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Abstract—Learning processes that converge to mixed-
strategy equilibria often exhibit learning only in the weak
sense in that the time-averaged empirical distribution of
players’ actions converges to a set of equilibria. A stronger
notion of learning mixed equilibria is to require that
players period-by-period strategies converge to a set of
equilibria. A simple and intuitive method is considered
for adapting algorithms that converge in the weaker sense
in order to obtain convergence in the stronger sense. The
adaptation is applied to the the well-known fictitious play
(FP) algorithm, and the adapted version of FP is shown
to converge to the set of Nash equilibria in the stronger
sense for games known to have the FP property.

Index Terms—Games, Learning, Mixed Equilibria, Fic-
titious Play, Nash Equilibria,

I. INTRODUCTION

The theory of learning in games is concerned with in-
vestigating how dynamical systems induced by repeated
play of a normal-form game can lead players to learn
equilibrium strategies. The manner in which agents learn
equilibrium strategies may be classified into two general
categories. We say a learning process converges weakly
to a set of equilibria if the time-averaged empirical
distribution of players’ actions converges to an equi-
librium set. A well-noted shortcoming of this mode of
convergence is that it does not imply that players period-
by-period strategies ever converge to an equilibrium set
themselves. In contrast to this, we say a learning process
converges strongly to a set of equilibria if the period-by-
period strategies of agents converge to an equilibrium
set.

Weak convergence is the traditional mode in which
players are said to learn mixed-strategy equilibria. It is
often interpreted as a convergence of players ‘beliefs’
to equilibrium. An underlying issue with this mode of
convergence is that, at mixed strategy equilibria, the best
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response correspondence is not lower semicontinuous
[1]; even though a player’s ‘beliefs’ may be converging
to equilibrium, the best response associated with each
belief may be a unique pure strategy at every step of
the repeated play. In such scenarios, it is often the
case that the period-by-period strategies cycle in such a
way as to drive the time-averaged empirical distribution
of actions to equilibrium, while the period-by-period
strategies never approach equilibrium themselves [2],[3].

Strong convergence, on the other hand, implies that
the strategies actually employed by players are asymp-
totically optimal in the sense that they converge to a set
of equilibria.

Fictitious play (FP) is a classic algorithm which typ-
ifies a large class of learning algorithms1 and is known
to converge weakly to the set of Nash equilibria. Our
main contribution is to present a simple and intuitive
adaptation of FP that converges strongly to the set of
Nash equilibria. In our strongly convergent variant of
FP, players gradually and independently transition from
using the FP best response rule to determine the next-
iteration action, to using their current empirical distri-
bution as a probability mass function (pmf) from which
they sample to determine their next-iteration action.

From the perspective of a player, this may be seen as
a gradual transition from ‘learning’ to ‘implementation’.
The idea is that as long as the rate of transition from
learning to implementation is sufficiently slow, the em-
pirical distribution will continue to move toward equilib-
rium, per the FP process. Since players are increasingly
likely to draw their next-iteration action as a random
sample from their empirical distribution, their period-
by-period strategies also approach equilibrium.

While the algorithm presented here deals specifically
with FP, an appealing aspect of our approach is that it
may be readily generalized as a method for obtaining
strong convergence in other weakly convergent learning
algorithms. The key property which enables strong con-
vergence in our approach is the robustness property of
FP (see section 1). Our analysis may be readily extended
to other weakly convergent algorithms that can be shown
to possess a similar robustness property.

1FP is considered prototypical of most learning algorithms which
rely on best response dynamics.
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Related research ([2],[1]) has studied various prob-
lems associated with learning mixed-strategy equilibria,
including the issue of weak convergence. Stochastic FP
(SFP) is an adaptation of FP which seeks to address
the problem of weak convergence and provide an expla-
nation for why players might wilfully choose to play
randomized strategies in a learning process. SFP has
been shown to converge strongly in various classes of
games ([2],[4],[5],[6],[7]). Leslie et al. [7] present a
payoff-based actor-critic implementation of FP that is
shown to converge strongly in games known to have the
FP property.

The remainder of the paper is organized as follows.
Section II sets up the notation to be used in the sub-
sequent development and presents the traditional FP
algorithm. Section III presents our strongly convergent
adaptation of FP. The algorithm is proved to converge
strongly to the set of Nash equilibria in the same section.
Section IV concludes the paper.

II. PRELIMINARIES

A. Setup and Notation

We consider a normal form game Γ with set of players
N = {1, . . . , n}. The set actions, or pure strategies, for
player i is given by Ai. The set of mixed strategies for
player i, denoted by ∆i, is the convex hull of Ai. The
set of joint mixed strategies is given by ∆n =

∏
i∈N ∆i.

The utility function for player i is given by Ui(·) :
∆n → R. When convenient we sometimes write U(p)
as Ui(pi, p−i), where pi denotes the mixed strategy of
player i and p−i denotes the mixed strategies of all
other players. The set of Nash equilibria is given by
NE := {p ∈ ∆n : Ui(pi, p−i) ≥ Ui(p

′
i, p−i), ∀i ∈ N}.

We denote by BRi(p−i) = {argmaxpi∈∆i
Ui(pi, p−i)}

a players set of best responses.
We consider repeated play of Γ. Let {gi(t)}t≥1,

gi(t) ∈ ∆i be a sequence of mixed strategies for player
i. Let g(t) = (g1(t), . . . , gn(t)) be the n-tuple containing
the mixed strategy of each player for round t. Let
{ai(t)}t≥1 be a sequence of actions such that ai(t) is
obtained by sampling gi(t). The normalized histogram
(empirical distribution) of player i’s actions is denoted by
qi(t) :=

1
t

∑t
s=1 ai(s). Let q(t) = (q1(t), . . . , qn(t)) be

the n-tuple containing each player’s marginal empirical
distribution.

Unless otherwise stated, d(·, ·) denotes the standard
Euclidean norm. We say a process {a(t)}t≥1 converges
weakly to equilibrium if d(q(t), NE) → 0 almost surely
(a.s.) as t → ∞, and we say a process {a(t)}t≥1

converges strongly2 to equilibrium if d(g(t), NE) → 0
a.s. as t → ∞.

B. Fictitious Play

FP may be intuitively understood as follows. Players
repeatedly face off in a stage game Γ. In any given
stage of the game, players choose a next-stage action by
assuming (inaccurately) that opponents are using station-
ary and independent strategies. Thus, in FP, players use
the marginal empirical distribution of each opponent’s
past play as a prediction of the opponent’s behavior in
the subsequent round and choose a next-round strategy
which is a best response against this prediction.

A sequence of actions {a(t)}t≥1 such that3

ai(t+ 1) ∈ arg max
αi∈Ai

Ui(αi, q−i(t)), ∀i,∀t ≥ 2

is referred to as a fictitious play process. FP has been
studied extensively ([9],[10],[11],[5]) to determine the
classes of games for which it can be said to converge
(weakly) to the set of Nash equilibria. We summarize
these results in the following theorem.

Theorem 1. Let Γ = (N, {ui(·)}i∈N , Y n) be a two-
player zero-sum game, potential game, or generic 2 by
m game, and let {a(t)} be a fictitious play process on
Γ. Then d(q(t), NE) → 0 as t → ∞.

An interesting generalization of FP is to consider
a scenario where players are permitted some asymp-
totically decaying error in their understanding of the
empirical distribution. Such generalizations have been
studied, amongst other places, in [2],[7] and [12].

An important property of FP to be used in the proof
of our main result is that the convergence results of
Theorem 1 still hold in the presence of such asymptoti-
cally decaying errors. We refer to this as the robustness
property of FP. To make this precise, we say a sequence
of actions {a(t)}t≥1 is a perturbed fictitious play process
if

ai(t+ 1) ∈ argmaxUi(αi, (q−i(t) + ϵti))

where q−i(t) + ϵti ∈ ∆−i. The following lemma states
that, if the magnitude of the perturbations decays to zero,
then a perturbed fictitious play process will converge for
the same class of games given in Theorem 1.

Lemma 1. (Robustness of Fictitious Play) Let Γ =
(N, {ui(·)}i∈N , Y n) be a two-player zero-sum game,

2The notion of strong convergence presented in this paper is
comparable to the notions of ‘convergence in intended behavior’
given in [2], and ‘convergence in strategic intentions’ given in [8].

3In all variants of FP discussed in this paper ai(1) may be chosen
arbitrarily for all i.
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potential game, or generic 2 by m game. Let {a(t)}t≥1

be a perturbed FP process on Γ and let ∥ϵti∥ → 0 as
t → ∞. Then d(q(t), NE) → 0 as t → ∞.

Proof: Note that Ui(·) is multilinear and therefore
Lipschitz continuous. Hence, there exists a positive con-
stant K such that |Ui(p) − Ui(p

′)| ≤ K∥p − p′∥ for
all p, p′ ∈ ∆n. Claim that maxαi∈Ai

Ui(αi, q−i(t)) −
Ui(ai(t+ 1), q−i(t)) ≤ 2K∥ϵti∥.

To show this, let α∗
i ∈ {argmaxαi∈Ai

Ui(αi, q−i(t))}
and observe that

Ui(α
∗
i , q−i(t)) ≤ Ui(α

∗
i , q−i(t) + ϵti) +K∥ϵti∥

≤ Ui(ai(t+ 1), q−i(t) + ϵti) +K∥ϵti∥,

Since ai(t + 1) ∈ argmaxαi∈Ai
Ui(αi, q−i(t) + ϵti), a

symmetric argument yields Ui(ai(t+ 1), q−i(t) + ϵti) ≤
Ui(α

∗
i , q−i(t))+K∥ϵti∥, and hence, |Ui(ai(t+1), q−i(t)+

ϵti)− Ui(α
∗
i , q−i(t))| ≤ K∥ϵti∥. It follows that,

Ui(α
∗
i , q−i(t))− Ui(ai(t+ 1), q−i(t))

≤|Ui(ai(t+ 1), q−i(t))− Ui(ai(t+ 1), q−i(t) + ϵti)|
+ |Ui(ai(t+ 1), q−i(t) + ϵti)− Ui(α

∗
i , q−i(t))|

≤2K∥ϵti∥,

and the claim holds. This implies that ai(t + 1) is a
(2L∥ϵti∥)-best response, as defined in [7]. Since ∥ϵti∥ →
0 as t → ∞ for all i, the process {a(t)}t≥1 is a
generalized weakened fictitious play (GWFP) process as
defined in [7]. By [7], Corollary 5, any GWFP process
converges to the set of Nash equilibria in the sense that
d(q(t), NE) → 0 as t → ∞ in two-player zero-sum
games, potential games, and generic 2 by m games.

III. STRONG CONVERGENCE IN FICTITIOUS PLAY

Consider a variant of FP where the action for player
i at time t + 1 is chosen according to the following
(random) rule

ai(t+ 1) ∼ gi(t+ 1), (1)

where gi(t+ 1) is given by4

gi(t+ 1) :=

{
BRi(q−i(t)) with probability 1

(t+1)r

qi(t) otherwise,

and ai(t) ∼ gi(t) indicates that the action ai(t) is drawn
as a random sample from the probability mass function
gi(t) ∈ ∆i. In this variant of FP we define the ‘empirical
distribution’ of a players actions qi(t) to be the empirical
average (only) over rounds when a player chooses to

4Clearly, BRi(p−i) := {argmaxpi∈∆i Ui(pi, p−i)} is a set. In
an abuse of notation, when we say gi(t + 1) = BRi(q−i(t)) we
mean that gi(t+ 1) ∈ BRi(q−i(t)).

play a best response (BR). Formally, let Xt
i be a random

variable such that

Xt
i =

{
1, if a BR is chosen by i at time t

0, otherwise.

Let ℓi(t) :=
t∑

k=1

Xk
i . The empirical distribution qi(t) is

defined recursively as

qi(t+ 1) ={
qi(t) +

1
ℓ(t+1) (ai(t+ 1)− qi(t)) , if Xt+1

i = 1

qi(t) otherwise.
(2)

The joint empirical distribution is given by q(t) =
(q1(t), . . . , qn(t)).

A. Main Result

The following theorem asserts that this variant of FP
will converge strongly to the set of Nash equilibria, so
long as the rate at which agents transition from ‘learning’
to ‘implementation’ is sufficiently slow (i.e., 0 < r < 1

2 ).

Theorem 2. Let Γ be a two-player zero-sum game,
potential game, or generic 2 by m game. Let {a(t)}t≥1

be a sequence of actions chosen according to (1) with
0 < r < 1

2 , and let {q(t)}t≥1 be updated according to
(2). Then the process converges strongly to the set Nash
equilibria. That is, d(g(t), NE) → 0 almost surely as
t → ∞.

Proof: For each i ∈ N , define the sequence
{τi(s)}s≥1 and let τi(1) represent the round t when
player i picks a best response for the first time, let τi(2)
represent the round t when player i picks a best response
for the second time, and so on.

Let {q̂i(s)}s≥1 be a sequence such that q̂i(s) :=
(q1(τi(s+ 1)− 1), . . . , qn(τi(s+ 1)− 1)).

Let {ãi(s)}s≥1 be a sequence such that ãi(s) :=
ai(τi(s)) and let {ã(s)}s≥1 be the corresponding joint
sequence such that ã(s) = (a1(τi(s)), . . . , an(τn(s))).

Let q̃i(s) := 1
s

s∑
k=1

ãi(k) and q̃(s) := 1
s

s∑
k=1

ã(k).

The sequence of actions {ã(s)}s≥1 may be thought of
as a perturbed fictitious play process II-B. That is, the
sequence of actions can be thought of as following the
rule

Ui(ãi(s+ 1), q̂i−i(s)) = max
αi∈∆i

Ui(αi, q̂
i
−i(s)).

The distribution q̃(s) represents the ‘true’ empirical
distribution of play in this process, and q̂i(s) represents
the estimate which player i has of q̃(s).
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By Lemma 2, ∥q̂i(s) − q̃(s)∥ = O
(
sr−1/2

)
a.s.

Therefore, by Lemma 1,

d(q̃(s), NE) → 0 as s → ∞ a.s. (3)

To show d(q(t), NE) → 0 as t → ∞ a.s.,
let ε > 0 be given. Let ˆ̂qi(s) := q(τ i(s)) =
(q1(τi(s)), . . . , qn(τi(s))). By Lemma 3, for each i ∈ N ,
there exists a random time Si > 0 such that ∀s ≥ Si,
∥ˆ̂qi(s) − q̃(s)∥ < ε

2 a.s. Let S
′
= max{Si}. By (3)

there exists a random time S
′′

such that ∀s ≥ S
′′
,

d(q̃(s), NE) < ε
2 a.s. Let S = max{S′

, S
′′}. Then

∀i ∈ N , ∀s ≥ S, d(ˆ̂qi(s), NE) < ε a.s.
Let T = maxi{τi(S)}.5 Note that for some i, q(T ) =

ˆ̂qi(S) and therefore

d(q(T ), NE) < ε a.s. (4)

Also note that for any t0 > T , it holds that ℓi(t0) ≥ S,
and moreover

Xt0
i = 1 for some i ⇒ q(t0) = ˆ̂qi(ℓi(t0)), with ℓi(t0) ≥ S

(5)

Xt0
i = 0 for all i ⇒ q(t0) = q(t0 − 1).

Consider t ≥ T . If for some i, Xt
i = 1, then by (5),

d(q(t), NE) = d(ˆ̂qi(ℓi(t)), NE) < ε a.s. Otherwise, if
Xt

i = 0 ∀i, then q(t) = q(t− 1).
Iterate this argument m times until either (i) Xt−m

i =
1 for some i, or (ii), t − m = T . In the case of
(i), d(q(t), NE) = d(q(t − m), NE) = d(ˆ̂qi(ℓi(t −
m)), NE) < ε a.s. Or, in the case of (ii), d(q(t), NE) =
d(q(T ), NE) < ε a.s, where the inequality follows from
(4). Hence d(q(t), NE) → 0 a.s. as t → ∞.

Finally, note that by (1), ∥gi(t) − qi(t)∥ → 0 as t →
∞, from which it follows that d(g(t), NE) → 0 a.s. as
t → ∞.

IV. CONCLUSIONS

In traditional fictitious play (FP), learning occurs only
in the weak sense that the time-averaged empirical dis-
tribution of players’ actions converges to the set of Nash
equilibria. We present a simple adaptation of FP that
converges in the stronger sense that players’ period-by-
period strategies converge to the set of Nash equilibria. In
our strongly convergent variant of FP, players gradually
and independently transition from using the FP best
response rule to determine the next-iteration action, to

5Note that the almost sure occurrences mentioned before (∥ˆ̂qi(s)−
q̃(s)∥ → 0 a.s., and d(q̃(s), NE) → 0 a.s.) are all dependent on the
(almost sure) occurrence of one event: ∥ℓi(t)−E[ℓi(t)]∥ = O(t

1
2 ) ∀i

(see Lemma 4). Note that if this event occurs (which it does, a.s.)
then, in addition to implying the previous mentioned occurrences, it
also implies that T < ∞ a.s.

using their current empirical distribution as a probability
mass function from which they sample to determine their
next-iteration action. An interpretation of this procedure
is to say that each player gradually and independently
transitions from learning to implementation.

We show that this approach converges strongly to the
set of Nash equilibria due to the robustness property of
FP (see sec. III). An interesting future research direction
will be to investigate similar adaptations of other weakly
convergent learning algorithms which can be shown to
possess a comparable robustness property.

V. APPENDIX

A. Intermediate Results

Lemma 2. Let q̂i(s) and q̃(s) be defined as in the proof
of Theorem 2. Then ∥q̂i(s)− q̃(s)|| = O

(
sr−1/2

)
a.s.

Proof: Let ˆ̂qi(s) = (q1(τi(s)), . . . , qn(τi(s))). Then,

∥q̂i(s− 1)− ˆ̂qi(s)∥ = ∥q(τi(s)− 1)− q(τi(s)∥

≤ 1

τi(s)
≤ 1

s
,

where the first inequality follows from the fact that the
step size of q(t) is 1

t and the second inequality follows
from the fact that s ≤ τi(s). By Lemma 3 it holds that
∥ˆ̂qi(s) − q̃(s)|| = O

(
sr−1/2

)
almost surely. Hence, by

the triangle inequality,

∥q̂i(s)− q̃(s)∥ ≤
∥q̂i(s)− q̂i(s− 1)∥︸ ︷︷ ︸

=O(s−1)

+ ∥q̂i(s− 1)− ˆ̂qi(s)∥︸ ︷︷ ︸
=O(s−1)

+ ∥ˆ̂qi(s)− q̃(s)∥︸ ︷︷ ︸
=O(sr−1/2) a.s.

=O(sr−1/2) a.s.

Lemma 3. Let ˆ̂qi(s) = (q1(τi(s)), . . . , qn(τi(s))) and
let q̃(s) be defined as in the proof of Theorem 2. Then
∥ˆ̂qi(s)− q̃(s)|| = O

(
sr−1/2

)
a.s.

Proof: Consider the pairwise difference ∥ˆ̂qij(s) −
q̃j(s)∥; it is sufficient to show that for each j ∈ N ,
∥ˆ̂qij(s)− q̃j(s)∥ = O

(
sr−1/2

)
a.s.

Let Xt
i , ℓi(t), and τi(s) be defined as before. Note

that for any t ∈ N, qj(t) = q̃j(ℓj(t)). Also note that
ℓi(τi(s)) = s. Therefore,
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∥ˆ̂qij(s)− q̃j(s)∥ = ∥qj(τi(s))− q̃j(s)∥
= ∥q̃j(ℓj(τi(s)))− q̃j(s)∥
= ∥q̃j(ℓj(τi(s)))− q̃j(ℓi(τi(s)))∥

≤ |ℓj(τi(s))− ℓi(τi(s))|
min{ℓj(τi(s)), ℓi(τi(s))}

=
|ℓj(t)− ℓi(t)|

min{ℓj(t), ℓi(t)}
,

where in the last step we let τi(s) = t, and without loss
of generality we let max

p,p′∈∆j

∥p − p′∥ = 1. Thus, it is

sufficient to show that, |ℓj(t)−ℓi(t)|
min{ℓj(t),ℓi(t)} = O

(
sr−1/2

)
a.s.

Let event A be the event that |ℓj(t) − E[ℓj(t)]| =

O(t
1

2 ). Let event B be the event that |ℓi(t)−E[ℓi(t)]| =
O(t

1

2 ).
By Lemma 4, event A and event B occur a.s., and

therefore A∩B occurs a.s. Hence, there exist a random
time T and a non-negative random variable M , such that
∀t > T , |ℓi(t)−E[ℓi(t)]| ≤ Mt

1

2 and |ℓj(t)−E[ℓj(t)]| ≤
Mt

1

2 almost surely. Thus, ∀ t > T ,

|ℓj(t)− ℓi(t)|
min{ℓj(t), ℓi(t)}

≤ 2Mt
1

2

E[ℓ(t)]−Mt
1

2

a.s., (6)

where, noting that E[ℓi(t)] = E[ℓj(t)] ∀i, j, we define
E[ℓ(t)] := E[ℓi(t)] = E[ℓj(t)]. Note that

E[ℓ(t)] = E[

t∑
k=1

Xt
i ] =

t∑
k=1

E[Xt
i ] =

t∑
k=1

1

kr

and moreover,

1

1− r

(
(t+ 1)(1−r) − 1

)
=

t∫
0

1

(x+ 1)r
dx

<

t∑
k=1

1

kr
<

t∫
0

1

xr
dx =

1

1− r
t(1−r). (7)

Therefore, (6) can be strengthened to

|ℓj(t)− ℓi(t)|
min{ℓj(t), ℓi(t)}

≤ 2Mt
1

2

1
1−r

(
(t+ 1)(1−r) − 1

)
−Mt

1

2

= O
(
tr−1/2

)
a.s.

Noting that t = τi(s) ≥ s we get

|ℓj(t)− ℓi(t)|
min{ℓj(t), ℓi(t)}

= O
(
sr−1/2

)
a.s.,

which, by the above explanation implies ∥ˆ̂qij(s) −
q̃j(s)∥ = O

(
sr−1/2

)
almost surely.

Lemma 4. lim supt→∞
|ℓi(t)−E[ℓi(t)]|

t
1
2

≤ 1 a.s.

Proof: Let Xt
i and ℓi(t) be defined as before. Let

Y t
i := Xt

i − E[Xt
i ]. Note that ℓi(t) − E[ℓi(t)] =∑t

k=1 Y
k
i , and that E[Y t

i ] = 0, and that E[(Y t
i )

2] =
1
tr (1 − 1

tr ). Let Bt =
∑t

k=1E[(Y k
i )

2]. The sequence
{Y t

i } meets the necessary assumptions of the (Kol-
mogorov) law of the iterated logarithm [13], and there-
fore

lim
t→∞

sup
|
∑t

k=1 Y
t
i |

(2Bt log logBt)
1

2

= 1, a.s.

Note that

Bt =

t∑
k=1

E[(Y k
i )

2] =

t∑
k=1

1

kr

(
1− 1

kr

)

<

t∑
k=1

1

kr
<

1

1− r
t1−r.

where the last inequality follows from (7). Hence,

lim
t→∞

sup
|ℓi(t)− E[ℓi(t)]|(

2( 1
1−r t

1−r) log log ( 1
1−r t

1−r)
) 1

2

= lim
t→∞

sup
|
∑t

k=1 Y
t
i |(

2( 1
1−r t

1−r) log log ( 1
1−r t

1−r)
) 1

2

≤ lim
t→∞

sup
|
∑t

k=1 Y
t
i |

(2Bt log logBt)
1

2

= 1 a.s.

Note that for 0 < r < 1
2 , there exists a T such that

for all t > T ,
(
2( 1

1−r t
1−r) log log ( 1

1−r t
1−r)

) 1

2

< t
1

2 .
Therefore,

lim sup
t→∞

|ℓi(t)− E[ℓi(t)]|
t

1

2

≤

lim
t→∞

sup
|ℓi(t)− E[ℓi(t)]|(

2( 1
1−r t

1−r) log log ( 1
1−r t

1−r)
) 1

2

≤ 1 a.s.
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