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Abstract Ultrasonic, infrared, laser and other sensors are being applied
in robotics. Although combinations of these have allowed robots to navig-
ate, they are only suited for specific scenarios, depending on their limita-
tions. Recent advances in computer vision are turning cameras into useful
low-cost sensors that can operate in most types of environments. Cam-
eras enable robots to detect obstacles, recognize objects, obtain visual
odometry, detect and recognize people and gestures, among other possib-
ilities. In this paper we present a completely biologically inspired vision
system for robot navigation. It comprises stereo vision for obstacle detec-
tion, and object recognition for landmark-based navigation. We employ
a novel keypoint descriptor which codes responses of cortical complex
cells. We also present a biologically inspired saliency component, based
on disparity and colour.

Keywords: Biologically Inspired Vision, Stereo Vision, Object Recog-
nition, Robotics

1 Introduction

Many types of sensors are being used for robot navigation. Some can be cheap,
such as infrared and ultrasonic rangefinders [12], RFID [12,7] and GPS [10,17],
but others can be quite expensive, like laser rangefinders [13]. They allow ro-
bots to acquire information about the environment within certain ranges and
depending on certain environmental conditions. However, such sensors are not
always appropriate if we want to build a robot that can adapt to changes in the
complex world. The use of cameras as sensors offers new possibilities. Vision can
provide information about odometry and obstacles in the path of the robot, or
find landmarks [5] and objects along the path. A robot can also detect humans
and interact with them by understanding their gestures. The advent of low-cost
RGB-D sensors has spawned a lot of interest since they allow to get reliable
depth maps effortlessly if compared to stereo vision [8,2]. However, such sensors
also have their limitations, like the limited range and the fact that they can only
be used indoors.

In order to build robots that may be able to interact with a dynamic environ-
ment, a framework inspired by human cognition must be developed. This must
integrate sensory information with a memory management model, with both
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short- and long-term memory components [16]. Concerning sensory information,
we can model processes in the human visual system, such as visual saliency,
Focus-of-Attention (FoA) [14], optical flow [6], local and global gist [11], stereo
vision and object recognition [18].

In previous work [16] we developed a minimalistic vision-based cognitive
SLAM system comprising visual saliency, object segregation and object recog-
nition. The vision processes were integrated with a cognitive memory structure
composed of short- and long-term memories. The first one has a small capacity,
storing only the necessary for immediate navigation. The latter stores important
information, selected from short-term memory, for longer periods of time in order
to use it for global navigation. The system also integrates a task management
system for building complex tasks from simpler ones.

In this paper we integrate biologically inspired vision processes and replace
some previously used components which were based on computer vision: SURF
keypoints and descriptors for object recognition and Fast Saliency [3] algorithm
for focus of attention. With the integration of fast multi-core processors and high
capacity batteries in laptops these biologically inspired processes are finally mak-
ing their way into real-time mobile robotics. As main contributions in this paper
we present new biologically inspired approaches for (a) keypoint descriptors, (b)
stereo vision, (c) visual saliency and (d) object recognition. These approaches
are based on complex cell responses obtained from a cortical V1 model [18,14].
However, the main goal of this paper is to address the feasibility of using an
integrated visual framework in real time robot navigation.

The rest of this paper is organised as follows: Section 2 describes the visual
processes: keypoint descriptors, stereo vision, saliency and object recognition.
Section 3 presents the robot platform, tests and results. Section 4 addresses
conclusions and discusses further work.

2 Biologically inspired vision for robot navigation

In this section we present a system for robot navigation which makes use of
recent advances in modelling early cortical vision processes. Instead of SURF
keypoints and descriptors commonly used in robotics, we developed a simple
biological descriptor based on the responses of complex cells of V1 cortex which
are also used for keypoint extraction [14]. We apply a biological stereo algorithm
in order to improve obstacle detection and to eliminate the restriction of using
artificial sandboxes. Disparity maps are combined with colour information to cre-
ate saliency maps for object segregation. Finally, the novel keypoint descriptors
are used to perform object recognition. In our tests we employed a Bumblebee-2
colour camera (BB29852C-60) with a maximum resolution of 1024 x 768, a focal
length of 6mm and a 43° horizontal field-of-view.

2.1 Multi-scale keypoints and biological keypoint descriptor

In cortical area V1 there are simple, complex and end-stopped cells [15], which
play an important role in coding the visual input. They can be used to extract



111

multi-scale line, edge and keypoint information: keypoints are line/edge crossings
or junctions, but also blobs [14]. To use extracted keypoints for matching, we
developed a simple binary descriptor which encodes complex cell responses ac-
cording to a sampling pattern (see Fig. 1, left.) around a keypoint and compares
them to the responses of the complex cells at the keypoint position. The use
of these responses makes the descriptor very fast to compute because these are
already calculated in the keypoint detection process [18]. Pairwise comparison
of image intensities with similar sampling patterns has been successfully used in
other binary descriptors such as BRIEF [4], BRISK [9] and FREAK [1].
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Figure 1. Left: biological keypoint descriptor sampling pattern with 32 points radially
distributed in 4 concentric circles. The radii of the circles are proportional to the scale
A = 4 of the keypoint. Right: stereo example. Top: left and right images. Bottom:
filtered disparity map and binary obstacle map. In the disparity map brighter pixels
correspond to closer regions and darker pixels to more distant ones.

We use a sampling pattern with 4 concentric circles, with the most distant
circle having a radius equal to A\, where X is the spatial wavelength of the Gabor
filter used for modelling simple cells [18]. The smaller concentric circles have a
radii of 0.2\, 0.45\ and 0.75\, respectively. Radial sampling patterns are com-
monly used in other binary descriptors [4,9,1]. We stress that we only apply one
scale (A = 4 pixels) in this paper in order to achieve real-time performance on
a portable computer. However, we apply 8 filter orientations equally spaced on
[0, 7].

At each sampling position we take the responses of the complex cells in all
8 orientations and compare each response with the response of the center cells
with the same orientation. If the response of the center cell is larger, we code
this with a binary “1”. Otherwise, we code it as a binary “0”. Since we use a
total of 32 sampling positions and 8 orientations, each keypoint is coded by a
256-bit descriptor. Matching of two keypoints is done by simply calculating the
Hamming distance between their descriptors.

2.2 Stereo Vision

Stereo vision is a fundamental process for robot navigation because it allows
to detect open spaces, obstacles on its path and estimate the distance to those
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obstacles. Stereo vision is also useful for computing visual saliency. The stereo
process employs the simple descriptors presented in Section 2.1.

In order to navigate and avoid obstacles, a robot only needs a coarse view of
the obstacles and walls in front of it. A coarse disparity map can be calculated by
downsizing the images captured from the left and right cameras. The algorithm
is as follows: (a) resize the images to 160 x 120 pixels, (b) apply the descriptor
previously presented to code every individual image pixel, (c) compare each
pixel P in the left image to the next K pixels on the same line starting from
the same position P, in the right image, and (d) using the Hamming distance,
evaluate which of the K pixels is most similar to pixel P and use the horizontal
displacement as the disparity value. Parameter K depends on the stereo camera
used: we used K = 150. Since both descriptors and Hamming distances for
matching are very fast to calculate, we can obtain a rough disparity map for real-
time robot navigation. After calculating the disparity map we apply a median
filter of size 5 x 5 to reduce noise due to wrong matches. In order to allow the
robot to avoid obstacles and walls we threshold the disparity map and then
apply a blob detection algorithm to locate nearby obstacles. This is illustrated
in Fig. 1 (right).

2.3 Visual Saliency

Visual saliency is important for real-time vision, since it allows a robot to select
important regions to process instead of processing entire images. Saliency maps
are also useful for segregating objects from the background, reducing clutter and
improving object recognition rates.

Figure 2. Visual saliency example. Left to right, top to bottom: input image, colour
based saliency, disparity based saliency, combined maps, thresholded map and inter-
esting regions. Although the book is more distant, its distinctive colours make it an
interesting region to process.

Our new saliency component combines colour with disparity. We build a
stack of 6 retinotopic maps representing different channels in CIE L*A*B colour-
opponent space. The CIE L*A*B model is based on retinal cones and provides
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a standard way to model colour opponency. The first three channels code the
image in L*A*B colour space, thus represent white, green and blue. The other
three channels are the complements of the first three channels, thus represent
black, red and yellow.

After computing the retinotopic maps we apply blob-detection based on
a stack of bandpass Difference of Gaussians (DoG) filter kernels with oy €
{5,10,20} and o_ = 20. The same process is applied to the filtered disparity
map after thresholding to get only the nearest regions. Finally, we sum the in-
dividual colour maps and the disparity map (Fig. 2). Since a saliency map does
not need to be detailed, we compute it using the subsampled colour images for
faster processing. After computing the final saliency map we threshold it and
process only interesting regions for object recognition.

2.4 Object recognition

For object recognition we selected a small set of objects to which we apply the
keypoint extraction and description algorithms. Resulting keypoint descriptor ar-
rays are then stored in the robot’s memory for faster processing during runtime.
During navigation, these descriptor arrays are matched to keypoint descriptors
extracted from the images captured by one of the robot’s cameras. Since we
use binary descriptors, matching is quickly done by calculating the Hamming
distances. When 50% of all descriptors of a certain object can be matched, i.e.,
having a Hamming distance smaller than 48, the object is confirmed. A matching
example is shown in Fig. 3.

True Positive Rate
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Rate
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Figure 3. Left: example of matching: the segregated book shown in Fig. 2. Right:
comparison between our descriptor(green) and BRISK(blue) over 20000 patches.

In our preliminary tests we verified that our descriptors can be used for basic
object recognition. We successfully used them to recognize 8 different objects
(boxes, cups, book covers) under good lighting conditions. For object recognition
we used A = 8. For evaluation purposes we also used our descriptor for patch
classification. We tested it on the Yosemite dataset. The graph on Fig. 3 shows a
comparison between our descriptor and BRISK, which performs better. However,
we emphasize that our descriptor uses half the bits that BRISK uses and has
not yet been optimized in terms of redundancy, relevancy, coding and pooling.
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3 Tests and Results

3.1 The Robotic Platform

CPU+GPU

To test the developed system we used a
child-sized Pioneer 3DX robot, equipped
with a Bumblebee-2 stereo camera, a
PhantomX robot turret for pan and tilt
movement of the camera, and ultrasonic
and laser rangefinder sensors (see Fig. 4).
The range sensors are only used for emer-
gency collision avoidance, not for navig-
ation. A structure has been mounted on
the robot in order to give it more height,
providing the point of view of a child with
a height of 1.20m. The robot has been set
up with ROS (Robot Operating System).

Stereo camera

Pan-tilt

L

Laser
cpPy

Pioneer 3DX

Figure 4. Robotic platform used for
testing.

3.2 Test results

For testing the stereo algorithm we placed the robot in a 60 meter long corridor
and programmed it to go from one end to the other end and to avoid walls
and obstacles, always trying to the initial orientation. Every time it detected
an obstacle it move away from it. The corridor had varying lighting conditions,
being dark in some parts, well lit in others with fluorescent lamps, which generate
a lot of image noise, or with direct sunlight from the side. Along the corridor
there were 7 obstacles with different sizes, shapes and colors, such as a table, a
chair and cardboard and styrofoam boxes. During autonomous robot navigation
we randomly placed ourselves in front of the robot. Other persons occasionally
passed in front of the robot as well. In the middle of the corridor, it had a wider
region with two pillars that the robot also had to avoid. We rearranged the
obstacles in three different setups (A, B and C) and made 20 entire runs for
each setup. The results can be seen on Table 1.

Table 1. Testing results of 60 runs in three different setups.

Setup|Successful runs|Failed runs|Success Rate
A 17 3 85%
B 16 4 80%
C 16 4 80%

During sixty runs the robot ran into obstacles only 11¢imes. The major failure
causes were: (a) moving obstacles in dark parts of the corridor (see Fig. 5); (b)
navigating almost parallel to a blank wall due to the lack of texture and to the
small FOV of the cameras; and (c) navigating in narrow spaces. Most of these
problems can be easily solved by integrating the SLAM system that we previously
developed which makes use of the pan and tilt system to build maps for local
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and global navigation. The stereo maps took an average of 0.085s to compute on
a 2.4 GHz Intel quad core i7-47T00HQ processor for the size of 160 x 120 pixels.
For 320 x 240 it takes an average of 0.39s. However, the smaller resolution proved
to be enough for obstacle avoidance.
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Figure 5. Corridor navigation examples. Top, left to right: left and right camera im-
ages, disparity map and obstacle map. Bottom, left to right: robot detecting one of the
pillars, robot detecting a person as an obstacle to avoid and screen of the computer
showing the two images from the Bumblebee-2 camera and the disparity map.

4 Conclusions and further work

Our initial tests demonstrate that our biologically inspired system works quite
well for vision-based robot navigation. Using the stereo algorithm, the robot was
able to avoid the obstacles and walls in most testing runs. Visual saliency also en-
abled the robot to select interesting image regions for further object recognition
using our novel keypoint descriptors.

Regarding visual saliency, we are working to extend it by including other
cues, such as texture, shape and motion. Motion can be quite useful for avoiding
moving obstacles or humans.

Although the keypoint descriptor proved to be good enough for the simple
tasks used in our experiments, we are still improving it to make it competitive
with state-of-the-art keypoint descriptors. Other pooling and coding approaches
could yield a more robust and reliable descriptor based on complex cells from
cortical region V1.

As further work we also intend to integrate the presented visual components
into the cognitive robot framework that we have previously developed [16].
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