: (a) prove that
he framework can be completely implemented by applying bio-
ogical principles, still obtaining good performance and (b) show
hat shape information can provide robust features for object cat-
gorisation.

A total of seven networks (one per experimental condition)
ere trained to classify the 51 object types of the training set.

he general network topology is shown in Fig. 7. All networks are
wo-layer, feed-forward, using log-sigmoid hidden and output neu-
ons, with the hidden layer composed of 2000 neurons (chosen
fter several empirical trials) and the output layer of 51 neurons.
raining was done iteratively by resilient backpropagation, with as
topping criterion a maximum of 1000 epochs. The performance
riterion was the mean-squared normalised error with a regulari-
ation factor � = 0.2 to avoid over-fitting.7 This means that the NNs
onverged gradually towards the final solution, with the outputs of
he networks not being binary: the output of a given object cate-
ory is maximised and those of all other categories are smaller but
ot necessarily zero.

For each experimental condition, the input vector u of the
espective network maps one neuron for each pixel position in INL ,
N
C , CN or RN, for a total of 3600 input neurons (60 × 60 pixels); sN

aps to 720 neurons, ( sN, RN) to 4320 neurons and (sN, RN, CN, INL )
o 11,520 neurons.

. Experimental results

.1. Performance measures

For presenting performances of the different experimental
etups, we measured standard error and recognition rates8 which
re commonly used in object categorisation and recognition

ˇ
esearch (Struc and Pavešić, 2009, 2010).
Cumulative match characteristic (CMC).  For class identification

xperiments we  will show results in the form of recognition rates.

7 The mean squared error will take into account the mean squared weights of the
etwork, by MSEREG = �MSE + (1 − �)MSW.
8 Typical performance metrics generally use the term recognition independently

f  the actual task being categorisation or recognition. To avoid confusion we  would
ike  to note that categorisation is in fact recognising an object class or category.
ard neural network with 2000-neuron log-sigmoid hidden layer and 51-neuron
0 × 60 px) for image vectors, or the sum of the sizes for multi-modal classification.

We  first computed the rank-one recognition (ROR) rate on the test
set:

ROR � nca
nni

100%,

where nca is the number of images assigned to the correct objects
and nni is the total number of test images. ROR rates were com-
plemented by the ranking beyond the first position, i.e., from rank
1 to rank 	. This yields a CMC  curve that plots recognition rate by
rank. In calculating the recognition rate for the 	th rank, identi-
fication is considered successful if the correct identity is among
the top 	 results. CMC  results are particularly useful for a local gist
system, where the top 	 matches can be used to bias scene categori-
sation. After fast gist vision, the top matches can then be scrutinised
sequentially to increase certainty.

Detection error trade-off (DET). For class verification experiments
we measured the false acceptance rate (FAR) and the false rejection
rate (FRR), as well half total error rate (HTER). FAR and FRR are
defined by

FAR � nar
nr

100%; FRR � nra
na

100%,

with nar the number of accepted illegitimate identity claims, nr the
number of all illegitimate identity claims, nra the number of rejected
legitimate identity claims, and na the number of all legitimate iden-
tity claims. HTER is the average

HTER � (FAR + FRR)/2.

Both FAR and FRR depend on the value of the acceptance thresh-
old �.  When the one decreases, the other increases. To show the
effect of � on FAR and FRR, the two error rates must be plotted
against each other, for all possible values of the acceptance thresh-
old, in the form of detection error trade-off (DET) curves. These
relate FAR and FRR for different values of � on a scale defined by
the inverse of a cumulative Gaussian density function (Štruc and
Pavešić, 2010). A DET curve can be summarised by the equal error
rate (EER), the point where FAR = FRR, with a lower value repre-
senting a more accurate result. Instead of the normal HTER, we will
list HTERmin, which is the minimum possible HTER value, corre-
sponding to the point of the DET curve closest to the origin, with
HTERmin≤EER. We  will also include verification results at two FAR
rates: from a moderate FAR1% to a more stringent FAR0.1%.

Receiver operating characteristic (ROC).  For class verification
experiments, we  also present results in terms of ROC curves that
show the true acceptance rate, also known as verification rate
or sensitivity (%), for a range of increasing FAR values (meaning
decreasing specificity). Random-guess results will be plotted as

dashed magenta lines. ROC curves are often summarised by the
area under the curve: AUC. A larger AUC implies a better result. For
example, even with a stringent false acceptance rate, the verifica-
tion rate (the number of true positives) should still be high.
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Fig. 8. CMC, DET and ROC performance curves for the 51 object classes of RGB-D OD. Single modality results are given by dashed lines and joint results by solid lines. Shape
in  blue, range in purple, conspicuity in brown, luminance in grey, colour in cyan, shape and range in red, and shape, range, conspicuity and luminance in green. CMC  and ROC
random-guess rates are dashed in magenta. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)

Table 1
NN RGB-D OD performance results (51 object classes).

Data type Identification Verification

ROR% EER% AUC% HTERmin% FAR1% FAR0.1%

Shape 51.6 15.1 92.4 14.8 52.7 23.3
Range  68.4 9.2 96.7 9.0 73.5 41.2
Conspicuity 62.9 11.8 93.7 10.8 67.3 34.0
Luminance 60.0 15.1 91.6 13.8 62.7 33.2
Colour  59.4 13.6 92.7 12.8 61.9 34.1
Shape  + range 68.5 8.6 97.0 8.2 74.3 41.5
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Shape  + range + conspicuity + luminance 70.9 

ote: Best results in each column are printed in bold.

.2. Performance assessments

Performance curves and data for the experimental setups are
hown in Fig. 8 and in Table 1. Different curves are used for the
even experimental conditions: using only sN vectors (shape, as
lue dashed lines), RN maps (range, as purple dashed lines), CN

aps (conspicuity, as brown dashed lines), INL images (luminance,
s grey dashed lines), INC images (colour, as cyan dashed lines) and
sing a combination of either ( sN, RN) (shape and range, as red
olid lines) or (sN, RN, CN, INL ) (shape, range, conspicuity and lumi-
ance, as green solid lines). CMC  and ROC random-guess rates are
epresented by dashed magenta lines.

Identification of an object class (categorisation) based on shape

lone resulted in a ROR rate of 51.6%, quickly rising to a rank-5
ate around 77%, which is promising for a bio-inspired proto-object
ategorisation system. Verification rates are lower than for the
ther experimental conditions, showing that shape alone is not

able 2
GB-D OD categorisation ROR% rate comparison.

Classifier Employed features for shape/vision 

Proto-NN Shape vectors only | range maps only | all da
Linear  SVM (Lai et al., 2011) Spin images + efficient match Kernels (EMK)

sets + width + depth + height | SIFT + texton h
histogram

Random forest (Lai et al., 2011) (Same) 

kSVM  (Lai et al., 2011) (Same) 

SVM  (Bo et al., 2011) 3D shape + physical size of the object + dept
PCA + local binary patterns + multiple depth

CKM  (Blum et al., 2012) SURF interest points 

CNN-RNN (Socher et al., 2012) ZCA whitening + softmax classifier 

SP  + HMP  (Bo et al., 2013) Surface normals 

ote: Results ordered by average performance considering all three columns.
96.2 7.8 77.1 48.3

discriminative enough for class verification purposes at very low
error rates, but it still achieved around 80% at FAR10% error. Overall,
shape results are impressive considering that the size of the shape
vector is 1/5th of the other feature spaces.

Range was the most discriminative modality, with the top
single-modality results in both class identification and verification
(see Table 1). Colour achieved slightly better CMC results than lumi-
nance on class identification (except for the ROR rate) and both
achieved similar rates on verification. Conspicuity was  overall able
to achieve better results than both, with a bigger margin on verifi-
cation trials. The best performance was obtained when combining
the four modalities, although the shape plus range results are very
close. When using four modalities, the rank-5 rate of 77% for shape

increases to 91%.

We compare our ROR categorisation results with those of other
authors in Table 2. Our Proto-NN results are shown (for each col-
umn) using: (I) only shape vectors, (II) only range maps and (III)

Shape Vision All

ta types 51.6 68.4 70.9
 + random Fourier
istogram + colour

53.1 74.3 81.9

66.8 74.7 79.6
64.7 74.5 83.8

h edges + gradients + Kernel
 kernels

78.8 77.7 86.2

– – 86.4
78.9 80.8 86.8
81.2 82.4 87.5
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our data modalities. Also shown are the ROR results of Lai et al.
2011), Bo et al. (2011), Blum et al. (2012), Socher et al. (2012) and
o et al. (2013).

The shape column shows that the proposed method has almost
eached the performance of a linear SVM in Lai et al. (2011), with

 very small −1.5% difference. These authors used a state-of-the-
rt computer vision algorithm for shape categorisation, based on
eatures extracted from the 3D location of each depth pixel, relying
n spin-images that capture the spatial distribution of a randomly
ampled set of 3D points, expressing them into 16 × 16 histograms.
hese are used to compute efficient match kernel (EMK) features
sing random Fourier sets and principal component analysis (PCA)
o arrive at a 2703-dimensional shape descriptor (3.8 times larger
han our 720).

In the vision column (range map  only), our rank-one result based
n 3600 features was below the worst computer vision algorithm,
hich is again a linear SVM in Lai et al. (2011), at a −5.9% difference.

or categorisation the authors used SIFT descriptors on a dense grid
f 8 × 8 cells with EMK  features at two scales, followed by PCA,
chieving a 1500-dimensional vector to be used along with texton
istograms (from oriented Gaussian filter responses), a colour his-
ogram and the mean/standard deviation of each colour channel, as
isual features (the total number is not specified by the authors).

The all column shows that our rank-one result did not improve
uch when combining four data modalities. We  only reached

0.9%, a −8.7% difference to the random Forest classifier in Lai et al.
2011).

It is unfortunate that all authors only published ROR data, so we
annot compare the evolution in classifier performance (neither
MC  nor DET/ROC rates), which would allow for a more detailed
iew of the complete system performance. For example, we can see
n Fig. 8(a) that recognition rates quickly increase after rank one,

ith shape results achieving around 76% at rank-5 and 85% at rank-
0. Even the 70.9% ROR for four modalities is able to reach around
1% at rank-5. These are very important considerations for a local
ist system, where global scene categorisation can be primed from
everal close object categories, without requiring precise rank-one
esults (e.g., the common object families in an office will be very
ifferent from those in a corridor).

. Discussion

In general, the performance results clearly emphasise the role of
hape and 3D information in object categorisation, more than the
bvious benefit of both being invariant to lighting conditions. Both
ield a strong structural representation suitable to classify objects
ith good accuracy, quickly surpassing a rank-5 recognition rate of

6% using shape data and 89% for shape plus range data. This is per-
aps more than enough for bootstrapping gist vision, since object
ategorisation can be done by the visual system in parallel streams

 quickly classifying just a few familiar objects in each scene is often
nough for hugely biasing scene recognition. We  also note that
onspicuity features were able to outperform both luminance and
olour data, highlighting their discriminative capabilities. In fur-
her research it makes sense to expand the categorisation scheme,
ntegrating additional low-level input features, such as lines/edges,
extures and keypoints that are readily available from simple, com-
lex and end-stopped cells in V1/V2 (Rodrigues and du Buf, 2006,
009; Martins et al., 2012).

Our ROR shape-only result (51.6%) indicates that the proposed
roto-object shape categorisation method is within reach of much

ore computationally advanced and complex methods, based

n state-of-the-art spin images with EMK  features (53.1%) (Lai
t al., 2011). Perhaps even more important is that a system which
mploys cortical neuronal processes, i.e., which can be thought of as
s 135 (2015) 35–49

mimicking part of our visual system, can be applied to a real-world
problem in computer vision.

The proposed method fits into a broader cortical architecture
as is shown in Fig. 9, which highlights the possible neural path-
ways which link different processes. This architecture relies on both
standard and non-standard retinal ganglion cells. The non-standard
pathway (Fig. 9, bottom right) can serve to quickly bootstrap
the low-level gist module, by using specific, hard-coded, shape
descriptors (corners, bars and curves)  to feed a geometric shape clas-
sifier, which can be constructed using higher-level grouping cells
(Martins et al., 2012). Since low-level geometry information has
already been extracted, it is therefore available for obtaining local
object gist, e.g., providing cues which are used for a first and fast
selection of possible object categories in memory (Bar et al., 2006).
This is a purely bottom-up and data-parallel process for bootstrap-
ping the serial object categorisation and recognition processes,
which are controlled by top-down attention. Recent research also
suggests that we  actually categorise objects before we have seg-
regated them, or that both processes occur in parallel. This means
that by the time we realise that we are looking at something, our
brain already knows what that thing is (Oliva and Torralba, 2006).
Therefore, Rensink (2000) proposed a non-attentional “scene
schema” consisting of concurrent spatial-layout and gist sub-
systems which both drive attentional object recognition, all
employing “proto-objects” resulting from low-level vision. Simi-
larly, Yanulevskaya et al. (2013) also focused on salient proto-object
detection within an object-based attention theory. However, gist
vision addressed so far mostly concerns global gist of entire scenes
(Bar, 2004; Siagian and Itti, 2007; Ross and Oliva, 2010; Rodrigues
and du Buf, 2011; Terzić et al., 2013). Global scene gist can be used
to bias – select or exclude – object templates in memory in the
matching process: when in a classroom it is not very likely that we
see a horse. But global gist lacks localisation. On the other hand,
when seeing a horse it is not very likely that we are in a classroom.
Local object gist has the advantage of solving, or at least contribut-
ing to, the spatial-layout subsystem as proposed by Rensink (2000).
Although both global and local gist can determine context, prob-
ably with a straight relation between them, local gist can solve
important problems like a first and fast object categorisation, local-
isation and segregation, the latter being related to figure-ground
organisation (Craft et al., 2007).

A similar low-level attentional view is described by Martin and
von der Heydt (2013), who  measured spike time correlations in
monkey visual cortex. They concluded that specific grouping cells
in V1/V2 were able to specifically enhance the activity of neurons
whose receptive fields fit their grouping templates, linking neurons
to “proto-object structures.” In this context, we  expect that global
gist features will suffice for initial discrimination between very dif-
ferent scene types (with regard to spatial layout, like a “forest” vs.
a “city”) but will severely lack detail in more similar scenes (like
an “office” vs.  a “classroom”). Here local gist can be of great bene-
fit – since most man-made objects tend to possess well-defined
geometric shapes – when employed in conjunction with global
scene properties (Rodrigues and du Buf, 2011). This view is also
reinforced by Groen et al. (2013), who concluded that gist seems
to depend on two  stages: an early, automatic stage, where local-
contrast responses present in the LGN or V1 seem to play a very
important role, followed by a later, task-dependent stage.

Along the standard path (Fig. 9, left) binocular simple and com-
plex cells are used to create a disparity map (Martins et al., 2015),
while their monocular versions can be used for the line/edge map
(Rodrigues et al., 2012), conspicuity map (Martins et al., 2012) and

keypoint map (Rodrigues and du Buf, 2011). According to the atten-
tional coherence theory by Rensink (2000), low-level proto-object
shapes are continually formed, rapidly and in parallel across the
visual field – they are volatile, lacking strong coherence until being
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ig. 9. Proposed cortical architecture for gist, object and face recognition. Solid arr
esearch. Green arrows represent the low-level global gist architecture developed b

tabilised by FoA-gaze, afterwards dissolving when FoA is released.

n our model, we postulate that available disparity and conspicu-
ty information, when combined, is able to quickly highlight all
mportant objects and to resolve border ownership of the outlines
f objects. Higher-level, oriented grouping cells can encode the
epresent previous research and dashed arrows represent expected links for future
rigues and du Buf (2011).

distance from the centre of the object to its border, for very specific

orientations. In our case, we implemented two  populations of 360
of these cells, with orientations separated by one degree (a total
of 720 cells). The reason for using two populations for a seemingly
similar task is that borders are seldom unique: complex shapes can
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ave several border transitions at certain orientations, i.e., they are
ot star-shaped polygons. To resolve this problem, one of the popu-

ations encodes the distance to the first, closest border near the
entre of the object, whereas the second population encodes the
arthest border. This allowed for significant resilience in categoris-
ng complex shapes. These population responses can serve as inputs
o a simple, feed-forward proto-shape classifier, probably residing in
rea LIP in the dorsal pathway (Konen and Kastner, 2008; Janssen
t al., 2008). LIP also shows shape activation times of 62 ms  (Lehky
nd Sereno, 2007), well within global gist recognition times and it
as access (via areas V5/MT and MST), to the superior colliculus for
ye and head control (Gottlieb, 2007), crucial for FoA. This makes
IP a prime candidate area for integrating low-level attention with

 proto-object categorisation role.
Salient foreground regions can also serve as inputs for FoA,

hich can use available proto-object shapes. The ventral stream (V4
nd PIT) can further refine shape information and bootstrap either
bject recognition or face recognition, since we know that the cor-
ex employs a dedicated pathway for face processing (Biederman
nd Kalocsai, 1997).

Gist is expected to have a significant biasing effect throughout
his whole process, which is an important area of interest for further
esearch. For example, scene context can influence the categorisa-
ion of objects or faces, by biasing the range of familiar matches
elated to each context. Also, when the brain establishes a back-
round/foreground split in a scene, gist can bias the split based
n the scene context (i.e., a forest vs.  an office space) helping to
hoose, for each, the best close-to-far range for foreground depth.
ater it can influence FoA by increasing the priority of salient shapes
epending on context: a very close “bear” shape in a “forest” will
et top priority!
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