
1

Simple and fast cooperative localization for sensor
networks

Cláudia Soares*, Student Member, IEEE, João Xavier, Member, IEEE, and João Gomes, Member, IEEE

Abstract—We address the sensor network localization problem
given noisy range measurements between pairs of nodes. We
approach the non-convex maximum-likelihood formulation via
a known simple convex relaxation. We exploit its favorable
optimization properties to the full to obtain an approach that:
is completely distributed, has a simple implementation at each
node, and capitalizes on an optimal gradient method to attain
fast convergence. We offer a parallel but also an asynchronous
flavor, both with theoretical convergence guarantees and itera-
tion complexity analysis. Experimental results establish leading
performance. Our algorithms top the accuracy of a comparable
state of the art method by one order of magnitude, using one
order of magnitude fewer communications.

Index Terms—Distributed algorithms, convex relaxations, non-
convex optimization, maximum likelihood estimation, distributed
iterative sensor localization, wireless sensor networks.

EDICS Category: OPT-CVXR NET-CONT NET-DISP
OPT-DOPT

I. INTRODUCTION

Sensor networks are becoming ubiquitous. From environ-
mental and infrastructure monitoring to surveillance, and
healthcare networked extensions of the human senses in con-
temporary technological societies are improving our quality of
life, our productivity, and our safety. Applications of sensor
networks recurrently need to be aware of node positions to
fulfill their tasks and deliver meaningful information. Never-
theless, locating the nodes is not trivial: these small, low cost,
low power motes are deployed in large numbers, often with
imprecise prior knowledge of their locations, and are equipped
with minimal processing capabilities. Such limitations call for
localization algorithms which are scalable, fast, and parsimo-
nious in their communication and computational requirements.

A. Problem statement

The sensor network is represented as an undirected
graph G = (V, E). In the node set V = {1, 2, . . . , n} we
represent the sensors with unknown positions. There is an
edge i ∼ j ∈ E between sensors i and j if a noisy range
measurement between nodes i and j is available (at both of
them) and nodes i and j can communicate with each other.
Anchors are elements with known positions and are collected
in the set A = {1, . . . ,m}. For each sensor i ∈ V , we let
Ai ⊂ A be the subset of anchors (if any) whose distance to

This work was partially supported by FCT, under projects PEst-
OE/EEI/LA0009/2011, PTDC/EMS-CRO/2042/2012, MORPH project (FP 7,
2012-2016), and Grant SFRH/BD/72521/2010. The authors are with the
Institute for Systems and Robotics (ISR), Instituto Superior Técnico, Univer-
sidade de Lisboa, 1049-001 Lisboa, Portugal (e-mail: csoares@isr.ist.utl.pt;
jxavier@isr.ist.utl.pt; jpg@isr.ist.utl.pt).

node i is quantified by a noisy range measurement. The set Ni
collects the neighbors of node i.

Let Rp be the space of interest (p = 2 for planar networks,
and p = 3 otherwise). We denote by xi ∈ Rp the position
of sensor i, and by dij the noisy range measurement between
sensors i and j, available at both i and j. Following [1], we
assume dij = dji

1. Anchor positions are denoted by ak ∈ Rp.
We let rik denote the noisy range measurement between sensor
i and anchor k, available at sensor i.

The distributed network localization problem addressed in
this work consists in estimating the sensors’ positions x =
{xi : i ∈ V}, from the available measurements {dij : i ∼
j} ∪ {rik : i ∈ V, k ∈ Ai}, through collaborative message
passing between neighboring sensors in the communication
graph G.

Under the assumption of zero-mean, independent and
identically-distributed, additive Gaussian measurement noise,
the maximum likelihood estimator for the sensor positions is
the solution of the optimization problem

minimize
x

f(x), (1)

where

f(x) =
∑
i∼j

1

2
(‖xi−xj‖−dij)2+

∑
i

∑
k∈Ai

1

2
(‖xi−ak‖−rik)2.

Problem (1) is nonconvex and difficult to solve [2].

B. Contributions

We set forth a convex underestimator of the maximum
likelihood cost for the sensor network localization problem (1)
based on the convex envelopes of its parcels.

We present an optimal parallel algorithm to minimize this
convex underestimator — with proven convergence guaran-
tees. We also propose an asynchronous variant of this algo-
rithm and proof it converges almost surely. Furthermore, we
analyze its iteration complexity.

Moreover, we assert the superior performance of our algo-
rithms by computer simulations; we compared several aspects
of our method with [3], [2] and [4], and our approach always
yields better performance metrics. When compared with the
method in [2], which operates under the same conditions, our
method outperforms it by one order of magnitude in accuracy
and in communication volume.

1This entails no loss of generality: it is readily seen that, if dij 6= dji, then
it suffices to replace dij ← (dij + dji)/2 and dji ← (dij + dji)/2 in the
forthcoming optimization problem (1).

ar
X

iv
:1

40
8.

47
28

v1
 [

m
at

h.
O

C
]

 2
0

A
ug

 2
01

4

2

C. Related work
With the advent of large-scale networks, the computational

paradigm of information processing algorithms — centralized
versus distributed — becomes increasingly critical. A central-
ized method can be less suited for a network with meager
communication and computation resources, while a distributed
algorithm might not be adequate if the network is supposed to
deliver in one place the global result of its computations. Fur-
ther, none of the available techniques to address Problem (1)
claims convergence to the global optimum— due to the non-
convexity, but also due to ambiguities in the network topology
which create more than one distant global optimum [5].

Centralized paradigm: The centralized approach to the
problem of sensor network localization summoned up a wide
body of research. It involves a central processing unit to which
all sensor nodes communicate their collected measurements.
Centralized architectures are prone to data traffic bottlenecks
close to the central node. Resilience to failure, security and
privacy issues are, also, not naturally accounted for by the
centralized architecture. Moreover, as the number of nodes in
the network grows, the problem to be solved at the central
node becomes increasingly complex, thus raising scalability
concerns.

Focusing on recent work, several different approaches are
available, such as the work in [6], where sensor network lo-
calization is formulated as a regression problem over adaptive
bases. The method has an initialization step using eigende-
composition of an affinity matrix; its entries are functions
of squared distance measurements between sensors. The re-
finement is done by conjugate gradient descent over a dis-
crepancy function of squared distances — which is math-
ematically more tractable but amplifies measurement errors
and outliers and does not benefit from the limiting properties
of maximum likelihood estimators. This approach is closely
related to multidimensional scaling, where the sensor network
localization problem is posed as a least-squares problem, as
in [7]. Multidimensional scaling is unreliable in large-scale
networks due to their sparse connectivity. Also relying on the
well-tested weighted least squares approach, the work in [5]
performs successive minimizations of a weighted least squares
cost function convolved with a Gaussian kernel of decreasing
variance.

Another successfully pursued approach is to perform semi-
definite or weaker second-order cone relaxations of the origi-
nal nonconvex problem (1) [3], [8]. These approaches do not
scale well, since the centralized SDP or SOCP problem gets
very large even for a small number of nodes. In [3] and [9] the
majorization-minimization framework was used with quadratic
cost functions to derive centralized approaches to the sensor
network localization problem.

Distributed paradigm: In the present work, the expression
distributed method denotes an algorithm requiring no central
or fusion node where all nodes perform the same types of
computations. Distributed approaches for cooperative localiza-
tion have been less frequent than centralized ones, despite the
more suited nature of this computational paradigm to sensor
networks, when the target application does not require that the
global result of the computations be available in one place.

We consider two main approaches to the distributed sensor
network localization problem: 1) one where the nonconvex
Problem (1) (or some other nonconvex discrepancy minimiza-
tion) is attacked directly, and hence the quality of the solution
is highly dependent on the quality of the algorithm’s initial-
ization; 2) and another, where the original nonconvex sensor
network localization problem is relaxed to a convex problem,
whose tightness will determine how close the solution of the
convex problem will approximate the global solution of the
original problem, not needing any particular initialization.

a) Initialization dependent: In reference [10] the authors
develop a distributed implementation of multidimensional
scaling for solution refinement. They support their method
on the majorization-minimization framework, but they do
not provide a formal proof of convergence for the Jacobi-
like iteration. The work in [11] puts forward two distributed
methods optimizing the discrepancy of squared distances: a
gradient algorithm with Barzilai-Borwein step sizes calculated
in a first consensus phase, followed by a gradient computation
phase, and a Gauss-Newton algorithm also with a consensus
phase and a gradient computation phase. Both are refinement
methods that need good initializations to converge to the global
optimum.

b) Initialization independent: The work in [12] proposes
a parallel distributed algorithm. However, the sensor network
localization problem adopts the previously discussed squared
distances discrepancy function. Also, each sensor must solve a
second order cone program at each algorithm iteration, which
can be a demanding task for the simple hardware used in
sensor networks’ motes. Furthermore, the formal convergence
properties of the algorithm are not established. The work
in [13] also considers network localization outside a maximum
likelihood framework. The approach proposed in [13] is not
parallel, operating sequentially through layers of nodes: neigh-
bors of anchors estimate their positions and become anchors
themselves, making it possible in turn for their neighbors to
estimate their positions, and so on. Position estimation is based
on planar geometry-based heuristics. In [14], the authors pro-
pose an algorithm with assured asymptotic convergence, but
the solution is computationally complex since a triangulation
set must be calculated, and matrix operations are pervasive.
Furthermore, in order to attain good accuracy, a large number
of range measurement rounds must be acquired, one per itera-
tion of the algorithm, thus increasing energy expenditure. On
the other hand, the algorithm presented in [1] and based on the
non-linear Gauss Seidel framework, has a pleasingly simple
implementation, combined with the convergence guarantees
inherited from the framework. Notwithstanding, this algorithm
is sequential, i.e., nodes perform their calculations in turn, not
in a parallel fashion. This entails the existence of a network-
wide coordination procedure to precompute the processing
schedule upon startup, or whenever a node joins or leaves
the network. The sequential nature of the work in [1] was
superseded by the work in [2] which puts forward a parallel
method based on two consecutive relaxations of the maximum
likelihood estimator in (1). The first relaxation is a semi-
definite program with a rank relaxation, while the second is an
edge based relaxation, best suited for the Alternating Direction

3

Method of Multipliers (ADMM). The main drawback is the
amount of communications required to manage the ADMM
variable local copies, and by the prohibitive complexity of the
problem at each node. In fact, each one of the simple sensing
units must solve a semidefinite program at each ADMM
iteration and after the update copies of the edge variables must
be exchanged with each neighbor. A simpler approach was
devised in [4] by extending the source localization Projection
Onto Convex Sets algorithm in [15] to the problem of sensor
network localization. The proposed method is sequential,
activating nodes one at a time according to a predefined cyclic
schedule; thus, it does not take advantage of the parallel nature
of the network and imposes a stringent timetable for individual
node activity.

II. CONVEX RELAXATION

Problem (1) can be written as

minimize
x

∑
i∼j

1

2
d2Sij

(xi − xj) +
∑
i

∑
k∈Ai

1

2
d2Saik

(xi), (2)

where d2C(x) represents the squared euclidean distance of
point x to the set C, i.e., d2C(x) = infy∈C ‖x − y‖2, and
the sets Sij and Saik are defined as the spheres generated by
the noisy measurements dij and rik

Sij = {z : ‖z‖ = dij} , Saik = {z : ‖z − ak‖ = rik} .

Non-convexity of (2) follows from the non-convexity of the
building block

1

2
d2Sij

(z) =
1

2
inf

‖y‖=dij
‖z − y‖2. (3)

A simple convexification consists in replacing it by
1

2
d2Bij

(z) =
1

2
inf

‖y‖≤dij
‖z − y‖2 (4)

where Bij = {z ∈ Rp : ‖z‖ ≤ dij} , is the convex hull of
Sij . Actually, (4) is the convex envelope2 of (3). This fact is
illustrated in Figure 1 with a one-dimensional example. The

−1 −0.5 0 0.5 1

0

0.2

0.4

d2
S i j
(z)

d2
B i j

(z)

Bi j = {z ∈ R : |z | ≤ 0.5}

S i j = {z ∈ R : |z | = 0.5}

Fig. 1. Illustration of the convex envelope for intersensor terms of the
nonconvex cost function (2). The squared distance to the ball Bij (dotted
line) is the convex hull of the squared distance to the sphere Sij (dashed
line). In this one dimensional example the value of the range measurement is
dij = 0.5

terms of (2) associated with anchor measurements are similarly
relaxed as

d2Baik
(z) = inf

‖y−ak‖≤rik
‖z − y‖2, (5)

2The convex envelope (or convex hull) of a function γ
is its best possible convex underestimator, i.e., conv γ(x) =
sup {η(x) : η ≤ γ, η is convex}, and is hard to determine in general.

where the set Baik is the convex hull of Saik: Baik =
{z ∈ Rp : ‖z − ak‖ ≤ rik} . Replacing the nonconvex parcels
in (2) by the sums of terms (4) and (5) we obtain the convex
problem

minimize
x

f̂(x) =
∑
i∼j

1

2
d2Bij

(xi−xj)+
∑
i

∑
k∈Ai

1

2
d2Baik

(xi).

(6)
The function in Problem (6) is an underestimator of (2)

but it is not the convex envelope of the original function. We
argue that in our application of sensor network localization it
is generally a very good approximation whose sub-optimality
can be quantified, as discussed in Section IV-A. The cost
function (6) also appears in [4] albeit via a distinct reasoning;
our convexification mechanism seems more intuitive. But the
striking difference with respect to [4] is how (6) is exploited
to generate distributed solution methods. Whereas [4] lays
out a sequential block-coordinate approach, we show that (6)
is amenable to distributed solutions either via the fast Nes-
terov’s gradient method (for synchronous implementations)
or exact/inexact randomized block-coordinate methods (for
asynchronous implementations).

III. DISTRIBUTED SENSOR NETWORK LOCALIZATION

Problem (6) can be rewritten as

minimize
x

1

2
d2B(Ax) +

∑
i

∑
k∈Ai

1

2
d2Baik

(xi), (7)

where A = C ⊗ Ip, C is the arc-node incidence matrix of
G, Ip is the identity matrix of size p, and B is the cartesian
product of the balls Bij corresponding to all the edges in E .
We denote the two parcels in (7) as

g(x) =
1

2
dB

2(Ax), h(x) =
∑
i

hi(xi),

where hi(xi) =
∑
k∈Ai

1
2d

2
Baik

(xi).
Now we call on a key result from convex analysis (see [16,

Prop. X.3.2.2, Th. X.3.2.3]): the function in (4) is convex,
differentiable, and its gradient is

∇φBij (z) = z − PBij (z), (8)

where PBij (z) is the orthogonal projection of point z onto the
closed convex set Bij

PBij
(z) = argmin

y∈Bij

‖z − y‖.

Further, function φBij has a Lipschitz continuous gradient with
constant Lφ = 1, i.e.,

‖∇φBij
(x)−∇φBij

(y)‖ ≤ ‖x− y‖. (9)

The gradient of g is

∇g(x) = A>∇φB(Ax)
= A>(Ax− PB(Ax))

= Lx−A>PB(Ax), (10)

where the second equality follows from (8) and L = L⊗ Ip,
and L is the Laplacian matrix of G. This gradient is Lipschitz

4

continuous and we can obtain an easily computable Lipschitz
constant Lg as follows

‖∇g(x)−∇g(y)‖ = ‖A> (∇φB(x)−∇φB(y)) ‖
≤ |||A||| ‖Ax−Ay‖
≤ |||A|||2 ‖x− y‖
= λmax(A

>A)‖x− y‖
(a)
= λmax(L)‖x− y‖
≤ 2δmax︸ ︷︷ ︸

Lg

‖x− y‖, (11)

where |||A||| is the maximum singular value norm; equality
(a) is a consequence of Kronecker product properties. In (11)
we denote the maximum node degree of G by δmax. A proof
of the bound λmax(L) ≤ 2δmax can be found in [17]. The
gradient of h is ∇h(x) = (∇h1(x1), . . . ,∇hn(xn)) , where
the gradient of each hi is

∇hi(xi) =
∑
k∈Ai

∇φBaik
(xi). (12)

We are now able to write∇f̂ , the gradient of our cost function,
as

∇f̂(x) = Lx−A>PB(Ax) +


∑
k∈A1

x1 − PBa1k(x1)
...∑

k∈An
xn − PBank(xn)

 .
(13)

The gradient of h is also Lipschitz continuous. The con-
stants Lhi

for ∇hi are

‖∇hi(xi)−∇hi(yi)‖ ≤
∑
k∈Ai

‖∇φBaik
(xi)−∇φBaik

(yi)‖

≤ |Ai|‖xi − yi‖, (14)

where |C| is the cardinality of set C. We now have an overall
constant Lh for ∇h,

‖∇h(x)−∇h(y)‖ =

√∑
i

‖∇hi(xi)−∇hi(yi)‖

≤
√∑

i

|A2
i |‖xi − yi‖

≤ max(|Ai| : i ∈ V)︸ ︷︷ ︸
Lh

‖x− y‖. (15)

A Lipschitz constant Lf̂ is, thus,

Lf̂ = 2δmax +max(|Ai| : i ∈ V). (16)

This constant is easy to precompute by, e.g., a diffusion
algorithm — c.f. [18, Ch. 9] for more information.

In summary, we can compute the gradient of f̂ using
Equation (13) and a Lipschitz constant by (16), which leads
us to the algorithms described in Sections III-A and III-B for
minimizing f̂ .

A. Parallel method
Since f̂ has a Lipschitz continuous gradient we can follow

Nesterov’s optimal method [19]. Our approach is detailed in
Algorithm 1. In step 7, c(i∼j,i) is the entry (i ∼ j, i) in the
arc-node incidence matrix C, and δi is the degree of node i.

Algorithm 1 Parallel method
Input: Lf̂ ; {dij : i ∼ j ∈ E}; {rik : i ∈ V, k ∈ A};
Output: x̂

1: k = 0;
2: each node i chooses random xi(0) and xi(−1);
3: while some stopping criterion is not met, each node i do
4: k = k + 1

5: wi = xi(k − 1) +
k − 2

k + 1
(xi(k − 1)− xi(k − 2)) ;

6: node i broadcasts wi to its neighbors
7: ∇gi(wi) = δiwi −

∑
j∈Ni

wj+

+
∑
j∈Ni

c(i∼j,i)PBij(wi − wj);

8: ∇hi(wi) =
∑
k∈Ai

wi − PBa ik(wi);

9: xi(k) = wi −
1

Lf̂
(∇gi(wi) +∇hi(wi));

10: end while
11: return x̂ = x(k)

Parallel nature of Algorithm 1: It is clear from (12) that
∇hi(xi) can be computed in parallel. It is also known that
(Lx)i can be computed at each node i with knowledge of the
estimates of its own position and those of its neighbors: Step 7
in Algorithm 1 makes this computation explicit. The less obvi-
ous parallel term is A>PB(Ax). We start the analysis by the
concatenated projections PB(Ax) = {PBij(xi − xj)}i∼j∈E .
Each one of those projections only depends on the edge
terminals and the noisy measurement dij . The product with
A> will collect, at the entries corresponding to each node, the
sum of the projections relative to edges where it intervenes,
with a positive or negative sign depending on the arbitrary
edge direction agreed upon at the onset of the algorithm. More
specifically, (A>PB(Ax))i =

∑
j∈Ni

c(i∼j,i)PBij(xi−xj), as
presented in step 7 of Algorithm 1.

B. Asynchronous method

The method described in Algorithm 1 is fully parallel but
still depends on some synchronization between all the nodes
— so that their updates of the gradient are consistent. This re-
quirement can be inconvenient in some applications of sensor
networks; to circumvent it, we present a fully asynchronous
method, achieved by means of a broadcast gossip scheme
(c.f. [20] for an extended survey of gossip algorithms).

Nodes are equipped with independent clocks ticking at
random times (say, as Poisson point processes). When node i’s
clock ticks, it performs the update of its variable xi and
broadcasts the update to its neighbors. Let the order of node
activation be collected in {ξk}k∈N, a sequence of independent
random variables taking values on the set V , such that

P(ξk = i) = Pi > 0. (17)

Then, the asynchronous update of variable xi on node i can
be described as in Algorithm 2.

5

Algorithm 2 Asynchronous method
Input: Lf̂ ; {dij : i ∼ j ∈ E}; {rik : i ∈ V, k ∈ A};
Output: x̂

1: each node i chooses random xi(0);
2: k = 0;
3: while some stopping criterion is not met, each node i do
4: k = k + 1;

5: xi(k) =

{
argminwi

f̂(x1, . . . , wi, . . . , xn) if ξk = i

xi(k − 1) otherwise
6: end while
7: return x̂ = x(k)

Algorithm 3 Asynchronous update at each node i
Input: ξk;Lf̂ ; {dij : j ∈ Ni}; {rik : k ∈ Ai};
Output: xi(k)

1: if ξk not i then
2: xi(k) = xi(k − 1);
3: return xi(k);
4: end if
5: choose random z(0) and z(−1);
6: l = 0;
7: while some stopping criterion is not met do
8: l = l + 1;

9: w = z(l − 1) +
l − 2

l + 1
(z(l − 1)− z(l − 2));

10: ∇f̂sli(w) =
1

2

∑
j∈Ni

w − PBS ij(w) +
∑
k∈Ai

w − PBa ik(w)

11: z(l) = w − 1

Lf̂
∇f̂sli(w)

12: end while
13: return xi(k) = z(l)

To compute the minimizer in step 5 of Algorithm 2 it is
useful to recast Problem (7) as

minimize
x

∑
i

∑
j∈Ni

1

4
d2Bij

(xi − xj) +
∑
k∈Ai

1

2
d2Baik

(xi)

 ,

(18)
where the factor 1

4 accounts for the duplicate terms when
considering summations over nodes instead of over edges. By
fixing the neighbor positions, each node solves a single source
localization problem; this setup leads to the Problem

minimize
xi

f̂sli(xi) :=
∑
j∈Ni

1

4
d2Bsij

(xi) +
∑
k∈Ai

1

2
d2Baik

(xi),

(19)
where Bsij = {z ∈ Rp : ‖z − xj‖ ≤ dij}. We solve Prob-
lem (19) at each node by employing Nesterov’s optimal
accelerated gradient method as described in Algorithm 3.
The asynchronous method proposed in Algorithm 2 converges
to the set of minimizers of function f̂ , as established in
Theorem 2, in Section IV.

We also propose an inexact version in which nodes do not
solve Problem (19) but instead take just one gradient step.

That is, simply replace Step 5 in Algorithm 2 by

xi(k) =

{
xi(k − 1)− 1

Lf̂
∇if̂(x(k − 1)) if ξk = i

xi(k − 1) otherwise
, (20)

where ∇if̂(x1, . . . , xn) is the gradient with respect to xi, and
assume

P (ξk = i) =
1

n
. (21)

The convergence terms of the resulting algorithm are estab-
lished in Theorem 3, Section IV.

IV. THEORETICAL ANALYSIS

A relevant question regarding Algorithms 1 and 2 is whether
they will return a good solution to the problem they are
designed to solve, after a reasonable amount of computations.
Sections IV-B and IV-C address convergence issues of the
proposed methods, and discusses some of the assumptions on
the problem data. Section IV-A provides a formal bound for
the gap between the original and the convexified problems.

A. Quality of the convexified problem

While evaluating any approximation method it is important
to know how far the approximate optimum is from the original
one. In this Section we will focus on this analysis.

It was already noted in Section II that φBij (z) = φSij (z)
for ‖z‖ ≥ dij ; when the functions differ, for ‖z‖ < dij , we
have that φBij

(z) = 0. The same applies to the terms related
to anchor measurements. The optimal value of function f ,
denoted by f?, is bounded by f̂? = f̂(x?) ≤ f? ≤ f(x?),
where x? is the minimizer of the convexified problem (6),
and f̂? = infx f̂(x) is the minimum of function f̂ . With these
inequalities we can compute a bound for the optimality gap,
after (6) is solved, as

f? − f̂? ≤ f(x?)− f̂?

=
∑
i∼j∈E

1

2

(
d2Sij

(x?i − x?j)− d2Bij
(x?i − x?j)

)
+
∑
i∈V

∑
k∈Ai

1

2

(
d2Saik

(x?i)− d2Baik
(x?i)

)
=

∑
i∼j∈E2

1

2
d2Sij

(x?i − x?j) +
∑
i∈V

∑
k∈A2i

1

2
d2Saik

(x?i).

(22)

In Equation (22), we denote the set of edges where the
distance of the estimated positions is less than the distance
measurement by E2 = {i ∼ j ∈ E : d2Bij

(x?i − x?j) = 0},
and similarly A2i = {k ∈ Ai : d2Baik

(x?i) = 0}. Inequal-
ity (22) suggests a simple method to compute a bound for the
optimality gap of the solution returned by the algorithms:

1) Compute the optimal solution x? using Algorithm 1 or 2;
2) Select the terms of the convexified problem (6) which are

zero;
3) Add the nonconvex costs of each of these edges, as

in (22).

6

TABLE I
BOUNDS ON THE OPTIMALITY GAP FOR THE EXAMPLE IN FIGURE 2

f? − f̂? Equation (22) Equation (23)

0.0367 0.0487 3.0871

Our bound is tighter than the one (available a priori) from
applying [21, Th. 1], which is

f? − f̂? ≤
∑
i∼j∈E

1

2
d2ij +

∑
i∈V

∑
k∈Ai

1

2
r2ik. (23)

For the one dimensional example of the star network costs
depicted in Figure 2 the bounds in (22), and (23) averaged

0 2 3 4 5 7

0

10

20

f̂(x)

f (x)

nodene ighbor ne ighbor ne ighbor1D star
Network

Fig. 2. One-dimensional example of the quality of the approximation of the
true nonconvex cost f(x) by the convexified function f̂(x) in a star network.
Here the node positioned at x = 3 has 3 neighbors.

over 500 Monte Carlo trials are presented in Table I. The true
average gap f?−f̂? is also shown. In the Monte Carlo trials we
sampled a zero mean gaussian random variable with σ = 0.25
and obtained a noisy range measurement as described later
by (28). These results show the tightness of the convexified
function and how loose the bound (23) is when applied to our
problem.

B. Parallel method: convergence guarantees and iteration
complexity

As Problem (7) is convex and the cost function has a
Lipschitz continuous gradient, Algorithm 1 is known to con-
verge at the optimal rate O

(
k−2

)
[19], [22]: f̂(x(k))− f̂? ≤

2Lf̂

(k+1)2 ‖x(0)− x
?‖2 .

C. Asynchronous method: convergence guarantees and itera-
tion complexity

To state the convergence properties of Algorithm 2 we only
need Assumption 1.

Assumption 1. There is at least one anchor for each con-
nected component in G.

This assumption holds generally in practice as one needs p+
1 anchors to eliminate translation, rotation, and flip ambi-
guities while performing localization in Rp. We present two
convergence results, — Theorem 2, and Theorem 3 — and the
iteration complexity analysis for Algorithm 2 in Proposition 4.
Proofs of the Theorems are detailed in Appendix A.

The following Theorem establishes the almost sure (a.s.)
convergence of Algorithm 2.

Theorem 2 (Almost sure convergence of Algorithm 2). Let
{x(k)}k∈N be the sequence of points produced by Algorithm 2,
or of Algorithm 2 with the update (20), and let X ? = {x? :
f̂(x?) = f̂?} be the set of minimizers of function f̂ defined in
Equation (6). Then it holds:

lim
k→∞

dX? (x(k)) = 0, a.s. (24)

In words, with probability one, the iterates x(k) will ap-
proach the set X ? of minimizers of f̂ ; this does not imply
{x(k)}k∈N will converge to one single x? ∈ X ?, but it does
imply that limk→∞ f̂(x(k)) = f̂?, since X ? is a compact set,
as proven in Appendix A, Lemma 5.

Theorem 3 (Almost sure convergence to a point).
Let {x(k)}k∈N be a sequence of points generated by Algo-
rithm 2, with the update (20) in Step 5, and let all nodes start
computations with uniform probability. Then, with probability
one, there exists a minimizer of f̂ , denoted by x? ∈ X ?, such
that

x(k)→ x?. (25)

This result tells us that the iterates of Algorithm 2 with the
modified Step 5 stated in Equation (20) not only converge
to the solution set, but also guarantees that they will not
be jumping around the solution set X ? (unlikely to occur in
Algorithm 2, but not ruled out by the analysis). One of the
practical benefits of Theorem 3 is that the stopping criterion
can safely probe the stability of the estimates along iterations.
To the best of our knowledge, this kind of strong type of
convergence (the whole sequence converges to a point in X ?)
was not established previously in the context of randomized
approaches for convex functions with Lipschitz continuous
gradients.

Proposition 4 (Iteration complexity for Algorithm 2).
Let {x(k)}k∈N be a sequence of points generated by Algo-
rithm 2, with the update (20) in Step 5, and let the nodes be
activated with equal probability. Choose 0 < ε < f̂(x(0))−f̂?
and ρ ∈ (0, 1). There exists a constant b(ρ, x(0)) such that

P
(
f̂(x(k))− f̂? ≤ ε

)
≥ 1− ρ (26)

for all

k ≥ K =
2nb(ρ, x(0))

ε
+ 2− n. (27)

The constant b(x(0), ρ) can be computed from inequal-
ity (19) in [23]; it depends only on the initialization and the
chosen ρ. Proposition 4 is saying that, with high probability,
the function value f̂(x(k)) for all k ≥ K will be at a
distance ε of the optimal, and the number of iterations K
depends inversely on the chosen ε.

Proof of Proposition 4: As f̂ is differentiable and has
Lipschitz gradient, the result is trivially deduced from [23,
Th. 2].

V. NUMERICAL EXPERIMENTS

In this Section we present experimental results that demon-
strate the superior performance of our methods when com-
pared with four state of the art algorithms: Euclidean Distance

7

Matrix (EDM) completion presented in [3], Semidefinite Pro-
gram (SDP) relaxation and Edge-based Semidefinite Program
(ESDP) relaxation, both implemented in [2], and a sequential
projection method (PM) in [4] optimizing the same convex
underestimator as the present work, with a different algorithm.
The fist two methods — EDM completion and SDP relaxation
— are centralized, whereas the ESDP relaxation and PM are
distributed.

Methods: We conducted simulations with two uniquely
localizable geometric networks with sensors randomly dis-
tributed in a two-dimensional square of size 1 × 1 with 4
anchors in the corners of the square. Network 1 has 10 sensor
nodes with an average node degree3 of 4.3, while network 2
has 50 sensor nodes and average node degree of 6.1. The
ESDP method was only evaluated in network 1 due to sim-
ulation time constraints, since it involves solving an SDP at
each node, and each iteration. The noisy range measurements
are generated according to

dij = |‖x?i − x?j‖+ νij |, rik = |‖x?i − ak‖+ νik|, (28)

where x?i is the true position of node i, and {νij : i ∼
j ∈ E} ∪ {νik : i ∈ V, k ∈ Ai} are independent gaussian
random variables with zero mean and standard deviation σ.
The accuracy of the algorithms is measured by the original
nonconvex cost value in (1) and by the Root Mean Squared
Error (RMSE) per sensor, defined as

RMSE =

√√√√ 1

n

(
1

MC

MC∑
mc=1

‖x? − x̂(mc)‖2
)
, (29)

where MC is the number of Monte Carlo trials performed.

A. Relaxation quality

The first experiment aimed at exploring the relaxation
quality when compared with two state of the art methods. For
the proposed disk relaxation Algorithm 1 was stopped when
the gradient norm ‖∇f̂(x)‖ reached 10−6 while both EDM
completion and SDP relaxation were solved with the default
SeDuMi solver [24] eps value of 10−9, so that algorithm
properties did not mask the real quality of the relaxations.
Figures 3 and 4 report the results of the experiment with 50
Monte Carlo trials over network 2 and measurement noise
with σ = [0.01, 0.05, 0.1, 0.3]; so, we had a total of 200
runs, equally divided by the 4 noise levels. In Figure 3 we can
see that the disk relaxation in (6) has better performance for
all noise levels. Figure 4 locates the results of optimizing the
three convex functions for the same problems in RMSE versus
execution time, indicating the complexity of the optimization
of the considered costs. The convex surrogate used in the
present work combined with our methods is faster by at least
one order of magnitude.

3To characterize the used networks we resort to the concepts of node
degree ki, which is the number of edges connected to node i, and average
node degree < k >= 1/n

∑n
i=1 ki.

0.01 0.05 0.1 0.3
0.06

0.1

0.13
0.14

0.18
0.19
0.21

0.25

Measurement noise σ

R
M
S
E

EDM complet ion

SDP re laxation

Disk re laxation

Fig. 3. Relaxation quality: Root mean square error comparison of EDM
completion in [3], SDP relaxation in [2] and the disk relaxation used in the
present work; measurements were perturbed with noise with different values
for the standard deviation σ. The disk relaxation approach in (6) improved on
the RMSE values of both EDM completion and SDP relaxation for all noise
levels, even though it does not rely on the SDP machinery. The performance
gap to EDM completion is substantial.

1.21 27.31 152.05

0.13
0.14

0.25

Execution time
R
M
S
E

EDM

complet ion

SDP re laxation

Disk

re laxation

Fig. 4. Relaxation quality: Comparison of the best achievable root mean
square error versus overall execution time of the algorithms. Measurements
were contaminated with noise with σ = 0.1. Although disk relaxation has a
distributed implementation, running it sequentially can be faster by one order
of magnitude than the centralized methods.

B. Parallel and asynchronous performance

A second experiment consisted on testing the performance
of the parallel and the asynchronous flavors of our method,
presented respectively in Algorithms 1 and 2. The metric was
the value of the convex cost function f̂ in (6) evaluated at
each algorithm’s estimate of the minimum. To have a fair
comparison, both algorithms were allowed to run until they
reached a preset number of communications. In Figure 5 we

0.01 0.05 0.1

0.02

0.06

Measurement noise σ

C
o
s
t
v
a
lu
e

Paralle l algorithm

Asynchronous algorithm

Fig. 5. Final cost of the parallel Algorithm 1 and its asynchronous counterpart
in Algorithm 2 for the same number of communications. Results for the
asynchronous version degrade less than those of the parallel one as the noise
level increases. The stochastic Gauss-Seidel iterations prove to be more robust
to intense noise.

present the effectiveness of both algorithms in optimizing
the disk relaxation cost in (6), with the same amount of
communications. We chose the uniform probability law for
the random variables ξk representing the sequence of updating
nodes in the asynchronous version of our method. Again, we
ran 50 Monte Carlo trials, each with 3 noise levels, thus
leading to 150 samplings of the noise variables in (28).

8

C. Performance of distributed optimization algorithms

To measure the performance of the presented algorithm
in a distributed setting we compared it with the state of
the art methods in [4] and the distributed algorithm in [2].
The results are shown, respectively, in Figures 6 and 7. The
experimental setups were different, since the authors proposed
different stopping criteria for their algorithms and, in order to
do a fair comparison, we ran our algorithm with the specific
criterion set by each benchmark method. So, in the experiment

0.4 0.6 2

x 10
4

0.06

0.07

0.1

Communicat ions per sensor

R
M
S
E

Pro ject ion method (σ =0.05)

Proposed method (σ = 0.05)

Proposed method (σ = 0.01)

Pro ject ion method
(σ = 0.01)

Fig. 6. Performance of the proposed method and of the Projection method
presented in [4]. The stopping criterion for both algorithms was a relative
improvement of 10−6 in the estimate. The proposed method uses fewer
communications to achieve better RMSE for the tested noise levels. Our
method outperforms the projection method with one forth of the number of
communications for a noise level of 0.01.

illustrated in Figure 6, the stopping criterion for both the
projection method and the presented method was the relative
improvement of the solution; we stress that this is not a
distributed stopping criterion, we adopted it just for algorithm
comparison. We can see that the proposed method fares better
not only in RMSE but, foremost, in communication cost. The
experiment comprised 120 Monte Carlo trials and two noise
levels.

0.01 0.05 0.1

0.02

0.07
0.11

0.35

0.44

Measurement noise σ

R
M
S
E

ESDP method

Proposed method

Fig. 7. Performance of the proposed method and of the ESDP method
in [2]. The stopping criterion for both algorithms was the number of algorithm
iterations. The performance advantage of the proposed method is even more
remarkable when considering the number of communications presented in
Table II.

To compare with the distributed ESDP method in [2] we had
to use a smaller network of 10 sensors because of simulation
time constraints — as the ESDP method entails solving an
SDP problem at each node, the simulation time becomes
prohibitively large, at least using a general purpose solver.
The number of Monte Carlo trials was 32, with 3 noise
levels, leading to 96 realizations for each noisy measurement.
From the analysis of both Figure 7 and Table II we can
see that the ESDP method is one order of magnitude worse
in RMSE performance, using one order of magnitude more
communications, than the proposed algorithm.

TABLE II
NUMBER OF COMMUNICATIONS PER SENSOR FOR THE RESULTS IN FIG. 7

ESDP method Proposed method

21600 2000

VI. CONCLUDING REMARKS

Experiments in Section V show that our method is superior
to the state of the art in all measured indicators. While the
comparison with the projection method published in [4] is
favorable to our proposal, it should be further considered that
the projection method has a different nature when compared
to ours: It is sequential, and such algorithms will always have
a larger computation time than parallel ones, since nodes run
in sequence; moreover, this computation time grows with the
number of sensors while parallel methods retain similar speed,
no matter how many sensors the network has.

When comparing with the ESDP method in [2], which is
distributed and parallel,similarly to our proposed method in
Algorithm 1, we can see one order of magnitude improvement
in RMSE for one order of magnitude fewer communications
of our method — and this score is achieved with a simpler,
easy to implement algorithm, performing simple computations
at each node that are well suited to the kind of hardware
commonly found in sensor networks.

There are some important questions not addressed here. For
example, it is not clear what influence the number of anchors
and their spatial distribution can have in the performance of the
proposed and state of the art algorithms. Also, an exhaustive
study on the impact of varying topologies and number of
sensors could lead to interesting results.

But with the data presented here one can already grasp the
advantages of our fast and easily implementable distributed
method, where the optimality gap of the solution can also
be easily quantified, and which offers two implementation
flavours for different localization needs.

ACKNOWLEDGEMENTS

The authors would like to thank Pinar Oguz-Ekim and
Andrea Simonetto for providing the Matlab implementation
of the methods in their papers.

APPENDIX A
PROOFS

A. Auxiliary Lemmas

In this Section we establish basic properties of Problem (7)
in Lemma 5 and also two technical Lemmas, instrumental to
prove our convergence results in Theorem 2.

Lemma 5 (Basic properties). Let f̂ as defined in (7). Then
the following properties hold.

1) f̂ is coercive;
2) f̂? ≥ 0 and X ? 6= ∅;
3) X ? is compact;

Proof:

9

1) By Assumption 1 there is a path from each node i to some
node j which is connected to an anchor k. If ‖xi‖ → ∞
then there are two cases: (1) there is at least one edge t ∼ u
along the path from i to j where ‖xt‖ → ∞ and ‖xu‖ 6→
∞, and so d2Btu

(xt−xu)→∞; (2) if ‖xu‖ → ∞ for all u
in the path between i and j, in particular we have ‖xj‖ →
∞ and so d2Bajk

(xj) → ∞, and in both cases f̂ → ∞,
thus, f̂ is coercive.

2) Function f̂ defined in (6) is a sum of squares, continuous,
convex and real valued function lower bounded by zero;
so, the infimum f̂? exists and is non-negative. To prove
this infimum is attained and X ? 6= ∅, we consider the
set T = {x : f̂(x) ≤ α}; T is a sublevel set of a
continuous, coercive function and, thus, it is compact.
As f̂ is continuous, by the Weierstrass Theorem, the
value p = infx∈T f̂(x) is attained; the equality f̂? = p
is evident.

3) X ? is a sublevel set of a continuous coercive function and,
thus, compact.

Lemma 6. Let {x(k)}k∈N be the sequence of iterates of Algo-
rithm 2, or of Algorithm 2 with the update (20), and∇f̂ (x(k))
be the gradient of function f̂ evaluated at each iterate. Then,

1)
∑
k≥1

‖∇f̂ (x(k)) ‖2 <∞, a.s.;

2) ∇f̂ (x(k))→ 0, a.s.

Proof: Let Fk = σ (x(0), · · · , x(k)) be the sigma-
algebra generated by all algorithm iterations until time k.
We are interested in E

[
f̂ (x(k)) |Fk−1

]
, the expected value

of the cost value of the kth iteration, given the knowl-
edge of the past k − 1 iterations. Firstly, let us examine
function φ : Rp → R, the slice of f̂ along a coordinate
direction, φ(y) = f̂(x1, . . . , xi−1, y, xi+1, . . . , xn). As f̂ has
Lipschitz continuous gradient with constant L, so will φ:
‖∇φ(y)−∇φ(z)‖ ≤ L‖y − z‖, for all y and x, and, thus, it
will inherit the property

φ(y) ≤ φ(z) + 〈∇φ(z), y − z〉+ L

2
‖y − z‖2. (30)

The minimizer of the quadratic upper-bound in (30) is z −
1
L∇φ(z), which can be plugged back in (30), obtaining

φ? ≤ φ
(
z − 1

L
∇φ(z)

)
≤ φ(z)− 1

2L
‖∇φ(z)‖2. (31)

In the sequel, for a given x = (x1, . . . , xn), we let

f̂?i (x−i) = inf{f̂(x1, . . . , xi−1, z, xi+1, . . . , xn) : z}.

Going back to the expectation E
[
f̂ (x(k)) |Fk−1

]
=∑n

i=1 Pif̂
?
i (x−i(k − 1)), we can bound it from above, recur-

ring to (31), by
n∑
i=1

Pi

(
f̂(x(k − 1))− 1

2L
‖∇if̂(x(k − 1))‖2

)
= f̂(x(k − 1))− 1

2L

n∑
i=1

Pi‖∇if̂(x(k − 1))‖2

(a)

≤ f̂(x(k − 1))− Pmin

2L
‖∇f̂(x(k − 1))‖2, (32)

where we used 0 < Pmin ≤ Pi, for all i ∈ {1, · · · , n} in (a).
To alleviate notation, let g(k) = ∇f̂(x(k)); we then have

‖g(k)‖2 =
∑
i≤k

‖g(i)‖2 −
∑
i≤k−1

‖g(i)‖2,

and adding Pmin

2L

∑
i≤k−1 ‖g(i)‖2 to both sides of the inequal-

ity in (32), we find that

E [Yk|Fk−1] ≤ Yk−1, (33)

where Yk = f̂(x(k)) + Pmin

2L

∑
i≤k−1 ‖g(i)‖2. Inequality (33)

defines the sequence {Yk}k∈N as a supermartingale. As f̂(x) is
always non-negative, then Yk is also non-negative and so [25,
Corollary 27.1],

Yk → Y, a.s.

In words, the sequence Yk converges almost surely to an inte-
grable random variable Y . This entails that

∑
k≥1 ‖g(k)‖2 <

∞, a.s., and so, g(k)→ 0, a.s.

Lemma 7. Let {x(k)}k∈N be one of the sequences generated
with probability one according to Lemma 6. Then,

1) The function value decreases to the optimum: f̂(x(k)) ↓
f̂?;

2) There exists a subsequence of {x(k)}k∈N converging to
a point in X ?: x(kl)→ y, y ∈ X ?.

Proof: As f̂ is coercive, then the sublevel set Xf̂ ={
x : f̂(x) ≤ f̂(x(0))

}
is compact and, because f̂(x(k)) is

non increasing, all elements of {x(k)}k∈N belong to this set.
From the compactness of Xf̂ we have that there is a convergent
subsequence x(kl) → y. We evaluate the gradient at this
accumulation point, ∇f̂(y) = liml→∞∇f̂(x(kl)), which,
by assumption, vanishes, and we therefore conclude that y
belongs to the solution set X ?. Moreover, the function value
at this point is, by definition, the optimal value.

B. Theorems

Equipped with the previous Lemmas, we are now ready to
prove the Theorems stated in Section IV.

Proof of Theorem 2: Suppose the distance does not
converge to zero. Then, there exists an ε > 0 and some
subsequence {x(kl)}l∈N such that dX?(x(kl)) > ε. But, as f̂
is coercive (by Lemma 5), continuous, and convex, and whose
gradient, by Lemma 6, vanishes, then by Lemma 7, there is a
subsequence of {x(kl)}l∈N converging to a point in X ?, which
is a contradiction.

Proof of Theorem 3: Fix an arbitrary point x? ∈ X ?.
We start by proving that the sequence of squared distances

10

to x? of the estimate produced by Algorithm 2, with the update
defined in Equation (20), converges almost surely; that is, the
sequence {‖x(k)− x?‖2}k∈N is convergent with probability
one. We have

E
[
‖x(k)− x?‖2|Fk−1

]
= (34)

n∑
i=1

1

n

∥∥∥∥∥x(k − 1)− 1

Lf̂
gi(k − 1)− x?

∥∥∥∥∥
2

where gi(k − 1) = (0, . . . , 0,∇if̂(x(k − 1)), 0, . . . , 0) and
Fk = σ (x(1), . . . , x(k)) is the sigma-algebra generated by
all iterates until time k. Expanding the left-hand side of (34)
yields

‖x(k − 1)− x?‖2 + 1

nL2
f̂

∥∥∥∇f̂(x(k − 1))
∥∥∥2

− 2

nLf̂
(x(k − 1)− x?)>∇f̂(x(k − 1)).

Since (x(k − 1) − x?)>∇f̂(x(k − 1)) = (x(k − 1) −
x?)>

(
∇f̂(x(k − 1))−∇f(x?)

)
≥ 0, we conclude that

E
[
‖x(k)− x?‖2|Fk−1

]
≤ ‖x(k − 1)− x?‖2 + 1

nL2
f̂

∥∥∥∇f̂(x(k − 1))
∥∥∥2 .

Now, as proved in Lemma 6, the sum
∑
k ‖∇f̂(x(k))‖2

converges almost surely. Thus, invoking the result in [26], we
get that ‖x(k)− x?‖2 converges almost surely.

Equipped with this key tool, we proceed with the proof of
Theorem 3. If X ? is a singleton, we are done. Otherwise, let
d ≥ 1 be the affine dimension of the convex set X ?, and fix d+
1 affinely independent points x?0, x

?
1, . . . , x

?
d ∈ X ?. It follows

that, with probability one, {‖x(k)− x?i ‖
2}k∈N converges for

i = 0, 1, . . . , d. In the sequel, we assume that {x(k)}k∈N is
such a sequence.

Let V = x?0 +L where L = {
∑d
i=1 ai(x

?
i − x?0) : ai ∈ R}

is a d-dimensional linear subspace. Note that V is the affine
span of X ? (the smallest affine subspace containing X ?).
An important point now is to note that each x ∈ V is
uniquely defined by v(x) = (‖x− x?0‖

2
, . . . , ‖x− x?d‖

2
),

the vector of its squared distances to the d + 1 points x?i ,
i = 0, . . . , d. Indeed, if v(x) = (v0(x), v1(x), . . . , vd(x)) then
‖x− x?i ‖

2
= vi(x) for i = 0, 1, . . . , d, and subtracting each

such ith equation (with i ≥ 1) from the first one (with i = 0)
gives (x?i − x?0)>x = 1

2 (v0(x)− vi(x))−
1
2 (‖x

?
0‖

2 − ‖x?i ‖
2
),

for i = 1, . . . , d. For conciseness, write the last linear system
as B>x = b where the ith column of B ∈ Rd×d is x?i − x?0.
Since x ∈ V by assumption, there holds x = x?0 + Ba for
a ∈ Rd. Plugging this representation in the former linear
system gives B>Ba = b − B>x?0, which can be solved
(uniquely) for a as B is nonsingular (thanks to the affine
independence of x?i , i = 0, . . . , d). For further reference,
note that a is an affine map of v(x). Finally, note that each
x ∈ Rnp can be uniquely written as x = x?0 + y + z where
y ∈ L (thus, x?0 + y ∈ V) and z ∈ L⊥ (the orthogonal
complement of L); there holds: dX?(x) ≥ dV (x) = ‖z‖ and
‖x− w‖2 = ‖x?0 + y − w‖2 + ‖z‖2 for any w ∈ V .

Write x(k) = x?0 + y(k) + z(k) as per the last definition.
Since dX?(x(k)) → 0 we conclude that z(k) → 0. Using
this result in the equalities ‖x− x?i ‖

2
= ‖x?0 + y(k)− x?i ‖

2
+

‖z(k)‖2, i = 0, 1, . . . , d, shows that ‖x?0 + y(k)− x?i (k)‖
2

converges for i = 0, . . . , d. Since, as shown above, x?0 +
y(k) is an affine map of the vector v(x?0 + y(k)) =
(‖x?0 + y(k)− x?0(k)‖

2
, . . . , ‖x?0 + y(k)− x?d(k)‖

2
), we con-

clude that x?0 + y(k) is convergent and the theorem is proved.

REFERENCES

[1] Q. Shi, C. He, H. Chen, and L. Jiang, “Distributed wireless sensor
network localization via sequential greedy optimization algorithm,”
Signal Processing, IEEE Transactions on, vol. 58, no. 6, pp. 3328 –
3340, jun. 2010.

[2] A. Simonetto and G. Leus, “Distributed maximum likelihood sensor
network localization,” Signal Processing, IEEE Transactions on, vol. 62,
no. 6, pp. 1424–1437, March 2014.

[3] P. Oguz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “Robust localization
of nodes and time-recursive tracking in sensor networks using noisy
range measurements,” Signal Processing, IEEE Transactions on, vol. 59,
no. 8, pp. 3930 –3942, aug. 2011.

[4] M. Gholami, L. Tetruashvili, E. Strom, and Y. Censor, “Cooperative
wireless sensor network positioning via implicit convex feasibility,”
Signal Processing, IEEE Transactions on, vol. 61, no. 23, pp. 5830–
5840, Dec 2013.

[5] G. Destino and G. Abreu, “On the maximum likelihood approach for
source and network localization,” Signal Processing, IEEE Transactions
on, vol. 59, no. 10, pp. 4954 –4970, oct. 2011.

[6] Y. Keller and Y. Gur, “A diffusion approach to network localization,”
Signal Processing, IEEE Transactions on, vol. 59, no. 6, pp. 2642 –2654,
jun. 2011.

[7] Y. Shang, W. Rumi, Y. Zhang, and M. Fromherz, “Localization from
connectivity in sensor networks,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 15, no. 11, pp. 961 – 974, nov. 2004.

[8] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy
distance measurements,” Automation Science and Engineering, IEEE
Transactions on, vol. 3, no. 4, pp. 360 –371, oct. 2006.

[9] S. Korkmaz and A.-J. van der Veen, “Robust localization in sensor net-
works with iterative majorization techniques,” in Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE International Conference
on, apr. 2009, pp. 2049 –2052.

[10] J. Costa, N. Patwari, and A. Hero III, “Distributed weighted-
multidimensional scaling for node localization in sensor networks,” ACM
Transactions on Sensor Networks (TOSN), vol. 2, no. 1, pp. 39–64, 2006.

[11] G. Calafiore, L. Carlone, and M. Wei, “Distributed optimization tech-
niques for range localization in networked systems,” in Decision and
Control (CDC), 2010 49th IEEE Conference on, Dec 2010, pp. 2221–
2226.

[12] S. Srirangarajan, A. Tewfik, and Z.-Q. Luo, “Distributed sensor network
localization using SOCP relaxation,” Wireless Communications, IEEE
Transactions on, vol. 7, no. 12, pp. 4886 –4895, dec. 2008.

[13] F. Chan and H. So, “Accurate distributed range-based positioning
algorithm for wireless sensor networks,” Signal Processing, IEEE Trans-
actions on, vol. 57, no. 10, pp. 4100 –4105, oct. 2009.

[14] U. Khan, S. Kar, and J. Moura, “DILAND: An algorithm for distributed
sensor localization with noisy distance measurements,” Signal Process-
ing, IEEE Transactions on, vol. 58, no. 3, pp. 1940 –1947, mar. 2010.

[15] D. Blatt and A. Hero, “Energy-based sensor network source localization
via projection onto convex sets,” Signal Processing, IEEE Transactions
on, vol. 54, no. 9, pp. 3614–3619, Sept 2006.

[16] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimiza-
tion algorithms. Springer-Verlag Limited, 1993.

[17] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, vol. 92.

[18] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[19] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,
no. 2, 1983, pp. 372–376.

[20] D. Shah, Gossip algorithms. Now Publishers Inc, 2009.

11

[21] M. Udell and S. Boyd, “Bounding duality gap for problems with
separable objective,” ONLINE, 2014.

[22] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Kluwer Academic Publishers, 2004.

[23] Z. Lu and L. Xiao, “On the complexity analysis of randomized block-
coordinate descent methods,” arXiv preprint arXiv:1305.4723, 2013.

[24] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for opti-
mization over symmetric cones,” Optimization Methods and Soft-
ware, vol. 11–12, pp. 625–653, 1999, version 1.05 available from
http://fewcal.kub.nl/sturm.

[25] J. Jacod and P. Protter, Probability Essentials. Springer, 2003, vol. 1.
[26] H. Robbins and D. Siegmund, “A convergence theorem for non negative

almost supermartingales and some applications,” in Herbert Robbins
Selected Papers. Springer, 1985, pp. 111–135.

	I Introduction
	I-A Problem statement
	I-B Contributions
	I-C Related work

	II Convex relaxation
	III Distributed sensor network localization
	III-A Parallel method
	III-B Asynchronous method

	IV Theoretical analysis
	IV-A Quality of the convexified problem
	IV-B Parallel method: convergence guarantees and iteration complexity
	IV-C Asynchronous method: convergence guarantees and iteration complexity

	V Numerical experiments
	V-A Relaxation quality
	V-B Parallel and asynchronous performance
	V-C Performance of distributed optimization algorithms

	VI Concluding remarks
	Appendix A: Proofs
	A-A Auxiliary Lemmas
	A-B Theorems

	References

