
Network observability for source localization in
graphs with unobserved edges
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Abstract—Localizing a source of diffusion is a crucial task in
various applications such as epidemics quarantine and identifica-
tion of trendsetters in social networks. We analyze the problem
of selecting the minimum number of observed nodes that would
lead to unambiguous source localization, i.e. achieve network
observability, when both infection times of all the nodes, as well
as the network structure cannot be fully observed. Under a simple
propagation scenario, we model the assumption that, while the
structure of local communities is well known, the connections
between different communities are often unobserved. We present
a necessary and sufficient condition for the minimum number of
observed nodes in networks where all components have either a
tree, a grid, a cycle or a complete graph structure. Additionally,
we provide a sufficient condition for the selection of observed
nodes when the components are of arbitrary structure. Through
simulation, we illustrate the performance of the proposed bound.

Index Terms—network theory, graphs, source localization,
observability

I. INTRODUCTION

Network diffusion is used to describe various phenomena,
such as spreading of epidemics in human populations and
propagation of information in social networks. In each of these
examples, localizing the source of diffusion is an important
task that needs to be performed in order to either curb
infections, restrict further damage, or identify trendsetters. Es-
timating the source of rumors or epidemics was first addressed
in [1], followed by a growing number of works [2]–[6].

Having access to all the nodes in the network, due to
network size, limited resources and privacy issues is not
always feasible. In that case, source localization is performed
based on the observations of a subset of nodes, denoted as
the observers [2], [3], [6]. Consequently, choosing the most
informative subset of nodes becomes an important issue and
several strategies have been explored in the literature. The
performance of high-degree nodes is compared to randomly
selected nodes through simulation in [2]. Selection strategies,
based on different centrality measures, are experimentally
evaluated in [6]. In [7], the problem of finding the smallest
subset of observed nodes to achieve correct source localization,

This research was supported by Fundação para a Ciência e a Tecnologia
(project PEst-OE/EEI/LA0009/2013 and a PhD grant from the Carnegie
Mellon-Portugal program) and EU FP7 project MORPH (grant agreement
no. 288704)

under a simple deterministic propagation model, is cast as
the problem of finding the smallest resolving set of a graph.
Selecting a sufficient number of observers in incompletely
observed tree networks is presented in [8]. In this paper, we
further analyze the problem of selecting the minimum number
of observers in networks where some edges are not known.

In many cases, complete knowledge of network topology is
not a realistic assumption. Individuals may not be willing to
disclose all their social connections, and not all information
is propagated through monitored social network sites. Based
on infection times of nodes, the complete network structure
can be inferred [9], or missing network data can be learned
[10]. Often, local connections within communities are well
known, while the connections between them are not always
observed. This may happen when diseases spread from one
community to another through random contact, rather than
a known friendship connection, or when novel information
is spread through weak, rather than strong, social ties [11].
Therefore, in our model with deterministic propagation we
assume that complete knowledge of local network components
is available, while inter-component edges are the ones that are
not observed. We classify the network as being observable for
the source localization problem if the choice of observed nodes
is such that the source can be unambiguously identified [7]. We
present a necessary and sufficient condition for the minimum
number and placement of observed nodes that would make
the network observable, if each of the network components is
either a tree, a grid, a cycle or a complete graph. Furthermore,
when the components are of arbitrary structure, we present
a sufficient condition for network observability and through
simulation we illustrate the performance of the bound.

II. MODEL SETUP AND PROBLEM STATEMENT

We assume a widely studied Susceptible-Infected propaga-
tion model, where once a node is infected, it remains infected
[1], [2], [4]. A single infected node at time 0 initiates the
network diffusion. We adopt a simple model of diffusion
where once a node is infected at t − 1, in the next time
instant t, where t is a discrete time index, it will infect all
of its neighbors, with probability 1. The time of infection of a
node corresponds to its distance to the source. Assuming that
resources are limited, only a subset of nodes is monitored.
The source is then identified based on the infection times of
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observed nodes. A network of n nodes is represented using
a graph G = {V, E}, where V = {1, . . . , n} is the set of
nodes representing the vertices and E ⊆

(
V
2

)
is the set of

edges. In undirected graphs, there is an edge between nodes i
and j if they can communicate directly. Since we assume the
knowledge of the structure of local communities, but not of the
connections between communities, the observed network is a
disconnected graph F that comprises k components, Ci, for
i = 1, . . . k. Since we are interested only in the first time that
a node gets informed or infected, we assume the number of
unobserved inter-component edges is k− 1, making the graph
connected, yet there are no cycles between the components.
We denote as F(k) the class of such observed graphs with
k components and k − 1 missing edges. Then, with H(F ),
we denote the class of all the possible graphs that can be
constructed by adding k−1 edges between the components of
the observed graph such that the resulting graph is connected.
If the observed graph is F ∈ F(k), then the true network
structure can be any graph from the class H(F ).

A path i − j is a sequence of all different nodes starting
from node i and ending with j. A tree is a connected graph
without any cycles and a forest is a disjoint union of trees.
The distance between two nodes i and j in a connected
graph H is the number of edges in the shortest path between
them, denoted as dH(i, j). If S ⊆ V denotes the set of
nodes {s1, . . . , sr}, then dH(i, S) is the r-vector of distances
[dH(i, s1), . . . , dH(i, sr)]. A resolving set of nodes of a graph
H is a set S, such that dH(u, S) 6= dH(v, S) for any two
different nodes u, v ∈ V [12], i.e. any two nodes have distinct
distance signatures. Finding a resolving set of an arbitrary
graph is an NP-hard problem and can be approximated by a
greedy algorithm within a factor of O(log n) [12]. Under de-
terministic diffusion, the network is observable if the observers
form a resolving set [7]. A forest is observable if all nodes have
different distances to the set of observers across all possible
trees that correspond to the forest [8]. The number of such
trees explodes exponentially with the number of unobserved
edges. We now extend this concept to general networks. By a
generalized resolving set of a disconnected graph F , we denote
a set of nodes O such that for any two different nodes u and v,
and any two graphs H1, H2 ∈ H(F ), dH1

(u,O) 6= dH2
(v,O).

Hence, a network F ∈ F(k) is observable if the observers
form a generalized resolving set. As resources available for
observing nodes are often limited, we are interested in finding
the smallest set of observers that make the network observable.

III. MINIMUM NUMBER OF OBSERVERS

Let Si denote a minimum cardinality resolving set of a
component Ci, i = 1, . . . , k. A leaf is a node of degree 1.
Let L (Ci) denote the set of all leaves of Ci, and K (Ci) the
set of nodes of at least degree 3 that are connected by paths
to one or more leaves, when Ci is a tree. While in [8], it
was shown that the forest is observable if all of its leaves are
observed, here we present both the necessary and sufficient
condition.

(a) Both components have
a leaf which is not in O.

(b) All leaves from Ci are
in O, Cj is not a path.

Fig. 1: Trees H1, H2 where u and v are not distinct

Theorem 1. Let F ∈ F(k) be a graph where each component
is a tree. For F to be observable the necessary and sufficient
number of observers is minj

∑k
i=1,i6=j |L (Ci) |+ |Sj |, unless

all components are isolated nodes, in which case k − 1
nodes are needed. We may assume without loss of generality,
that the minimum is attained for j = k. Then the set
O = ∪k−1i=1 L (Ci) ∪ Sk is a minimum cardinality generalized
resolving set of F .

Proof. We first prove the sufficiency claim. Since all the leaves
of a tree are its resolving set [12], any two nodes u and v from
the same component are distinct. Let us assume now that u is
in Ci and v in Cj , for i 6= j. If u ∈ O, then it is distinguishable
from v, since dH1

(u, u) = 0 6= dH2
(u, v). Let p be a node

in Ci and q in Cj , such that p − q is a path that connects
Ci and Cj in H2. Observe that dH2

(p, q) ≥ 1. If u /∈ O
and u = p, then for all r ∈ O in Ci we have dH2(r, v) =
dH2(r, p) + dH2(p, q) + dH2(q, v) > dH2(r, p) = dH1(r, u).
For the remaining case, u /∈ O and u 6= p, let r be a leaf in
L (Ci) such that u is on the path r−p. Such a leaf clearly exists
[8]. Then dH2

(r, v) = dH2
(r, u) + dH2

(u, p) + dH2
(p, v) >

dH1
(r, u). Thus, the two distance vectors are never equal.

Now let O be an arbitrary generalized resolving set. We will
show that O has to be at least the size given by the sufficient
condition. Let Ci and Cj be 2 components with at least 2
nodes, such that both have a leaf which is not in O. Let u be
such a leaf in Ci with neighbor u′ and v be a leaf in Cj with
neighbor v′, such that u, v /∈ O. We can construct H1 and
H2 as shown in Figure 1 (a) where u and v are not distinct.
Hence, either all the leaves in Ci or Cj have to be in O. Wlog,
let us assume L (Ci) ∈ O. Now we assume that from Cj only
|Sj |−1 nodes are selected. When Cj is not a path, there exists
a node c ∈ K (Cj) such that two of its associated leaves, u
and v, are both not in O. Figure 1 (b) illustrates how tree H1

is constructed where u and v are not distinct. When Cj is path
and |Sj | − 1 = 0 nodes from Cj are in O, H1 and H2 can be
constructed where two terminal nodes of Cj are not distinct.
Thus, at least |Sj | nodes have to be taken from Cj . Similarly,
it can be shown that when Ci has only one node, it has to
be in O, unless Cj also has only one node. In that case, it
is necessary to include one of the nodes. Therefore, if there
exists at least one component with 2 or more nodes, from all
but one component all the leaves have to be taken, and from
the remaining, at least a resolving set. If all k components
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Fig. 2: Constructing H1 and H2 when components are grids

have only one node, |O| should be k − 1.

A grid is a graph whose nodes correspond to the points in
the plane with integer coordinates. Two nodes are connected
by an edge whenever the corresponding points are at Euclidean
distance 1. Corner nodes are nodes of degree two and consec-
utive corner nodes have the same value in one coordinate.

Theorem 2. Let F ∈ F(k) be a graph where each component
is a grid. For F to be observable the necessary and sufficient
number of observers is 3k − 1. Let Oi =

{
ri1, r

i
2, r

i
3

}
denote

a set of 3 corner nodes in Ci. Then O = ∪k−1i=1 Oi ∪ Sk is a
minimum cardinality generalized resolving set of F .

Proof. Let the corner node ri1 be in position (0, 0), ri2 at (xi, 0)
and ri3 at (0, yi). Since any two consecutive corner nodes form
a resolving set of a grid [12], we follow the same reasoning
as in Theorem 1 and analyze only the case u 6= p to show
sufficiency. We prove the claim by contradiction and assume
dH1

(u,Oi) = dH2
(v,Oi), for u in Ci and v in Cj . We then

obtain the following equations:

xu + yu = xp + yp + dH2(p, q) + dH2(q, v)

xi − xu + yu = xi − xp + yp + dH2(p, q) + dH2(q, v)

xu + yi − yu = xp + yi − yp + dH2(p, q) + dH2(q, v). (1)

The system of equations (1) has a single solution xu = xp,
yu = yp, and dH2(p, q) + dH2(q, v) = 0 which contradicts
dH2

(p, q) ≥ 1 and proves the claim.
To prove necessity, let us assume there exist two compo-

nents Ci and Cj , such that from each, only two nodes, ri1, r
i
2

from Ci and rj1, r
j
2 from Cj are in O. If on at least one

component the selected corner nodes are not consecutive, we
claim, and omit the proof due to space limitations that there
exist nodes u and v that are not distinguishable by ri1 and
ri2. H1 can be constructed by connecting ri1 with any node
from any other component, and u and v are still not distinct.
Otherwise, when the corner nodes are consecutive, Figure 2
illustrates the choice of nodes u and v, H1 and H2, such that
dH1(u,O) = dH2(v,O). Therefore, at least 3 nodes from Ci

or Cj have to be in O. Assuming that 3 nodes from Ci are
in O, with the same arguments as in Theorem 1 it can be
shown that at least |Sj | = 2 nodes from Cj have to be in O.
In conclusion, for any two components, at least 3 nodes from
one and 2 nodes from another have to be in O.

Theorem 3. Let F ∈ F(k) be a graph where each component
is a cycle of size greater than 3. Let ke denote the number of
components that have an even number of nodes. For F to be

observable the necessary and sufficient number of observers is
2k+ke−1, if ke > 0, and 2k otherwise. For a component Ci

with an even number of nodes ni, let Oi =
{
ri1, r

i
2, r

i
3

}
, where

ri1, ri2 are neighboring nodes in Ci and ri3 is at a distance at
least ni−2

2 from both of them. For an odd cycle Ci, let Oi ={
ri1, r

i
2

}
, where ri1 and ri2 are nodes in Ci at distance ni−1

2
from each other. If ke = 0, a minimum cardinality generalized
resolving set of F is ∪ki=1Ok, otherwise it is O = ∪k−1i=1 Oi∪Sk,
assuming wlog that Ck is an even cycle.

Proof. First, let us prove the claim of sufficiency. If the nodes
u and v are not distinguishable by Oi, then dH1

(r, u) =
dH2(r, v) = dH1(r, p) + dH2(p, v), for some H1 and H2 and

dH1(u, r) > dH1(p, r) (2)

must hold for some r ∈ Oi. First, we analyze when both Ci

and Cj are even cycles. When both p and u lie in the same
semicycle, i.e. both on the shorter path ri2 − ri3 or both on
the shorter path ri1 − ri3, either u or p is closer to ri3 and the
other one is closer to ri1. Then (2) cannot hold for both ri1 and
ri3. When u and p lie in different semi-cycles, then (2) cannot
hold for both ri1 and ri2. Similarly, we analyze when at least
one component is an odd cycle with the main difference that
the shorter path ri1−ri2 has length ni−1

2 , while the longer path
ri1 − ri2 is ni+1

2 . Using this we also obtain that condition (2)
cannot hold for both ri1 and ri2. Therefore, it is sufficient to
select 2 from odd, and 3 from even cycles, except for the last
component, from which it suffices to select 2 nodes.

Now, we prove the claim of necessity, observing that at least
2 nodes of each cycle have to be chosen, as otherwise the two
neighbors of the chosen node r are not distinct within graph
H1 constructed by connecting r with one node of each other
component. Let us assume there exist two even cycles from
which only two nodes, ri1, r

i
2 in Ci and rj1, r

j
2 in Cj are in O.

If on at least one component Ci, nodes ri1 and ri2 are exactly
ni

2 apart, then let u and v be two neighbors of ri1. Then u
and v are not distinct and we can always construct H1, as
described previously, so that they remain as such. Otherwise,
let us assume in both Ci and Cj , the nodes selected in O
are not at distance ni

2 (nj

2 , respectively). Then, let u (v) be
a neighbor of ri1 in Ci (rj1 in Cj) that is on the longer path
ri1 − ri2 (rj1 − rj2). We can construct H1 by connecting u with
rj1 and u with some node z at any other component (if there
are more components), and H2 by connecting v with ri1 and
v with the same node z. Then again, u and v are not distinct.
Hence, at least 3 nodes from even cycle Ci or Cj have to be
in O. In conclusion, from all but one component with an even
number of nodes, 3 nodes have to be chosen, and from the
remaining ones, at least 2.

Theorem 4. Let F ∈ F(k) be a graph where each component
is a complete graph of at least 3 nodes. For F to be observable
the necessary and sufficient number of observers is n − k. A
set consisting of all but one node on each component is a
minimum cardinality generalized resolving set of F .

Proof. We omit the straightforward proof.
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Fig. 3: Extended shortest path r − u′

In order to present a result on observability of a graph F ∈
F(k) with k arbitrary components, we review the concept of
boundary of a graph. A node v is a boundary node of u if
dG(w, u) ≤ dG(v, u), for all w that are neighbors of v [13].
A node v is a boundary node of G if it is a boundary node of
some node of G. The boundary of graph G, ∂(G), is the set
of all the boundary nodes of G and can be easily determined
by comparing distances among the neighbor nodes.

Theorem 5. For any graph F ∈ F(k) to be observable, it is
sufficient to observe the set of nodes O = ∪k−1i=1 ∂(Ci) ∪ Sk.

Proof. Since the boundary is a resolving set [14], again we
only analyze for u 6= p. The shortest path p − u in Ci is
extended to the shortest path p−u′ such that u′ is a boundary
node of p, and u can be u′. For a fixed shortest path p − u′

we have dH2(u
′, v) = dH2(u

′, p) + dH2(p, v) = dH1(u
′, u) +

dH1
(u, p)+dH2

(p, v) > dH1
(u′, u), completing the proof.

The boundary of a tree is its leaves, the boundary of a grid
are 4 corner nodes, while all the nodes are the boundary of a
cycle [14]. As the boundary can be very large, we tighten the
bound on the cardinality of a generalized resolving set.

Theorem 6. Let ∂(Si) denote the boundary of the resolving
set of Ci and let Oi = Si ∪ ∂(Si). For any graph F ∈ F(k)
to be observable, it is sufficient to observe the set of nodes
O = ∪k−1i=1 Oi ∪ Sk.

Proof. For r ∈ Si, following the notation of Theorem 5, the
shortest path r−u in Ci is extended to the shortest path r−u′,
such that u′ ∈ ∂(r). Again, we analyze when u 6= u′.

Case I: There exists a shortest path from u′ to p, and
consequently to v, that passes through u. Then we have
dH2

(u′, v) = dH1
(u′, u)+dH1

(u, p)+dH2
(p, v) > dH1

(u′, u)
and u and v have different distances to u′.

Case II: All shortest paths u′−p do not pass through u. Let
b be a node where path p−u′ connects to r−u′, as illustrated
in Figure 3. Node b can be u′, but not u, as that is Case I.
We show that at least one shortest path r − b passes through
u, by assuming the opposite, i.e. there exists a node z with

dH1(r, u) + dH1(u, b) > dH1(r, z) + dH1(z, b). (3)

Node z can also be p. Now let a be a node that immediately
precedes b on the path u − u′. Such a node exists,
as b 6= u under our assumptions. Then dH1(r, a) =
min {dH1

(r, z) + dH1
(z, b) + 1, dH1

(r, u) + dH1
(u, b)− 1}.

If the first value is smaller, we have dH1
(r, a) > dH1

(r, b),
which is not possible as the distance from node r does not
decrease along the extended path r − u′. If the second value
is smaller or values are equal, and yet we have that (3) holds,
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Fig. 4: Performance of the boundary bound

we get dH1
(r, a) = dH1

(r, b). This implies that the shortest
path r− u could be extended only to r− a, and not to r− b,
which is a contradiction and proves the claim.

Since the shortest path from r− b goes through u, we have

dH1(r, u) + dH1(u, b) ≤ dH1(r, p) + dH1(p, b). (4)

As r did not distinguish u and v, Condition 2 holds. Using this
in (4), it follows dH1

(u, b) < dH1
(p, b). Now, dH2

(v, u′) =
dH2

(v, p) + dH2
(p, b) + dH2

(b, u′) > dH2
(v, p) + dH2

(u, b) +
dH2

(b, u′) > dH1
(u, u′), which completes the proof.

IV. SIMULATION RESULTS

We compared the sufficient number of observers chosen by
Theorem 6 and by a greedy algorithm adapted from [12], as the
calculation of the true minimum is computationally intensive
even for modest network sizes. The adapted greedy algorithm
selects one by one a node that distinguishes the most node
pairs across all possible topologies that can be constructed
by adding an edge between two components of the graph.
We have generated 200 graphs, where each graph comprises
two Erdős-Rényi components, random size ni 10− 20 nodes,
nip = 4, where p is the edge probability. For each graph,
we calculated the boundary nodes of a (not necessarily the
smallest) resolving set of each component, using the original
greedy algorithm and we have averaged the results for same
size networks. Figure 4 shows that the average percentage of
observers selected by the bound is higher than by the greedy
algorithm. However, unlike the latter, Theorem 6 does not
require comparison of distance vectors through an exponential
number of topologies, but can be applied in polynomial time.

V. CONCLUSIONS

We analyzed the problem of finding the minimum number of
nodes that need to be observed when the connections between
network components are not known, in order to localize the
source correctly. We formulated this as a problem of finding a
modified version of the smallest resolving set which is known
to be an NP-hard problem for arbitrary graphs. We calculated
the minimum number of nodes that is necessary and sufficient
when the network components are either all trees, grids,
cycles or complete graphs. When the network components are
of arbitrary structure, we presented an upper bound on the
minimum number of nodes in terms of the boundary nodes
of components. Through simulation, we have illustrated the
performance of the bound, which, although generally not very
tight, can be determined in polynomial time.
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