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Abstract—We study distributed optimization where nodes co-
operatively minimize the sum of their individual, locally known,
convex costs fi(x)’s, x ∈ Rd is global. Distributed augmented
Lagrangian (AL) methods have good empirical performance on
several signal processing and learning applications, but there
is limited understanding of their convergence rates and how
it depends on the underlying network. This paper establishes
globally linear (geometric) convergence rates of a class of de-
terministic and randomized distributed AL methods, when the
fi’s are twice continuously differentiable and have a bounded
Hessian. We give explicit dependence of the convergence rates
on the underlying network parameters. Simulations illustrate our
analytical findings.
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I. INTRODUCTION

A. Motivation

WE study distributed optimization over a N -node, con-
nected, undirected network G = (V, E), with V the

set of nodes and E the set of edges. Node i has private cost
function fi(x), fi : Rd → R. We focus on iterative, distributed
algorithms that solve the unconstrained problem:

minimize f(x) :=
∑N
i=1 fi(x), (1)

while each node i communicates only with its neighbors. This
is the setup in many applications, e.g., distributed inference,
[1], or distributed source localization, [2], in sensor networks.

A popular approach to solve (1), e.g., [3], [4], [5], [6],
[7], is through the augmented Lagrangian (AL) dual. The
approach assigns a local copy xi ∈ Rd of the global variable
x in (1) to each node i, introduces the edge-wise constraints√
Wij(xi−xj) = 0, ∀{i, j} ∈ E (Wij a positive weight),1 and

forms an AL dual function by dualizing these constraints and
adding the quadratic penalty ρ

2

∑
{i,j}∈E, i≤jWij‖xi − xj‖2,
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1We include also self-edges, i.e., {i, i} ∈ E, ∀i.

see, e.g., [8], Section V, for details2. Denote by λ{i,j} ∈ Rd
the dual variable that corresponds to the constraint on the
edge {i, j}. Introducing the per-node aggregate dual variables
µi :=

∑
j∈Oi

√
Wijλ{i,j}sign(j − i) (sign(0) := 1), where

Oi is the node i’s neighborhood (including i), one obtains the
following dual method to solve (1):

(x1(k + 1), · · · , xN (k + 1) ) =

argmin(x1,··· ,xN )∈RdNLa (x1, · · · , xN ; µ1(k), · · · , µN (k))

(2)

µi(k + 1) = µi(k) + α
∑
j∈Oi

Wij (xi(k + 1)− xj(k + 1)) ,

(3)

where α > 0 is the (dual) step-size, and La : RdN ×RdN →
R, is the function:

La(x1, · · · , xN ;µ1, · · · , µN ) =

N∑
i=1

fi(xi)

+

N∑
i=1

µ>i xi +
ρ

2

∑
{i,j}∈E, i≤j

Wij ‖xi − xj‖2. (4)

In (2) and (3), xi(k) and µi(k) are the node i’s primal
and dual variables, respectively. Dual updates (3) allow for
distributed implementation, as each node i needs only the
primal variables xj(k + 1) from its immediate neighbors in
the network. When ρ = 0, the primal update (2) decouples
as well, and node i solves for xi(k + 1) locally (without
inter-neighbor communications.) When ρ > 0, the quadratic
coupling term in (4) (in general) induces the need for inter-
node communications to iteratively solve (2). Many known
methods to solve (1) fall into the framework of (2)–(3); see,
e.g., [9], [4], [5], [6], [7], [8]. These methods are used in
various signal processing and learning applications, but, until
recently, their convergence rates have not been analyzed.

B. Contributions

In this paper, we introduce an analytical framework to
study the convergence rates of distributed AL methods of
type (2)–(3) when problems (2) are solved inexactly. While
the AL methods that we consider are variations on the existing
methods, our analysis gives new results on the globally linear
convergence rates of distributed AL algorithms and brings
several important insights into the performance of distributed
multi-agent optimization.

2Here, ρ ≥ 0 is the penalty parameter and Wij are the weights, collected
in the N ×N symmetric matrix W , where Wij > 0 if {i, j} ∈ E, i 6= j,
Wii := 1−

∑
j 6=iWij , and W is doubly stochastic.
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We now explain our technical results. Let x′(k + 1) =
(x′1(k + 1)>, ..., x′N (k + 1)>)> be the solution to (2) when
the dual variables are fixed to µ(k) = (µ>1 (k), ..., µ>N (k)). Our
framework handles arbitrary iterative method that solves (2),
where the method’s initial guess of x′(k+1) (starting point) at
iteration k is set to x(k). Further, let ‖x(k+1)−x′(k+1)‖ ≤
ξ ‖x(k)−x′(k+1)‖, ∀k, ξ ∈ (0, 1), i.e., problem (2) is solved
up to a certain accuracy such that the distance to the solution
(in terms of Euclidean norm) is reduced ξ times with respect to
the starting point x(k). Assuming that the cost functions fi’s
are twice continuously differentiable, with bounded Hessian
(hminI � ∇2fi(x) � hmaxI , ∀i, ∀x ∈ Rd, hmin > 0), we
give explicit conditions that relate the quantities ξ, hmin, and
hmax, and the network’s spectral gap λ2 = λ2(L),3 such that
the distributed AL method converges to the solution of (1) at
a globally linear rate. Furthermore, we explicitly characterize
the achieved rate in terms of the above system parameters.

We apply and specialize our results to four iterative dis-
tributed AL methods that solve (1) that mutually differ in
how (2) is solved. We refer to the four methods as: 1)
deterministic Jacobi-type; 2) deterministic gradient; 3) ran-
domized Gauss-Seidel-type; and 4) randomized gradient-type
(see Section II for the algorithms’ details.) We establish with
all methods globally linear convergence rates in terms of the
total number of per-node communications, and we explicitly
characterize the rates in terms of the system parameters. Fur-
thermore, with deterministic and randomized gradient variants,
we establish the globally linear convergence rates in terms of
the total number of per-node evaluations of gradients of the
fi’s.

We now highlight several key contributions and implications
of our results that distinguish our work from the existing
literature on distributed multi-agent optimization.

1. We give a general framework to analyze distributed AL
algorithms, and we establish linear convergence rates for a
wide class of distributed AL methods. This contrasts with
the existing work which typically studies a specific distributed
method, like the distributed ADMM [10], [11]. In particular,
this allows us to establish for the first time linear convergence
rates of the distributed AL methods with randomized primal
variable updates. We remark that, for certain specific methods,
like the distributed ADMM, the literature gives tighter bounds
than we do, as we explain below.

2. To our best knowledge, our results on deterministic
and randomized gradient variants are the first that establish
globally linear convergence rates for any distributed algorithm
that solves (1), simultaneously in terms of per-node gradient
evaluations and per-node communications.

3. We provide distributed methods (deterministic and ran-
domized gradient variants) that involve only simple calcula-
tions (like the gradient-type methods in, e.g., [12]) but achieve
significantly faster rates than [12]. That is, we show that
through the AL mechanism much faster rates can be obtained
compared with respect to standard distributed gradient meth-
ods [12], while maintaining the same communication cost

3The spectral gap λ2(L) is the second smallest eigenvalue of the weighted
Laplacian matrix L := I −W .

and similar computational cost per iteration, and requiring
additional knowledge on the system parameters. Namely, [13]
(see also [14] for similar results) studies the method in [12]
when the costs fi’s are strongly convex and have Lipschitz
continuous gradients–the setup very similar to ours (We
additionally require twice continuously differentiable costs.)
Assuming that nodes know hmax, it shows that the distance to
the solution after k iterations is O

(
(1− α c2)k/2 + αhmax

λ2

)
,

where α is the step-size and c2 = hmaxhmin/(hmax + hmin).
From these results, it follows that, to achieve ε-accuracy, we
need O

(
γ log(1/ε)
ε λ2

)
per-node communications and per-node

gradient evaluations, where γ = hmax/hmin is the condition
number. In contrast, we assume with our deterministic gradient
that nodes know λ2, hmin, and hmax, and we show that
(ignoring terms logarithmic in N,λ2, and γ) the ε-accuracy
is achieved in O

(
γ log(1/ε)

λ2

)
per-node communications and

per-node gradient evaluations.

C. Related work

We now further relate our work with the existing literature.
We first consider the literature on distributed multi-agent opti-
mization, and then we consider the work on the conventional,
centralized optimization.

Distributed multi-agent optimization. Many relevant
works on this and related subjects have recently appeared.
Reference [15] considers (1) over generic networks as we do,
under a wide class of generic convex functions. The reference
shows O (1/K) rate of convergence in the number of per-node
communications for a distributed ADMM method. It is im-
portant to note that, differently from our paper, [15] considers
generic costs for which even in a centralized setting linear rates
are not achievable. Reference [16] considers both resource
allocation problems and (1) and develops accelerated dual
gradient methods which are different than our methods. It gives
the methods’ convergence factors as 1−Ω

(√
λmin(AA>)
γ λmax(AA>)

)
,

where A is the edge-node incidence matrix and λmin(·) and
λmax(·) denote the minimal non-zero and maximal eigenval-
ues, respectively.4 The rates in [16] are better than the rates
that we establish for our methods. Reference [16] assumes that
each node exactly solves certain local optimization problems
and is not concerned with establishing the rates in terms of
the number of gradient evaluations ([16] corresponds to exact
dual methods.) Another difference is that the methods in [16]
are based on the ordinary dual–not AL dual. Reference [17]
analyzes distributed ADMM for the consensus problem–the
special case when fi : R→ R is fi(x) = (x− ai)2 , ai ∈ R.
It establishes the global convergence factor 1 − Ω(

√
λ2(L)).

When we specialize our result to the problem studied in [17],
their convergence factor bound is tighter than ours. Finally,
references [10], [11] analyze a distributed ADMM method
therein when the costs are strongly convex and have Lipschitz
continuous gradients. The method in [10], [11] corresponds
to our deterministic Jacobi-type variant when τ = 1. With

4For two positive sequences ηn and χn, ηn = Ω(χn) means that
lim infn→∞

ηn
χn

> 0.
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respect to our results, the bounds in [10], [11] are tighter than
ours for the method they study.

References [18], [19], [20], [21] study distributed primal-
dual methods that resemble ours when the number of inner
iterations τ is set to one (but their methods are not the same.)
These works do not analyze the convergence rates of their
algorithms.

Centralized optimization. Our work is also related to
studies of the AL and related algorithms in conventional, cen-
tralized optimization. There is a vast literature on the subject,
and many authors considered inexact primal minimizations
(see [22], [23], [24] and the references listed in the following
paragraphs.) Before detailing the existing work, we point to
main differences of this paper with respect to usual studies
in the literature. First, when analyzing inexact AL methods,
the literature usually assumes that the primal problems use
arbitrary initialization. In contrast, we initialize the inner pri-
mal algorithm with the previous primal variable. Consequently,
our results and the results in the literature are different, the
algorithms in the literature typically be convergent only to
a solution neighborhood, e.g. [22], [23]. Second, except for
recent papers, e.g., [22], [23], the analysis of inexact AL is
usually done with respect to dual sub-optimality. In contrast,
we are interested in the primal sub-optimality measures. Third,
convergence rates are usually established at the outer iteration
level, while we–besides the outer iterations level–establish the
rates in the number of inner iterations.

In summary, we establish primal sub-optimality globally
linear convergence rates in the number of inner iterations
(overall number of iterations) for our AL methods; such
studies seem not abundant in the literature.

We now detail the literature and divide it into four classes:
1) ADMM algorithms; 2) AL algorithms; 3) saddle point algo-
rithms; and 4) Jacobi/Gauss-Seidel algorithms. We also point
to several interesting connections among different methods.

ADMM algorithms. The ADMM method has been pro-
posed in the 70s [25], [26] and has been since then extensively
studied. References [27], [28], [29] show locally linear or
superlinear convergence rates of AL methods. Reference [24]
analyzes convergence of the ADMM method using the theory
of maximal set monotone operators, and it studies its conver-
gence under inexact primal minimizations. Recently, [30], [31]
show that the ADMM method converges globally linearly, for
certain more general convex costs than ours. (The most related
work to ours on ADMM is actually the work on distributed
ADMM in [10], [11] that we have already commented on
above.)

AL algorithms. Lagrangian duality is classical and a power-
ful machinery in optimization; see, e.g. [32] for general theory,
and, e.g., [33], for applications in combinatorial optimization
and unit-commitment problems. The method of multipliers
based on the augmented Lagrangian has been proposed in the
late 60s [34], [35]. The convergence of the algorithm has been
extensively studied, also under inexact primal minimizations.
References [27], [28], [29] show locally linear or superlinear
convergence rates of AL methods. The work [22] analyzes
the inexact AL method when the primal and dual variables
are updated using inexact fast gradient schemes. This paper

finds the total number of the inner iterations needed to achieve
an ε-accurate primal solution. Reference [23] studies AL
dual standard and fast gradient methods when the primal
problems are solved inexactly, up to a certain accuracy εin. The
reference finds the number of outer iterations and the required
accuracy εin to obtain an εout-suboptimal primal solution.

Saddle point algorithms. This thread of the literature
considers iterative algorithms to solve saddle point problems.
We divide the saddle point algorithms into two types. The
first type of algorithms performs at each iteration only one
gradient step with respect to the primal variables. The second
type of algorithms solves at each iteration an optimization
problem, like it is done with the AL method in (2). We now
consider the first type of methods. A classical method dates
back to the 50s [36]. Our distributed gradient AL, when the
number of inner iterations is set to τ = 1, is similar to this
algorithm. Reference [36] analyzes stability of the method
in continuous time, while [37], [38] analyzes the method’s
convergence under diminishing step-sizes. Different versions
of the method are considered and analyzed in [39]. More
recently, reference [40] studies similar algorithms for a wide
class of non-differentiable (in general) cost functions and gives
sub-linear rates to a neighborhood of a saddle point (The sub-
linear rate is due to the wide function class assumed). In
summary, although one of our algorithms generally falls into
the framework of this class of methods, we could not find the
results in the literature that are equivalent to ours.

We now focus on the second type of methods. The classical
method is the Arrow-Hurwitz-Uzawa method (also known
as Uzawa method), see, e.g., [41]. The algorithm has been
thoroughly analyzed and several modifications have been
proposed, e.g., [41], [42], [43], [44], [45]. In fact, our inexact
distributed AL method is (an inexact version of) the Arrow-
Hurwitz-Uzawa method, applied to a specific saddle point
system (see ahead (19)–(21).) This in particular means that
the AL algorithm on the dual of (1), given by (2)–(3), is
analogous to the Arrow-Hurwitz-Uzawa method on a specific
saddle point problem (19)–(21). Reference [43] analyzes an
exact method therein and establishes its convergence rates.
References [42], [45] analyze the inexact methods therein for
linear saddle point problems (which corresponds to quadratic
cost functions), while references [41], [44] analyze inexact
methods therein for non-linear saddle point problems (which
corresponds to more general cost functions.) Our analysis is
in the spirit closest to this thread of works. Although (19)–
(21) is similar to the classical setup, we could not find in the
literature results equivalent to ours.

Jacobi/Gauss-Seidel algorithms. Our work is also related
to studies of Jacobi/Gauss-Seidel algorithms, in the following
sense. Certain distributed AL methods that we consider solve
the inner problems (2) via iterative Gauss-Seidel/Jacobi algo-
rithms. In other words, we employ the Jacobi/Gauss-Seidel
methods at the inner iteration level. Jacobi and Gauss-Seidel
methods have been studied for a long time, e.g., [46], [47],
[48], [49], [50], [51], [52], [53]. The methods have been
studied both in the synchronous updates setting, e.g., [46],
[48], and in the asynchronous updates setting, e.g., [47],
[48], [49], [50], [51], [52], [53], in more general setups than
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the setup that we consider. Reference [46] presents, e.g.,
global convergence for Jacobi and Gauss-Seidel methods (with
cyclic order of variable updates) for solving nonlinear systems
F (x) = 0, F : RN 7→ RN , where F (x) = Ax+φ(x), A is an
M-matrix and φ is a diagonal, isotone mapping (see Theorems
13.1.3. and 13.1.5 in [46]). The cyclic Jacobi and Gauss-Seidel
methods are known to converge at globally linear rates, when
the gradient of the map F is a diagonally dominant (positive
definite) matrix; see [48], Proposition 2.6. Reference [47]
studies asynchronous multi-node5 iterative methods including
Gauss-Seidel and Jacobi, in the presence of bounded inter-
node communication delays. It uses Lyapunov theory to estab-
lish global and local convergence (stability) of asynchronous
iterative methods under various conditions. For example, it is
shown that an asynchronous iterative scheme converges if the
local nodes’ update maps are block Lipschitz continuous, and
if the corresponding matrix of Lipschitz constants is Schur-
stable; see Theorem 4.4.4 in [47], other results in Chapter 4,
and references therein. In contrast with the above existing
results, convergence of Jacobi/Gauss-Seidel algorithms in gen-
eral settings is not our main concern; instead, we are interested
in the overall AL algorithm with Jacobi/Gauss-Seidel type
inner algorithms. In contradistinction with the literature, we
consider certain Gauss-Seidel and Jacobi-type methods for the
special case of minimizing (4); exploiting this special struc-
ture, we derive explicit convergence factors of the updates.
This allows us to explicitly determine the required number
of inner (Jacobi/Gauss-Seidel-type) iterations τ that ensure
linear convergence of the overall AL distributed schemes (See
Theorem 1 and Lemmas 5–8 for details).

Paper organization. Section II details our network and
optimization models and presents distributed AL methods.
Section III presents our analytical framework for the analysis
of inexact AL and proves the generic result on its convergence
rate. Section IV specializes this result for the four considered
distributed methods. Section V provides simulations with l2-
regularized logistic losses. Finally, we conclude in Section VI.

Notation. Denote by: Rd the d-dimensional real space; al
the l-th entry of vector a; Alm or [A]lm the (l,m) entry of A;
A> the transpose of A; ⊗ the Kronecker product of matrices;
I , 0, 1, and ei, respectively, the identity matrix, the zero ma-
trix, the column vector with unit entries, and the i-th column
of I; J the N ×N ideal consensus matrix J := (1/N)1 1>;
‖ · ‖l the vector (respectively, matrix) l-norm of its vector
(respectively, matrix) argument; ‖ · ‖ = ‖ · ‖2 the Euclidean
(respectively, spectral) norm of its vector (respectively, matrix)
argument; λi(·) the i-th smallest eigenvalue; A � 0 means
A is positive definite; diag(a) the diagonal matrix with the
diagonal equal to vector a; bac the integer part of a real scalar
a; ∇φ(x) and ∇2φ(x) the gradient and Hessian at x of a twice
differentiable function φ : Rd → R, d ≥ 1; P(·) and E[·]
the probability and expectation, respectively; and I(A) the
indicator of event A. For two positive sequences ηn and χn,
ηn = O(χn) means that lim supn→∞

ηn
χn

< ∞; ηn = Ω(χn)
means that lim infn→∞

ηn
χn

> 0; and ηn = Θ(χn) means that

5Reference [47] assumes all-to-all inter-node communications subject to
bounded delays.

ηn = O(χn) and ηn = Ω(χn).
II. DISTRIBUTED AUGMENTED LAGRANGIAN

ALGORITHMS

The network and optimization models are in Subsec-
tion II-A, deterministic distributed AL methods are in Subsec-
tion II-B, while randomized methods are in Subsection II-C.

A. Optimization and network models

Model. We consider distributed optimization where N
nodes solve the unconstrained problem (1). The function
fi : Rd → R, known only to node i, has the following
structure.

Assumption 1 (Optimization model) The functions fi : Rd 7→
R are convex, twice continuously differentiable with bounded
Hessian, i.e., there exist 0 < hmin ≤ hmax < ∞, such that,
for all i:

hmin I � ∇2fi(x) � hmax I, ∀x ∈ Rd. (5)

Under Assumption 1, problem (1) is solvable and has the
unique solution x?. Denote by f? = infx∈Rd f(x) = f(x?)
the optimal value. Further, Assumption 1 implies Lipschitz
continuity of the ∇fi’s and strong convexity of the fi’s, i.e.,
for all i, ∀x, y ∈ Rd:

‖∇fi(x)−∇fi(y)‖ ≤ hmax ‖x− y‖,

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
hmin

2
‖x− y‖2.

Communication model. We associate with (1) a network V
of N nodes, described by the graph G = (V, E), where E ⊂
V ×V is the set of edges. (We include self-edges: {i, i} ∈ E,
∀i.)

Assumption 2 (Network model) The graph G is connected and
undirected.

Weight matrix and weighted Laplacian. Assign to graph
G a symmetric, stochastic (rows sum to one and all the entries
are non-negative), N ×N weight matrix W , with, for i 6= j,
Wij > 0 if and only if {i, j} ∈ E, and Wii = 1−

∑
j 6=iWij .

Let also W̃ := W −J. (See (4) for the role of W .) We require
W to be positive definite and its second largest eigenvalue
λN−1(W ) < 1. Let L := I−W the weighted graph Laplacian
matrix, with λ2(L) = 1 − λN−1(W ) ∈ [0, 1) the network
spectral gap that measures how well connected the network is.
For example, for a chain N -node network, λ2(L) = Θ

(
1
N2

)
,

while, for expander graphs, it stays bounded away from zero
as N grows.

Global knowledge assumptions. We summarize the global
knowledge on the system parameters required by our algo-
rithms beforehand at all nodes. They all require (a lower
bound on) the Hessian lower bound hmin, (an upper bound
on) the Hessian upper bound hmax, and (a lower bound)
on the network spectral gap λ2(L). In addition, the two
randomized methods require (an upper bound) on the number
of nodes N . Further, each node i initializes its dual variable
µi(0) to zero. This is essential for the algorithm’s convergence.
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We assume that all nodes initialize their primal variables to
same values, i.e., xi(0) = xj(0), ∀i, j; e.g., these are set
to zero. Equal primal variable initialization is not necessary
for convergence but allows for simplified expressions in the
analysis. In addition, each node knows its neighborhood set Oi
and assigns beforehand the weights Wij , j ∈ Oi. We refer
to [54] on how all the above global knowledge can be acquired
in a distributed way. Finally, with all our methods, all nodes
use the same algorithm parameters: the dual step-size α, the
AL penalty ρ, the number of inner iterations τ , and the primal
step-size β (with gradient algorithm variants). As we will see
in Sections III and IV, the parameters α, β, ρ, and τ need to be
appropriately set to ensure convergence; for setting the latter
parameters, nodes require knowledge of (bounds on) hmin,
hmax, and λ2(L), and also N with the randomized methods.

B. Deterministic Methods

We present two variants of deterministic distributed AL
algorithms of type (2)–(3). They differ in step (2). Both
methods solve (2) through inner iterations, indexed by s, and
perform (3) in the outer iterations, indexed by k. With the
first variant, nodes update their primal variables via a Jacobi-
type method; with the second variant, they use a gradient
descent method on La(· ;µ(k)). At outer iterations k, with
both variants, nodes update the dual variables via the dual
gradient ascent method (while the primal variables are fixed).

Jacobi-type primal updates. We detail the first algorithm
variant. Later, to present other variants, we indicate only the
differences with respect to this one. Denote by: xi(k, s) the
node i’s primal variable at the inner iteration s and outer
iteration k; and µi(k) the node i’s dual variable at the outer
iteration k. Further, as in (2)–(3), denote by xi(k+1) the node
i’s primal variable at the end of the k-th outer iteration. We
relate the primal variables at the inner and outer iterations:
xi(k, s = 0) := xi(k), and xi(k+1) := xi(k, s = τ). In addi-
tion, nodes maintain a weighted average of their own and the
neighbors’ primal variables xi(k, s) :=

∑
j∈OiWij xj(k, s),

and xi(k) :=
∑
j∈OiWij xj(k). Recall that Oi is the neigh-

borhood set of node i, including node i.
The algorithm has, as tuning parameters, the weight matrix

W , the number of inner iterations per outer iteration τ , the AL
penalty parameter ρ ≥ 0, and the dual step-size α > 0. The
algorithm is in Algorithm 1. Algorithm 1 has outer iterations
k (step 3) and inner iterations s (step 2). At inner iteration
s, s = 0, · · · , τ − 1, node i solves the local optimization
problem (6) to obtain xi(k, s + 1), broadcasts xi(k, s + 1)
to all its neighbors j ∈ Oi − {i}, receives xj(k, s + 1), for
all j ∈ Oi − {i}; and computes xi(k, s + 1) via (7). At
outer iteration k, node i updates µi(k) via (8). (Note that (8)
is equivalent to (3).) Each inner iteration requires one (d-
dimensional) broadcast transmission per node, while the outer
(dual) iterations do not require communication. Overall, node
i performs τ broadcast transmissions per k.

Gradient primal updates. This algorithm variant is very
similar to the Jacobi-type variant. It replaces in the Jacobi
variant, Algorithm 1, the Jacobi-type update (6) with the

Algorithm 1 AL with Jacobi-type updates
1: (Initialization) Node i sets k = 0, xi(k = 0) ∈ Rd, xi(k =

0) = xi(0), and µi(k = 0) = 0.
2: (Inner iterations) Node cooperatively run the Jacobi-type

method for s = 0, 1, · · · , τ − 1, with xi(k, s = 0) := xi(k)
and xi(k, s = 0) := xi(k):

xi(k, s+ 1) = argminxi∈Rd(fi(xi)

+ (µi(k)− ρxi(k, s))> xi +
ρ‖xi‖2

2
) (6)

xi(k, s+ 1) =
∑
j∈Oi

Wijxj(k, s+ 1), (7)

and set xi(k + 1):=xi(k, s=τ), xi(k + 1)=xi(k, s=τ).
3: (Outer iteration) Node i updates the dual variable µi(k):

µi(k + 1) = µi(k) + α (xi(k + 1)− xi(k + 1)) . (8)

4: Set k 7→ k + 1 and go to step 2.

gradient descent update on La(;̇µ(k)) in (4). After algebraic
manipulations, obtain the update:

xi(k, s+ 1) = (1− β ρ) xi(k, s) + β ρ xi(k, s)

− β (µi(k) +∇fi(xi(k, s)) ) , (9)

where β > 0 is the (primal) step-size parameter. Hence, in
addition to W , α, and ρ, the gradient primal update algorithm
has an additional tuning parameter β.

C. Randomized Methods

We introduce two variants of the randomized distributed AL
methods of type (2)–(3). Both utilize the same communication
protocol, but they differ in the way primal variables are
updated. Like the deterministic counterparts, they both update
the dual variables at the outer iterations k, and they update the
primal variables at the inner iterations s. At each inner iteration
s, one node, say i, is selected uniformly at random from the
set of nodes {1, 2, · · · , N}. Upon selection, node i updates its
primal variable and broadcasts it to all its neighbors. We now
detail the time and communication models. The outer iterations
occur at discrete time steps of the physical time; k-th outer
iteration occurs at time τ k, k = 1, 2, · · · , i.e., every τ time
units. We assume that all nodes have synchronized clocks for
the dual variable updates (dual variable clocks). Each node i
has another clock (primal variable clock) that ticks according
to a Poisson process with rate 1; on average, there is one tick
of node i in the time interval of width 1. Whenever node i’s
Poisson clock ticks, node i updates its primal variable and
broadcasts it to neighbors. The Poisson process clocks are
independent. Consider the Poisson process clock that ticks
whenever one of the nodes’ clocks ticks. This process is a
rate-N Poisson process. Hence, in the time interval of length
τ , there are on average τ N ticks (primal updates), out of
which τ on average are done by i. One primal update here
corresponds to an update of a single node. Thus, roughly, N
updates (ticks) here correspond to one update (inner) iteration
of the deterministic algorithm.

More formally, let (Θ,F ,P) be a probability space. Let
{Ti(a, b]}0≤a≤b<∞ be a Poisson process with rate 1, i =
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1, · · · , N . (This is the node i’s clock for primal variables.)
Thus, for a fixed a, b, Ti(a, b] : Θ → R, Ti(a, b] =
Ti((a, b] ;ω), ω ∈ Θ, is a Poisson random variable with mean
(b−a). Assume the processes Ti are independent. Let T be a
Poisson process defined by T (a, b] :=

∑N
i=1 Ti(a, b]. Define

the random variable τ(k) := T (kτ, (k + 1)τ ] (the number of
ticks across all nodes in the k-the outer iteration.) Consider the
events Ak,j := {ω ∈ Θ : τ(k;ω) = j}, j = 0, 1, 2, · · · .For
j ≥ 1, define the maps: ı̂(k, s) : Ak,j → {1, 2, · · · , N},
s = 0, · · · , j − 1, by ı̂(k, s;ω) = i, if the (s+ 1)-th tick of T
in the interval (kτ, (k + 1)τ ] comes from node i’s clock Ti.

We present two variants of the randomized distributed AL
algorithm: one updates the primal variables via a Gauss-Seidel-
type method and the other replaces the Gauss-Seidel updates
by gradient-type updates.

Gauss-Seidel-type updates. The dual variables are updated
(instantaneously) at times kτ , k = 1, 2, · · · . We denote by
xi(k) := xi(kτ) the node i’s primal variable at time kτ , k =
0, 1, · · · Further, consider ω ∈ Ak,j : the total number of ticks
τ(k) of T in the interval (kτ, (k + 1)τ ] equals j, and hence
we have j inner iterations (ticks) at the outer iteration k. For
any ω ∈ Ak,j , we denote by xi(k, s) the node i’s variable
after the s-th inner iteration, s = 1, · · · , j, j ≥ 1. Also, let
xi(k, 0) := xi(k), and, for ω ∈ Ak,j , xi(k, τ(k) = j) :=
xi(k+ 1). Each node maintains: 1) the primal variable xi(k);
2) the dual variable µi(k) := µi(kτ); 3) the (weighted) sum
of the neighbors’ variables xi(k) :=

∑
j∈OiWijxj(k); and

4) the analogous intermediate variables xi(k, s) and xi(k, s)
during the inner iterations s. The algorithm is Algorithm 3. For

Algorithm 2 Randomized distributed AL with Gauss-Seidel-
type updates

1: (Initialization) Node i sets k = 0, xi(k = 0) ∈ Rd, xi(k =
0) = xi(k = 0), and µi(k = 0) = 0.

2: (Inner iterations) Set xi(k, s = 0) := xi(k), xi(k, s = 0) :=
xi(k), and s = 0. If ω ∈ Θ is such that τ(k) = τ(k;ω) > 0,
then, for s = 0, 1, · · · , τ(k)− 1, do (else, if τ(k;ω) = 0, then
go to step 3):

Update the inner variablesxj(k, s), j = 1, · · · , N, by :

xj(k, s+ 1) = (10)
argminxj∈Rd(fj(xj) + (µj(k)− ρxj(k, s))> xj +

ρ‖xj‖2

2
)

j = ı̂(k, s)
xj(k, s+ 1) = xj(k, s)
else.

Update the variablesxj(k, s), j = 1, · · · , N, by :

xj(k, s+ 1)=

{∑
l∈Ωj

Wjlxl(k, s+ 1) j ∈ Oi: i=ı̂(k, s)
xj(k, s+ 1) = xj(k, s)else;

(11)

and all nodes j = 1, · · · , N set xj(k + 1) := xj(k, s = τ(k)),
xj(k + 1) = xj(k, s = τ(k)).

3: (Outer iteration) All nodes j update the dual variables µj(k)
via:

µj(k + 1) = µj(k) + α (xj(k + 1)− xj(k + 1)) . (12)

4: Set k 7→ k + 1 and go to step 2.

all i, and arbitrary fixed k, s, Algorithm 3 defines xi(k, s) =
xi(k, s;ω) for any outcome ω ∈ ∪∞t=sAk,t. We formally define

xi(k, s;ω) = 0, for any ω ∈ Θ, ω /∈ ∪∞t=sAk,t. Thus, the
random variable xi(k, s) is defined as in Algorithm 3 for ω ∈
∪∞t=sAk,t, and xi(k, s;ω) = 0, for ω /∈ ∪∞t=sAk,t.

Gradient primal updates. This algorithm variant is the
same as Algorithm 3, except that step (10) is replaced by the
following:

xj(k, s+ 1)=
(1− βρ) xj(k, s) + βρxj(k, s)− β (µj(k) +∇fj(xj(k, s)))
for j=̂ı(k, s)
xj(k, s+ 1) = xj(k, s)
else.

(13)

Here, β > 0 is the (primal) step-size parameter.

III. ANALYSIS OF INEXACT AUGMENTED LAGRANGIAN
METHODS

In this Section, we introduce our framework for the analysis
of inexact AL algorithms (2)–(3). Subsection III-A states our
result, while Subsection III-B proves the result through several
auxiliary Lemmas. In Section IV, we apply these results to
each of the four distributed algorithms.

A. Inexact AL algorithm: Convergence rate

We consider an inexact version of algorithm (2)–(3).
Introduce compact notation, and denote by x(k) :=
(x1(k)>, ..., xN (k)>)>, and µ(k) := (µ1(k)>, ..., µN (k)>)>.
Recall the function in (4). For any µ ∈ RNd, denote by
x′(µ) := arg minx∈RdNLa(x;µ). The latter quantity is well-
defined as the function La(·;µ) is strongly convex in x, for
any µ. Recall the weighted Laplacian matrix L = I − W .
We consider the following inexact AL method that updates
the primal variable x(k) and the dual variable µ(k) over
iterations k = 0, 1, .... The primal variable is initialized to
x(0) = (x1(0)>, ..., xN (0)>)>, with xi(0) = x1(0), ∀i,
x1(0) ∈ Rd arbitrary, and the dual µ(0) = 0. For k = 0, 1, ...,
given x(k), µ(k), perform the following update:

x(k + 1) be any point such that : (14)
‖x(k + 1)− x′(µ(k))‖ ≤ ξ ‖x(k)− x′(µ(k))‖
µ(k + 1) = µ(k) + α (L ⊗ I)x(k + 1). (15)

Update (15) is (3) rewritten in a compact form. (Here L ⊗ I
is the Kronecker product of L and the d× d identity matrix.)
In (14), the constant ξ ∈ [0, 1). Update (14) is an inexact
version of (2). Note that x′(µ(k)) corresponds to the exact AL
update. We require that x(k + 1) be close to x′(µ(k)); more
precisely, x(k+1) be ξ times closer to x′(µ(k)) than x(k). The
motivation for this condition is the following. Given µ(k), we
seek the new primal variable (ideally x′(µ(k))) via an iterative
method, initialized by the previous primal variable x(k). We
stop the iterative method as soon as (14) is fulfilled.6

6As we will see in Section IV, with our distributed methods we do not
verify the termination condition in (14) on-the-fly. Instead, given a desired ξ
and the network and function parameters, we set beforehand the number of
inner iterations τ such that (14) is automatically fulfilled.
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We now present our generic Theorem on (14)–(15). We ap-
ply it on the four distributed methods in Section IV. Denote by

Dx := ‖x1(0)− x?‖, and Dµ :=
(

1
N

∑N
i=1 ‖∇fi(x?)‖2

)1/2

.

Theorem 1 Consider algorithm (14)–(15), and let Assump-
tions 1 and 2 hold. Further, let the algorithm and network
parameters satisfy:

α ≤ hmin + ρ and ξ <
1

3

λ2(L)hmin

ρ+ hmax
. (16)

Then, ∀i, xi(k) generated by (14)–(15) converges linearly to
the solution x? of (1), with convergence factor:

r := max

{
1

2
+

3

2
ξ,

(
1− αλ2(L)

ρ+ hmax

)
+

3α

hmin
ξ

}
< 1. (17)

It holds:

‖xi(k)− x?‖ ≤ rk
√
N max

{
Dx,

2Dµ√
λ2(L)hmin

}
. (18)

Theorem 1 establishes that the inexact AL method converges
to the primal solution at the globally linear rate in the number
of outer iterations, provided that ξ is sufficiently small, and
it quantifies the achieved rate as well as how small ξ should
be. We emphasize the interesting effect of constant Dµ. It
measures how difficult it is to solve (1) by distributed methods
like (2)–(3)–the larger, the more difficult the problem is. If,
at an extreme, the fi’s all have the same minimizer, say y?,
then y? is also the minimizer of (1) (y? = x?.) Such problem
is “easy,” because nodes do not need to communicate with
others to obtain the global solution to (1)–“easyness” of the
problem agrees with the value Dµ = 0. On the other hand, if
the local minimizers (of the fi’s), say y?i ’s, are very different,
then they may be very different from x?. Hence, node i needs
to communicate with others to recover x?. This agrees with
Dµ large in such scenarios. (See Lemma 2 that relates Dµ to
the dual optimum.)

B. Auxiliary results and proof of Theorem 1

We now prove Theorem 1 by introducing several auxiliary
objects and results. We base our analysis on the following
nonlinear saddle point system of equations:

∇F (x) + µ+ ρ (L ⊗ I)x = 0 (19)
(L ⊗ I)x = 0 (20)

(1⊗ I)>µ = 0. (21)

In (19), ρ ≥ 0 is the AL penalty parameter, and F : RN d 7→ R
is defined by F (x) = F (x1, · · · , xN ) = f1(x1) + f2(x2) +
· · · + fN (xN ). In (19), x, µ ∈ RN d are the primal and dual
variables, whose i-th d-dimensional blocks correspond to node
i’s primal and dual variables, respectively. In (19)–(21) and in
subsequent text, Kronecker products a⊗b are always such that
the left object a is of size either N × 1 or N ×N , while the
right object is of size d× 1 or d× d. Henceforth, to simplify
notation, we do not designate the objects’ dimensions. The
next Lemma shows that solving (19)–(21) solves (1) at each
node i.

Lemma 2 Consider optimization problem (1) and the nonlin-
ear system (19)–(21) , and let Assumptions 1 and 2 hold. Then,
there exists unique (x•, µ•) ∈ RNd×RNd that satisfies (19)–
(21), with x• = 1 ⊗ x?, where x? is the solution to (1) and
µ• = −∇F (1⊗ x?).

Proof: First show x• = 1⊗ x? and µ• = −∇F (1⊗ x?)
solve (19)–(21). Consider (20). We have (L ⊗ I)x• = (L ⊗
I)(1⊗ x?) = (L 1)⊗ (I x?) = 0, since 1/

√
N is the (unique)

unit-norm eigenvector with eigenvalue 0 of the Laplacian for
a connected network. Next:

(1⊗ I)>µ• = −
N∑
i=1

∇fi(x?) = 0.

The right equality holds because x? is the solution to (1). Fi-
nally, because (L⊗ I)x• = 0 (already shown) and ∇F (x•) =
−µ•, we have (x• = 1⊗x?, µ• = −∇F (1⊗x?)) satisfy (19)–
(21). The uniqueness is by the uniqueness of the solution to (1)
due to strong convexity.
Next, introduce the following maps Φ : RNd 7→ RNd, Ψ :
RNd 7→ RNd, and Φi : Rd 7→ Rd, i = 1, ..., N :

Φ(x) := ∇F (x) + ρ I x (22)
Ψ(x) := ∇F (x) + ρLx (23)
Φi(x) := ∇fi(x) + ρ x. (24)

Further, define the maps: Φ−1 : RNd → RNd, Ψ−1 : RNd →
RNd, and Φ−1

i : Rd → Rd by:

Φ−1(µ):=argminy∈RNd
(
F (y)− µ>y +

ρ

2
‖y‖2

)
(25)

Ψ−1(µ):=argminy∈RNd
(
F (y)− µ>y +

ρ

2
y>Ly

)
(26)

Φ−1
i (µ) := arg min y∈Rd

(
fi(y)− µ>i y +

ρ

2
‖y‖2

)
. (27)

The cost function in (26) is precisely La(y;−µ) in (4). For
any µ ∈ RNd, these maps are well-defined by Assumption 1
(This assumption ensures that there exists a unique solution in
the minimizations in (25)–(27), as the costs in (25)–(27) are
all strongly convex.) Next, we have:

∇F (Φ−1(µ)) + ρ IΦ−1(µ) = µ = Φ(Φ−1(µ)),

where the left equality is by the first order optimality con-
ditions, from (25), and the right equality is by definition of
Φ in (22). Thus, the map Φ−1 is the inverse of Φ. Likewise,
the map Ψ−1 (Φ−1

i ) is the inverse of Ψ (Φi). By the inverse
function theorem, e.g., [55], the maps Φ−1 : RNd → RNd,
Ψ−1 : RNd → RNd, and Φ−1

i : Rd → Rd are continuously
differentiable, with derivatives:

∇Φ−1(µ) =
(
∇2F (Φ−1(µ)) + ρ I

)−1
(28)

∇Ψ−1(µ) =
(
∇2F (Ψ−1(µ)) + ρ (L ⊗ I)

)−1
(29)

∇Φ−1
i (µ) =

(
∇2fi(Φ

−1
i (µ)) + ρ I

)−1
. (30)

Note that invertibility is assured because ∇2F (x) and
∇2fi(xi) are positive definite, ∀x ∈ RNd, ∀xi ∈ Rd, and
so are the matrices in (28)–(30). Using the following identity
for a continuously differentiable map h : RNd → RNd,
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∀u, v ∈ RNd:

h(u)− h(v)=

[∫ 1

0

∇h(v + z(u− v))dz

]
(u− v), (31)

we obtain the following useful relations:

Φ−1(µ1)− Φ−1(µ2) = RΦ(µ1, µ2) (µ1 − µ2), (32)

RΦ(µ1, µ2):=

∫ 1

z=0

∇Φ−1(µ1 + z(µ2 − µ1)) dz

Ψ−1(µ1)−Ψ−1(µ2) = RΨ(µ1, µ2)(µ1 − µ2), (33)

RΨ(µ1, µ2):=

∫ 1

z=0

∇Ψ−1(µ1 + z(µ2 − µ1)) dz

Φ−1
i (µ1)− Φ−1

i (µ2) = RΦ,i(µ1, µ2) (µ1 − µ2), (34)

RΦ,i(µ1, µ2):=

∫ 1

z=0

∇Φ−1
i (µ1 + z(µ2 − µ1))dz.

By Assumption 1: hmin I � ∇2F (x) � hmax I , ∀x ∈ RNd.
Using the latter, (28), (29), (31), and L = I −W , 0 � L � I
(W � 0, symmetric, stochastic), we obtain the following
properties of the (Nd) × (Nd) matrices RΦ(µ1, µ2) and
RΨ(µ1, µ2), and d× d matrices RΦ,i(µ1, µ2):

1

hmax + ρ
I � RΦ(µ1, µ2) � 1

hmin + ρ
I, (35)

∀µ1, µ2 ∈ RNd
1

hmax + ρ
I � RΨ(µ1, µ2) � (hminI + ρ(L ⊗ I))

−1
,(36)

∀µ1, µ2 ∈ RNd
1

hmax + ρ
I � RΦ,i(µ1, µ2)� 1

hmin + ρ
I, (37)

∀µ1, µ2 ∈ Rd.

The right inequality in (36) holds because, ∀µ,
∇2F (Ψ−1(µ)) + ρ (L ⊗ I) � hminI + ρ (L ⊗ I) (due
to Assumption 1), and so [∇2F (Ψ−1(µ)) + ρ (L ⊗ I) ]−1

� [hminI + ρ (L ⊗ I) ]−1.
Denote by x̃(k) := x(k) − x• and µ̃(k) := µ(k) − µ• the

primal and dual errors, respectively. Also, write x′(k + 1) :=
x′(µ(k)), to simplify notation. We now state and prove several
Lemmas that allow us to prove Theorem 1. We prove these
lemmas assuming d = 1, to avoid further extensive use of
Kronecker products; the proofs extend to generic d > 1. We
first upper bound the primal error ‖x̃(k + 1)‖.

Lemma 3 (Primal error) Let Assumptions 1, 2 hold. Then, for
k = 0, 1, · · ·

‖x̃(k + 1)‖ ≤ ξ‖x̃(k)‖+
1

hmin
(1 + ξ) ‖µ̃(k)‖.

Proof: Write x̃(k+1) = (x(k+1)−x′(k+1))+(x′(k+
1) − x•). Then, ‖x̃(k + 1)‖ ≤ ‖x(k + 1) − x′(k + 1)‖ +
‖x′(k + 1) − x•‖. From (14), we know that ‖x(k + 1) −
x′(k+ 1)‖ ≤ ξ‖x(k)− x′(k+ 1)‖. The latter is further upper
bounded as: ‖x(k)−x′(k+1)‖ ≤ ξ‖x(k)−x•+x•−x′(k+1)‖
≤ ξ‖x̃(k)‖+ ξ‖x• − x′(k + 1)‖. Hence,

‖x̃(k + 1)‖ ≤ ξ‖x̃(k)‖+ (1 + ξ)‖x′(k + 1)− x•‖. (38)

It remains to upper bound ‖x′(k + 1)− x•‖. Note that x• =
Ψ−1(−µ•), and x′(k + 1) = Ψ−1(−µ(k)). Using the latter

and (33), we obtain:

x′(k + 1)− x• = Ψ−1(−µ(k))−Ψ−1(µ•)

= −RΨ(k) (µ(k)− µ•), (39)

with RΨ(k) := RΨ(−µ(k),−µ•). This, with (36), and µ̃(k) =
µ(k)− µ•, gives:

‖x′(k + 1)− x•‖ ≤ 1

hmin
‖µ̃(k)‖. (40)

The result follows from (38) and (40).

Since our final goal is to bound the primal error, rather
than bounding µ̃(k) = µ(k) − µ•, it turns out to be more
useful to bound a certain transformed dual quantity. Repre-
sent the weighted Laplacian matrix L through its (reduced)
eigen-decomposition (we do not include the pair (0, q1))
L = QΛ̂Q> =

∑N
i=2 λi qiq

>
i , where (λi, qi) is the i-th

eigenvalue, eigenvector pair (λi > 0, for all i = 2, · · · , N );
Q = [q2, · · · , qN ]; and Λ̂ = diag (λ2, · · · , λN ). Instead of
bounding the dual error, we bound the norm of µ̃′′(k) ∈ RN−1

that we define:

µ̃′(k):=Q>µ̃(k)∈RN−1 and µ̃′′(k):=Λ̂−1/2µ̃′(k). (41)

Lemma 4 (Dual error) Let α ≤ hmin + ρ, and let Assump-
tions 1 and 2 hold. Then, for all k = 0, 1, · · ·

‖µ̃′′(k + 1)‖≤
[(

1− αλ2(L)

hmax + ρ

)
+

α

hmin
ξ

]
‖µ̃′′(k)‖+ αξ‖x̃(k)‖.

Proof: Because Lx• = Lx? 1 = 0:

Lx(k + 1) = L(x(k + 1)− x′(k + 1)) + L(x′(k + 1)− x•).

Using this and subtracting µ• from both sides of (15):

µ̃(k + 1) = µ̃(k) + αL(x′(k + 1)− x•) (42)
+ αL(x(k + 1)− x′(k + 1)).

Further, using (39), we get:

µ̃(k+1)=(I−αLRΨ(k))µ̃(k)+αL(x(k+1)−x′(k+1)). (43)

Now, recall µ̃′(k) in (41). It is easy to see that:

‖µ̃′(k)‖=‖µ̃(k)‖, QQ>µ̃(k) = µ̃(k). (44)

Indeed, note that 1>µ(k) = 1>µ(k − 1) + α1>Lx(k) =
1>µ(k − 1) = · · · = 1>µ(0) = 0, because µ(0) = 0 (by
assumption.) Also, 1>µ• = 0 (see Lemma 2.) Therefore,
1>µ̃(k) = 0, ∀k. Now, as q1 = 1√

N
1, we have QQ>µ̃(k) =∑N

i=2 qiq
>
i µ̃(k) =

∑N
i=1 qiq

>
i µ̃(k) = µ̃(k); thus, the second

equality in (44). For the first equality in (44), observe that:
‖µ̃′(k)‖2 = (µ̃′(k))>µ̃′(k) = µ̃(k)>QQ>µ̃(k) = ‖µ̃(k)‖2.

Next, multiplying (43) from the left by Q>, expressing L =
QΛ̂Q>, and using (44), obtain:

µ̃′(k + 1) =
(
I − α Λ̂Q>RΨ(k)Q

)
µ̃′(k)

+ α Λ̂Q> (x(k + 1)− x′(k + 1)). (45)
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Further, recall µ̃′′(k) in (41). Multiplying (45) from the left
by Λ̂−1/2, we obtain:

µ̃′′(k + 1) =
(
I − α Λ̂1/2Q>RΨ(k)QΛ̂1/2

)
µ̃′′(k)

+ α Λ̂1/2Q> (x(k + 1)− x′(k + 1)). (46)

Next, using variational characterizations of minimal and max-
imal eigenvalues, we can verify:

λ2

hmax + ρ
I � Λ̂1/2Q>RΨ(k)QΛ̂1/2 � 1

hmin + ρ
I. (47)

The right inequality in (47) holds because of the fol-
lowing. First, use the right inequality in (36) to show
Λ̂1/2Q>RΨ(k)QΛ̂1/2 � Λ̂1/2Q>[hminI + ρL ]−1QΛ̂1/2.
(Note that Λ̂ is (N − 1) × (N − 1), Q is N × (N − 1), and
[hminI+ρL ]−1 is N×N .) Next, decompose the N×N matrix
[hminI + ρL ]−1 via the (N ×N ) eigenvalue decomposition,
and use orthogonality of the eigenvectors of L to show
that the ((N − 1) × (N − 1)) matrix: Λ̂1/2Q>RΨ(k)QΛ̂1/2

� Λ̂1/2[hminI + ρΛ̂ ]−1Λ̂1/2. The maximal eigenvalue of
Λ̂1/2[hminI + ρΛ̂ ]−1Λ̂1/2 is 1

hmin/λN (L)+ρ ≤
1

hmin+ρ . Next,
by Assumption, α ≤ hmin + ρ, and so:

‖I − α Λ̂1/2Q>RΨ(k)QΛ̂1/2‖ ≤ 1− αλ2

hmax + ρ
. (48)

Using (48), ‖Λ̂1/2‖ ≤ 1 (as 0 � L � I), ‖Q‖ = 1, and
Lemma 3, we get:

‖µ̃′′(k + 1)‖ ≤
(

1− αλ2

hmax + ρ

)
‖µ̃′′(k)‖

+ αξ ‖x̃(k)‖+ αξ
‖µ̃(k)‖
hmin

.

Finally, using ‖µ̃(k)‖ = ‖µ̃′(k)‖ = ‖Λ̂1/2µ̃′′(k)‖ ≤ ‖µ̃′′(k)‖,
we obtain the desired result.

We are now ready to prove Theorem 1.
Proof of Theorem 1: Introduce ν(k) := 2

hmin
‖µ̃′′(k)‖.

Further, denote by c11 := ξ, c12 := 1
2 [ 1 + ξ ]; c21 := 2α

hmin
ξ,

and c22 :=
(

1− αλ2

hmax+ρ

)
+ α
hmin

ξ. Using ‖µ̃(k)‖ ≤ ‖µ̃′′(k)‖,
Lemma 3, and Lemma 4, we obtain:

max {‖x̃(k + 1)‖, ν(k + 1)} ≤ r max {‖x̃(k)‖, ν(k)} ,

with r = max {c11 + c12, c21 + c22} . Unwinding the re-
cursion, using ‖x̃(k)‖ ≤ max{‖x̃(k)‖, ν(k)}, ν(0) =

2
hmin
‖Λ̂−1/2Q>µ̃(0)‖ = 2

hmin
‖Λ̂−1/2Q> (−∇F (x? 1))‖ ≤

2
hmin

√
λ2

√
NDµ, obtain (18).

It remains to show that r < 1 if conditions (16) hold.Note
that: c11 + c12 = 1

2 + 3
2ξ, and so c11 + c12 < 1 if: ξ < 1

3 .

Next, note that: c21 + c22 =
(

1− αλ2

ρ+hmax

)
+ 3α

hmin
ξ, and so

c21 + c22 < 1 if: ξ < 1
3

(
hminλ2

ρ+hmax

)
. Combining the last two

conditions, obtain r < 1 if conditions (16) hold.The proof is
complete.

IV. ANALYSIS OF DISTRIBUTED AUGMENTED
LAGRANGIAN METHODS

In this Section, we specialize our results from Section III to
each of the four distributed AL algorithm variants. More pre-
cisely, we characterize the quantity ξ in (14) with each method.

This, with Theorem 1, allows us to establish convergence rates
in the inner iterations.

With each of the four variants, we use
compact notation: x(k) = (x1(k)>, ..., xN (k)>)>,
µ(k) = (µ1(k)>, ..., µN (k)>)>, and x(k, s) =
(x1(k, s)>, ..., xN (k, s)>)>. We start with the deterministic
Jacobi-type variant. For the proofs of the results in current
Section, we let d = 1 for notation simplicity, but they extend
to a generic d > 1.

Lemma 5 (Deterministic Jacobi-type) Consider the
distributed AL algorithm with deterministic Jacobi-type primal
updates and τ inner iterations. Further, let Assumptions 1
and 2 hold. Then, for all k = 0, 1, · · · :

‖x(k + 1)− x′(k + 1)‖ ≤
(

ρ

ρ+ hmin

)τ
‖x(k)− x′(k + 1)‖ .

Proof: Recall that x′(k+ 1) = arg minx∈RNLa(x;µ(k)).
From the corresponding first order optimality conditions, we
have: ∇F (x′(k+ 1)) + ρLx′(k+ 1) = −µ(k). Hence, using
L = I −W and the definition of Φ in (22):

x′(k + 1) = Φ−1 ( ρWx′(k + 1)− µ(k) ) . (49)

Fix s, 0 ≤ s ≤ τ − 1. Next, from Algorithm 1 and definition
of Φ:

x(k, s+ 1) = Φ−1 ( ρW x(k, s)− µ(k) ) ; (50)

Subtracting x′(k+ 1) from both sides of (50), and using (49)
and (32):

x(k, s+ 1)−x′(k + 1)=RΦ(s)ρW (x(k, s)−x′(k + 1)),

where RΦ(s):=RΦ(ρWx(k, s)−µ(k),ρWx′(k + 1)−µ(k)). Us-
ing (35) and ‖W‖ = 1, obtain:

‖x(k, s+1)−x′(k+1)‖≤
(

ρ

ρ+ hmin

)
‖x(k, s)−x′(k+1)‖.

Applying this for s = 0, 1, · · · , τ−1, using x(k, τ) = x(k+1),
x(k, 0) = x(k), get:

‖x(k+1)−x′(k+1)‖≤
(

ρ

ρ+ hmin

)τ
‖x(k)−x′(k+1)‖. (51)

The immediate corollary of Lemma 5 is that, for the
distributed AL algorithm with Jacobi-type primal updates,
Theorem 1 holds with ξ :=

(
ρ

ρ+hmin

)τ
. In other words, if

the conditions on the system parameters in Theorem 1 hold,
the distributed AL algorithm converges linearly in the outer
iterations. Furthermore, as the number of inner iterations is
fixed and equals τ , the algorithm also converges linearly in the
number of inner iterations, and hence in the number of per-
node communications, with the convergence factor r1/τ . Note
that, for any choice of ρ ≥ 0, we can choose α and τ such
that linear convergence is assured. Recall the fi’s condition
number γ = hmax/hmin. Setting ρ = hmax, α = hmin + ρ,
and τ =

⌈
log(12(γ+1)/λ2)

log(1+1/γ)

⌉
, we obtain the convergence factor

at outer iterations r = 1 − Ω(λ2). Hence, interestingly, we
can eliminate the negative effect of the condition number γ
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at the outer iterations level. Of course, we pay a price at the
inner iterations level, where the convergence factor is, for λ2

bounded away from one, r1/τ = 1− Ω
(

λ2

γ log(γ/λ2)

)
.

We remark that, for a reasonable choice of the step-size α
and the AL penalty ρ, e.g., α = ρ = hmin, our results do not
guarantee linear convergence for τ = 1. (Hence, we do not
guarantee convergence either, for τ = 1.) However, we know
from the literature that, for any choice of α = ρ > 0, and a
certain choice of W (see [10]), the algorithm with Jacobi-type
updates and τ = 1 (a distributed ADMM) converges globally
linearly to the primal solution [10]. This, in particular, means
that, for τ = 1, α = ρ > 0, and W in [10], the algorithm
always converges, and always at a globally linear rate.

We now consider the deterministic gradient variant.

Lemma 6 (Deterministic gradient) Consider the distributed
AL algorithm with deterministic gradient primal updates with
τ inner iterations and the primal step-size β ≤ 1/(hmax + ρ).
Further, let Assumptions 1 and 2 hold. Then, for all k =
0, 1, · · · :

‖x(k + 1)− x′(k + 1)‖ ≤ (1− β hmin)
τ ‖x(k)− x′(k + 1)‖ .

Proof: Using L = I − W and compact notation, the
update (9) is rewritten as:

x(k,s+1)=x(k,s)−β(ρLx(k, s)+µ(k)+∇F (x(k, s))). (52)

This is the gradient descent on La(·;µ(k)) in (4). As x′(k+1)
satisfies ρLx′(k+ 1) +µ(k) +∇F (x′(k+ 1)) = 0, we have:

x′(k+1)=x′(k+1)−β(ρLx′(k+1)+µ(k)+∇F(x′(k+1))). (53)

Further, by Assumption 1, ∇F : RN → RN is continuously
differentiable, and it holds:

∇F (x(k, s))−∇F (x′(k + 1)) =[∫ 1

z=0

∇2F (x′(k + 1) + z(x(k, s)− x′(k + 1))) dz

]
× (x(k, s)− x′(k + 1))

=: HF (s) (x(k, s)− x′(k + 1)). (54)

Further, by Assumption 1, the matrix HF (s) satisfies:

hmin I � HF (s) � hmax I. (55)

Using (54), and subtracting (53) from (52), we obtain:

x(k, s+ 1)− x′(k + 1) = (I − β ρL − β HF (s))

× (x(k, s)− x′(k + 1)). (56)

Consider the matrix (I − β ρL − β HF (s)). As β ≤ 1
ρ+hmax

(by assumption), using (55) and 0 � L � I , get:
(I − β ρL − β HF (s)) � 0. Thus, ‖I − β ρL − β HF (s)‖ ≤
1− λ1 (β ρL+ β HF (s)) ≤ 1− β hmin. Applying this bound
to (56), obtain the inequality:

‖x(k, s+1)−x′(k+1)‖≤(1−βhmin)‖x(k, s)−x′(k+1)‖. (57)

Applying (57) for s= 0, · · · ,τ − 1, using x(k, s= 0) =x(k),
and x(k, s=τ)=x(k+1), we obtain the desired result.
The immediate corollary of Lemma 6 is that Theorem 1 holds
for the deterministic gradient variant, with ξ = (1−β hmin)τ .

Hence, under conditions of Theorem 1, the algorithm con-
verges linearly in the number of inner iterations, with the
convergence factor r1/τ . This implies the linear convergence
both in the number of per-node communications and in the
number of per-node gradient evaluations (gradients of fi’s).
Setting ρ = hmax, α = hmin + ρ, β = 1

hmax+ρ , and:

τ =

⌈
log(12(1+γ)/λ2)

log(1+ 1
2γ−1 )

⌉
, gives the convergence factor in the

inner iterations (for λ2 bounded away from one) as r1/τ =

1− Ω
(

λ2

γ log(γ/λ2)

)
.

Note that, for reasonable choices of α, β, and ρ, e.g., α =
ρ = hmin, β = 1/(ρ + hmax), our results do not guarantee
convergence nor linear convergence rates when we set τ =
1. Reference [20] establishes global convergence of a similar
algorithm for τ = 1, ρ = 0, and a sufficiently small α and β.
An interesting research direction is to explore whether there
is a boundary between stability results and global linear rates.
In other words, setting τ = 1, an open problem is whether for
certain choices of α, β, and ρ the algorithm converges, but at
globally sub-linear rates. (Recall that this scenario does not
occur with the Jacobi-type variant.) Another important open
problem is to research whether, for τ = 1, there exists a choice
of α, β, and ρ that ensures globally linear rates.

Recall the random model in Subsection II-C and the ran-
domized Gauss-Seidel-type method.

Lemma 7 (Randomized Gauss-Seidel-type) Consider the dis-
tributed AL algorithm with randomized Gauss-Seidel-type
primal updates, where the expected number of inner iterations
equals τ . Further, let Assumptions 1 and 2 hold. Then, for all
k = 0, 1, · · · :

E [ ‖x(k + 1)− x′(k + 1)‖ ] ≤ e−η τ E [ ‖x(k)− x′(k + 1)‖ ] ,

where

η := N

{
1−

[
1− 1

N

(
1− ρ2

(ρ+ hmin)2

)]1/2
}
. (58)

Proof: Fix some k, fix some j = 1, 2, ..., and take
ω ∈ Ak,j . Thus, τ(k) = τ(k;ω) = j and there are j inner
iterations. Fix some s, s ∈ {0, 1, ..., j − 1}, and suppose that
ı̂(k, s) = i (node i is activated.) We have that xi(k, s + 1)
satisfies the following:

xi(k, s+ 1) = Φ−1
i

∑
j∈Oi

ρWij xj(k, s)− µi(k)

 .

On the other hand, we know that x′i(k + 1) satisfies:

x′i(k + 1) = Φ−1
i

∑
j∈Oi

ρWij x
′
j(k + 1)− µi(k)

 .

Subtracting the above equalities, and using (37), letting

RΦ,i(s) := RΦ,i(ρ
∑
j∈Oi

Wij xj(k, s)− µi(k) ,

ρ
∑
j∈Oi

Wij x
′
j(k + 1)− µi(k)),
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and squaring the equality, we obtain:

(xi(k, s+ 1)− x′i(k + 1))
2

= (RΦ,i(s))
2
ρ2

∑
j∈Oi

Wij (xj(k, s)− x′j(k + 1))

2

≤
(

ρ

ρ+ hmin

)2 ∑
j∈Oi

Wij (xj(k, s)− x′j(k + 1))2 (59)

= δ2
N∑
j=1

Wij (xj(k, s)− x′j(k + 1))2. (60)

Here, (59) further uses: 1) convexity of the quadratic function
u 7→ u2; 2) the fact that

∑
j∈OiWij = 1; and 3) the fact

that the Wij’s are nonnegative. Also, (60) introduces notation:
δ := ρ

ρ+hmin
, and uses the fact that Wij = 0 if {i, j} /∈ E and

i 6= j. As node i is selected, the remaining quantities xj(k, s),
j 6= i, remain unchanged; i.e., xj(k, s + 1) − x′j(k + 1) =
xj(k, s) − x′j(k + 1), j 6= i. Squaring the latter equalities,
adding them up for all j 6= i, and finally adding them to (60),
we obtain:

‖x(k, s+ 1)− x′(k + 1)‖2

≤ ‖x(k, s)− x′(k)‖2

+ δ2
N∑
j=1

Wij (xj(k, s)− x′j(k + 1))2

− (xi(k, s)− x′i(k + 1))2, (61)

for any ω ∈ Ak,j such that ı̂(k, s) = i.

We now compute conditional expectation of ‖x(k, s+ 1)−
x′(k + 1)‖2, conditioned on τ(k) = j, x(k) = x(k, 0), µ(k),
and x(k, 1), ..., x(k, s), s ≤ j − 1. Conditioned on the latter,
each node i updates equally likely, with conditional probability
1/N , and therefore:

E
[
‖x(k, s+ 1)− x′(k + 1)‖2 |x(k), µ(k), τ(k)

= j, x(k, 1), ..., x(k, s) ]

≤ ‖x(k, s)− x′(k + 1)‖2+

1

N
δ2

N∑
i=1

N∑
j=1

Wij (xj(k, s)− x′j(k + 1))2

− 1

N

N∑
i=1

(xi(k, s)− x′i(k + 1))2

= ‖x(k, s)− x′(k + 1)‖2

+
1

N
δ2

N∑
j=1

(xj(k, s)− x′j(k + 1))2
N∑
i=1

Wij

− 1

N
‖x(k, s)− x′(k + 1)‖2 (62)

=‖x(k, s)− x′(k + 1)‖2+
1

N
δ2‖x(k, s)−x′(k + 1)‖2

− 1

N
‖x(k, s)− x′(k + 1)‖2, ∀ω ∈ Ak,j . (63)

Here, inequality (63) uses the fact that
∑N
i=1 Wij = 1, ∀j.

Rewriting (63), we get:

E
[
‖x(k, s+ 1)− x′(k + 1)‖2

∣∣∣∣x(k), µ(k), τ(k) = j, x(k, 1), ..., x(k, s)
]

≤
(

1− 1

N
(1− δ2)

)
‖x(k, s)−x′(k + 1)‖2,∀ω ∈ Ak,j .

Denote by δ′ :=
(
1− 1

N (1− δ2)
)1/2

. Using the following
inequality for quadratic convex functions and conditional
expectation: E[U2 |V ] ≥ E2[|U | |V ], we obtain:

E [‖x(k, s+ 1)− x′(k + 1)‖|x(k), µ(k), τ(k) = j,

x(k, 1), ..., x(k, s)]

≤ δ′ ‖x(k, s)− x′(k + 1)‖ ,∀ω ∈ Ak,j .

Integrating with respect to x(k, 1), ..., x(k, s):

E [‖x(k, s+ 1)− x′(k + 1)‖|x(k), µ(k), τ(k) = j]

≤ δ′E [‖x(k, s)− x′(k + 1)‖ |x(k), µ(k), τ(k) = j] ,

∀ω ∈ Ak,j .

Applying the above inequality for s = 0, 1, ..., j−1, and using
x(k, s = τ(k) = j) = x(k + 1):

E [ ‖x(k + 1)− x′(k + 1)‖ |x(k), µ(k), τ(k) = j ]

≤ (δ′)jE [‖x(k)− x′(k + 1)‖ |x(k), µ(k), τ(k) = j] ,

∀ω ∈ Ak,j ,∀j = 0, 1, ...,

and so:

E [ ‖x(k + 1)− x′(k + 1)‖ |x(k), µ(k), τ(k) ]

≤ (δ′)τ(k)E [‖x(k)− x′(k + 1)‖ |x(k), µ(k), τ(k)] ,

almost surely (a.s.)

Integrating with respect to x(k), µ(k):

E [‖x(k + 1)− x′(k + 1)‖|τ(k) ]

≤ (δ′)τ(k)E [‖x(k)− x′(k + 1)‖ |τ(k)]

= (δ′)τ(k)E [‖x(k)− x′(k + 1)‖] , a.s.,

where we used independence of τ(k) and x(k), µ(k). Taking
expectation, we obtain:

E [ ‖x(k + 1)− x′(k + 1)‖]
≤ E[ (δ′)τ(k) ] E [‖x(k)− x′(k + 1)‖] .

Because τ(k) is distributed according to the Poisson dis-
tribution with parameter N τ , we have: E

[
(δ′)τ(k)

]
=∑∞

l=0(δ′)l e
−Nτ (Nτ)l

l! = e−(1−δ′)N τ . We get:

E [ ‖x(k + 1)− x′(k + 1)‖ ] ≤ (64)

e−(1−δ′)N τ E [‖x(k)− x′(k + 1)‖] .

Substituting the expression for η, we obtain the desired result.

Consider Theorem 1. Note that it does not apply directly to
the randomized algorithm variants. However, it can be easily
adapted to the randomized variants as well. Namely, consider
the following random inexact AL method. Use the same
initialization as for (14)–(15). Given x(k), µ(k), define (as
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before) x′(k + 1) := x′(µ(k)) := arg minxLa(x;µ(k)). The
primal update is as follows: let x(k+ 1) be a random variable
that obeys E[‖x(k+1)−x′(k+1)‖] ≤ ξ E[‖x(k)−x′(k+1)‖].
(This replaces (14) in Theorem 1.) The dual update is the
same as in (15). Then, it is straightforward to show that,
under condition (16), the following holds: E[ ‖xi(k) − x?‖ ]

≤ rk
√
N max

{
Dx,

2Dµ√
λ2(L)hmin

}
, where r is in (17). Now,

applying Lemma 7, the last result holds for the randomized
Gauss-Seidel-type variant, with ξ = e−η τ . It turns out that an
analogous conclusion also holds for the randomized gradient
variant, with η replaced by η′, defined in the following Lemma.

Lemma 8 (Randomized gradient) Consider the distributed AL
algorithm with randomized gradient primal updates, let the
expected number of inner iterations equal τ , and ler the primal
step-size β ≤ 1/(hmax +ρ). Further, let Assumptions 1 and 2
hold. Then, for all k = 0, 1, · · · :

E [‖x(k + 1)− x′(k + 1)‖] ≤ e−η
′τE [‖x(k)− x′(k + 1)‖] ,

where

η′ := N

{
1−

[
1− 1

N
βhmin(2− βhmin)

]1/2
}
. (65)

The proof of Lemma 8 is similar to that of Lemma 7. For the
randomized algorithm and gradient updates, (59)–(60) hold
with ρ2

(ρ+hmin)2 replaced by (1− β hmin)2.

V. SIMULATION EXAMPLE

We provide a simulation example with l2-regularized logis-
tic losses. The simulations corroborate a globally linear con-
vergence for both the deterministic and randomized distributed
AL methods, and show that it is usually advantageous to take
a small number of inner iterations τ .

Optimization problem. We detail the simulation. We con-
sider distributed learning via the l2-regularized logistic loss;
see, e.g., [56] for further details. Nodes minimize the logistic
loss:

N∑
i=1

fi(x) =

N∑
i=1

(
log
(

1 + e−bi(a
>
i x1+x0)

)
+
P ‖x‖2

2N

)
,

where P > 0 is the regularization parameter, x = (x>1 , x0)> ∈
R15, ai ∈ R14 is the node i’s feature vector, and bi ∈
{−1,+1} is its class label. The Hessian ∇2fi(x) = P

N I +
e−c
>
i x

(1+e−c
>
i
x)2
cic
>
i , where ci = (bia

>
i , bi)

> ∈ R15. We take

node i’s constants hmin,i and hmax,i as: hmin,i = P
N and

hmax,i = P
N + 1

4 ‖ci c
>
i ‖. (Note that e−c

>
i y

(1+e−c
>
i
y)2
≤ 1/4

for all y.) Further, we let hmin = mini=1,··· ,N hmin,i and
hmax = maxi=1,··· ,N hmax,i. For the specific problem instance
here, the condition number γ = hmax/hmin = 49.55.

Data. The ai’s are independent over i. Their entries
and the entries of the “true” vector x? = (x?1

>, x?0)> are
independent standard normal. The class labels are bi =

sign
(
x?1
>ai + x?0 + εi

)
, where the εi’s are independent

zero mean, standard deviation 0.001, Gauss.

Network. The network is geometric, connected, with
10 nodes placed uniformly randomly on a unit square, con-
nected by an edge (28 links) if their distance less than a radius.

Algorithm parameters, metrics, and implementation.
We set the weight matrix W = 1.1

2 I + 0.9
2 Wm, where

Wm is the Metropolis weight matrix. (Note that W � 0.)
Further, α = ρ = hmin with all algorithm variants, and
β = 1

ρ+hmax
= 1

(γ+1)hmin
with the methods that use the

gradient primal updates. For the deterministic variant and
Jacobi-type updates, we set the number of inner iterations

τ =

⌈
log

(
3(1+γ)
λ2(L)

)
log(2)

⌉
; with the deterministic gradient vari-

ant τ =

⌈
log

(
3(1+γ)
λ2(L)

)
log( γ+1

γ )

⌉
; with the randomized Gauss-Seidel-

type variant τ =

⌈ ∣∣∣log
(

3(1+γ)
λ2(L)

)∣∣∣
N (1−(1−3/(4N))1/2)

⌉
; and with the ran-

domized gradient variant τ =


∣∣∣log

(
3(1+γ)
λ2(L)

)∣∣∣
N

(
1−

(
1− 1+2γ

N(1+γ)2

)1/2
)
.

The above values of the algorithm parameters α, β, ρ, and τ
satisfy conditions of Theorem 1 and Lemmas 5–8, and hence
they guarantee linear convergence rates. We also simulate
the methods with τ = 1 (although our theory does not
guarantee linear convergence in such case.) We initialize from
zero the primal and dual variables with all methods. We
consider 1

N

∑N
i=1

f(xi)−f?
f(0)−f? . We compare the methods in terms

of: 1) total number of transmissions (across all nodes), and
2) total computational time. We implement the methods via a
serial implementation – one processor works the jobs of all
nodes. We count the CPU time for the overall jobs across all
nodes. With the methods that use the Gauss-Seidel and Jacobi-
type updates in (6), we solve the local problems via the fast
Nesterov gradient method for strongly convex functions. At
the inner iteration s and outer iteration k, to solve (6), we ini-
tialize the Nesterov gradient method by xi(k, s). We stop the

algorithm after:

⌈∣∣∣∣∣ log
(

2ε
(R′)2L′

)
log(1−

√
γ′)

∣∣∣∣∣
⌉

iterations, with7 ε = 10−5.

This guarantees that the optimality gap upon termination is
below ε = 10−5. Here, L′ is a Lipschitz constant for the cost
function in (6) that (at node i) we take as hmax,i +ρ. Further,
γ′ = L′/ν′ is the cost condition number, where ν′ = hmin,i+ρ
is the Hessian lower bound. The estimate of the distance to the
solution is R′ = 1

ρ+P/N ‖∇f̂i(xi(k, s))+(P/N+ρ)xi(k, s)+

(µi(k)− ρxi(k, s)) ‖, f̂i(x) = log( 1+exp(−bi(a>i x1+x0)) ).
All Figures are in semi-log scale.

In Figure 1 (top left), we plot the relative error in the cost
function for the deterministic variants versus the number of
communications, while in Figure 1 (top right), we depict the
same quantity versus the CPU time (This is the cumulative
CPU time across all nodes.) We simulate the Jacobi-type
method with both theoretical value of τ and τ = 1, and
the gradient method with both theoretical value of τ and
τ = 1. The Figures illustrate the linear convergence of the
proposed methods. We report that the gradient method with
the theoretical value of τ also shows a linear convergence in

7We implicitly assume that the physical time allocated for each inner
iteration s suffices to perform optimization (6).
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the number of communications, but it converges slowly due to
the large value of τ . The Jacobi-type variant is better in terms
of communication cost but is worse in terms of computational
cost. Figures 1 (bottom left and right) present the same
plots for the randomized Gauss-Seidel-type and gradient-type
methods. The behavior is similar to the deterministic variants.
The theoretical value for τ of the randomized gradient method
is very large, and, consequently, the algorithm shows slow
convergence for the latter choice of τ .

VI. CONCLUSION

We consider distributed optimization where N nodes min-
imize the sum of their convex costs fi’s by four distributed
augmented Lagrangian (AL) methods that differ in the pri-
mal variable updates: 1) deterministic AL with Jacobi-type
updates; 2) deterministic AL with gradient descent; 3) random-
ized AL with nonlinear Gauss-Seidel-type; and 4) randomized
AL with gradient descent-type updates. With twice continu-
ously differentiable costs with bounded Hessian, we establish
globally linear (geometric) convergence rates for all methods
and give explicit dependence of the rates on the underlying
network parameters. Simulation examples demonstrate linear
convergence of our methods.
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