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Abstract. We present a method for biologically-inspired object recog-
nition with one-shot learning of object appearance. We use a computa-
tionally efficient model of V1 keypoints to select object parts with the
highest information content and model their surroundings using simple
colour features. This map-like representation is fed into a dynamical neu-
ral network which performs pose, scale and translation estimation of the
object given a set of previously observed object views. We demonstrate
the feasibility of our algorithm for cognitive robotic scenarios and eval-
uate classification performance on a dataset of household items.
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1 Introduction

Object recognition is one of the central problems in vision and remains the
focus of much research in Computer Vision, Artificial Intelligence and Compu-
tational Neuroscience. Vision for cognitive robotics poses additional constraints:
(1) real-time performance is desired in order to support timely interaction with
the environment; (2) processing power is often limited, requiring careful data
selection and extensive optimisation; (3) fast and online learning in interactive
scenarios is preferable to long training times.

In contrast to many computational architectures for cognitive robotics, we
propose a neural architecture which uses dynamic neural fields for simultaneous
object recognition and scale, translation and rotation estimation. It is capable of
one-shot learning of object appearance based on single images and it can learn
new objects online. We do not explore the real-time feasibility in the present
work. However, the neural principles used throughout the paper lend themselves
to parallel and thus fast implementation.



1.1 Related Work

Computationally efficient methods have been developed for a number of vision
tasks in robotics, including pose-invariant object detection. Typically, invariant
features are detected [1-4] and these are matched to stored templates using
approximate methods such as RANSAC.

A number of biologically inspired methods have been proposed for object de-
tection and recognition. Some of them expand the Neocognitron architecture [5],
originally developed for character recognition, to recognise more general objects
such as faces [6]. The HMAX model and its derivatives [7] are based on a simpli-
fied alternation of layers of simple and complex cells in order to extract features
of increasing complexity, but they require an external classifier (usually an SVM)
for final classification. Recently, deep convolutional networks have demonstrated
excellent performance on a number of classification tasks, but at a considerable
cost in terms of complexity and learning time [8]. All of these state-of-the-art
approaches can deal with translation and scale change, but they do not address
variation in pose, such as rotation and perspective effects. There is ample evi-
dence that biological vision systems can recognise objects with unfamiliar poses,
but that this process is considerably slower, hinting at a separate recurrent neu-
ral process [9]. We present a neural framework which addresses this problem.

Our work is based on map-seeking circuits of Arathorn [10], which were ap-
plied to object detection by Faubel and Schoéner [11]. Instead of using global
histograms as in [11], we apply biological keypoints for data selection and ex-
tract a set of localised colour features at keypoint locations. Keypoints play an
important role in early attention. They indicate areas with large local complex-
ity and exhibit excellent repeatability [4], which makes them useful for pose
estimation. We reformulate the original algorithm from [11] so that it uses a
consistent neural dynamic approach throughout. This reformulation makes it
suitable for localised features, thus removing some ad-hoc parts of the original,
global algorithm.

2 Method

2.1 Localised Colour Features Based on V1 Keypoints

We start by extracting multi-scale keypoints using the BIMP algorithm [4]. The
image is first processed by a bank of complex Gabor filters representing cortical
simple cells. The moduli of simple cell responses are used to model responses
of complex cells. Another layer of cells computes spatial derivatives of the com-
plex cell responses, which are combined with two inhibition schemes to obtain
responses of end-stopped cells for detecting keypoints. The algorithm is applied
at multiple scales by varying the wavelength of the Gabor filters which model
simple cells. For a more detailed description of the algorithm we refer to [4].
At each keypoint location, we extract a colour histogram which represents
a local neighbourhood with size proportional to filter scale. Each pixel in the
neighbourhood is assigned the most similar of ten basic colours in the Lab colour



space. Then a Gaussian-weighted sum for each basic colour is computed over the
local neighbourhood for each keypoint. The sum for each colour is stored in a
2D map at the keypoint location and then spatially smoothed with an isotropic
Gaussian kernel. With ten basic colours, this gives a stack of ten 2D feature
maps I(z,y,c) = R, where z and y are subsampled image coordinates and ¢
represents one of the basic colours. This process is applied at each keypoint
scale s, resulting in a 4-dimensional feature vector K(x,y,c,s) — R.

Localised colour histograms are fast and rotation-invariant, but relatively
weak features. We use them here to highlight the importance of spatial config-
uration and our pose estimation algorithm. We plan to replace them by more
powerful features, such as responses of HMAX-based C-cells [7].

2.2 Pose Estimation and Object Recognition

The main idea of map-seeking circuits [10] is that the pose and identity of an
object in an input image can be estimated simultaneously by using a recurrent
process. This process starts by assuming that all poses and identities are equally
likely (although in principle, it is possible to bias certain classes based on domain
priors or scene context). In each iteration, estimates are updated by a compet-
itive process which adapts the relative weights of poses by estimating how well
they match the current input given the estimates before the update. Over time,
the weights converge to a state where only the correct pose and identity have
non-zero weights. A version of this approach using dynamic neural fields pro-
vides good control over the convergence and enables coupling to online visual
input [11].

We expand this earlier work in an architecture, shown in Fig. 1a, that consists
of a pose estimation module and an object recognition module. Pose estimation
entails a cascade of two-dimensional translation (shift), rotation, and scale that is
processed concurrently. Pose is represented in dynamic neural fields (DNFs) and
label information in a discrete variant, dynamic neural nodes. DNF's are patterns
of activation, u(x, t), defined over a pose parameter or feature dimension, x, that
evolve as a dynamical system according to [12]

Tu(x,t) = —u(x,t) + h+ s(x,t) + / (wx—x") =) fux',t)dx' +n. (1)

Here, 7 is the time scale of the dynamics, h < 0 the resting level, s(x,t) external
input; w(x —x’) the kernel of local excitatory interaction within the DNF, while
~ > 0 represents the strength of global inhibitory interaction. The function f(-)
is a sigmoid. Noise, 1 is added because the dynamics goes through instabilities
and must escape reliably from unstable solutions. At appropriate values of «y the
dynamics is selective, allowing only a single connected and bounded region of
the DNF to become active at any given time.

Pose estimation happens in two cascaded DNFs. The first layer, uq(x,t),
forms an initial hypothesis, driven by the current pose estimate as input with
weak global inhibitory interaction. The second layer evolves more slowly with



strong inhibitory interaction, and makes the final decision on the pose estimate.
It receives input from the first layer, so(x,t) = 6(g(u1(x,t))), where 6(u) = u
for u > 0 and zero elsewhere. g is a spatial Gaussian filter. The current pose
estimate p(x,t) is

P(%,) = cmix(t) - O(ur(x, 1)) + (1 = cmix(t)) - fuz(x,1)) (2)

where cpix(t) € [0,1] is the output of an additional, dimensionless DNF which
is activated when [ f(u2(x,t))dx exceeds a threshold.

Object Identity is represented by associating labels with each object. In anal-
ogy with the pose representation, there are two layers of dynamic neural nodes,
uy;(t) (i € {1,2}) for each label [, governed by dynamics analogous to Eqn 1.
Similar to self-excitation and global inhibition in the DNF, each node excites
itself and inhibits all others. The current label estimate, w;(t), is calculated
analogously to Eqn 2.

Matching Pose and Identity for Shifts We first describe the method for a
single scale and for the shift estimate only. Inputs are three-dimensional functions
I(x,y,c) — R, where z,y are image coordinates and ¢ is an additional feature
dimension such as colour. I(z,y,c) simply specifies how much of a colour ¢ is
perceived at a given location. For matching inputs to the stored views, we first
apply the inverse of the current pose estimate p(d,,d,,t), where (d4,0,) = x.
This is calculated as

(x,y,c / (0, 0y, ¢) - I(x + 03,y + 0y, ¢)d05dd, (3)

i.e., the cross-correlation of the current input and the current pose estimate. The
matching value m; with each memorised pattern W(z,y,c) is also calculated
using correlation, now taking all colours ¢ into account:

t) = /// I'(z,y,¢) Wiz, y, c)dedyde , (4)

where I’ and W, are zero-mean and normalised versions of I’ and W,. For deter-
mining the current shift estimate, we calculate the superposition of the memo-
rised patterns

(0) = S i) Wi .0 (5)

given the current label estimates w;(t). Analogously to Eqn 4, we can then
compute

1(02,9y) // W (x,y,¢) - I(x+ 0z,y + 0y, c)dzdydc . (6)

This is fed into Eqn 1 as input, forming a closed recurrent loop.



{'LPTF object matching | match |
scale (1D)
F o 2
{70t pose estimation | |rotation (1D)
* ¥
[ shift 2D) |
(a) (b)
Fig. 1. (a) Interfaces between the pose estimation and object matching modules. Please

refer to the text for an explanation of the symbols. (b) Log-polar transformations
between pose estimation modules allow us to estimate scale and rotation.

Scale and Rotation can be estimated by cascading several transformation
modules (see Fig. 1). To estimate rotation and scaling, the output of the shift
estimation module is transformed to log-polar space, so that rotation and scaling
are again shift operations (Fig. 1b).

Pattern Learning is supervised. During learning, Gaussian-shaped inputs are
fed into the pose-DNFs. These inputs are centred around the correct pose pa-
rameters. The correct label is activated by a strong, localised input to the cor-
responding label node.

The weights of the pattern memory (W;) are adapted by a linear dynamical
system. This system is chosen so that at the fixed point, Wj(z,y,c) = T'(z, vy, ¢),
where T is the image used for training, but inversely transformed by the pose
parameters in the DNF's.

2.3 Keypoint Scales

The feed-forward stream of the architecture contains keypoints on different
scales. So far, we considered input from a single scale of the keypoint-stream.
We can also control the scale of keypoints through a matching approach simi-
lar to the one presented above. Let K(x,y,¢,s) — R be the maps of localised
histograms for colour ¢ at keypoint scales s.

We need to obtain a measure of the match for each scale. This can be de-
termined analogously to how memory patterns are matched to the currently
processed input pattern. Let W’ (x,y, ¢) be the superposition of memories, trans-
formed according to the current pose estimates. Then the match value for scale
s can be calculated by

m(s) = / / / K(z,y,c,s) - W'(z,y, c)dzdyde (1)
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Fig. 2. The four different poses used for our experiment, demonstrated for Cookies. The
left-most image shows the object in the standard pose used for training. The remaining
three views show the object in different orientations and positions.

where K and W' are again zero-mean and normalised versions of K and W'.
Note that this matching value is a second input to the scale estimation field
rather than having its own estimation process. In order to get the input pattern
I for the recognition system, we again form a superposition of the different scales,
weighted by the current scale estimate. The system then naturally converges to
the keypoint scale that is most appropriate for classifying the given object.

3 Evaluation

We implemented the architecture using cedar, a software framework for neural
dynamics [13]. For the evaluation, we use a subset (only the 120 images recorded
in the center region out of the total of 300) of the images that were used to
evaluate its predecessor [11,14]. These images of 30 everyday objects have been
recorded with a robotic scenario in mind. The camera looks at somewhat distant
objects on a white tabletop. Of the nine different poses in the previous dataset,
we chose the four located in the centre region of the image (see Fig. 2). As in the
previous experiments, we cut out a subregion (a rectangle of 360 x 360 pixels in
the centre of the image) of the original images (640 x 480 RGB).

3.1 Performance Evaluation

During the training phase, weights are learned by presenting each training image
together with the pose information for a fixed duration. Images are presented
only once. In the testing phase, the test images are presented to the system for
recognition. The neural dynamics we use are stochastic. This may randomly lead
to different outcomes on separate trials, thus we repeat the testing phase three
times.

In both phases, the system is reset by lowering the resting level of the DNFs
between the presentation of two images. This reset phase is considered complete
when the difference between the minimal and maximal activation of the nodes
in the second label layer falls below a fixed threshold. This removes residual
information from previous trials without restarting the process.

The recognition is considered completed when the f(u;2) exceeds a certain
threshold during the recognition phase and the change in v; ; falls below a thresh-
old. A short grace period is given to account for possible changes in the decision.



System Correct (%) Pose Parameter Average Error

Proposed 68.0 Position (px) 23.8
LNBNN + SIFT 42.2 Rotation (°) 69.3
LNBNN + CH27 10.0 Scale* (factor) 0.22
LNBNN + SIFTP10 40.0 * Only evaluated on scaled images.

(a) Comparison of recognition perfor- (b) Evaluation of pose estimation.
mance.
Table 1. Performance measurements. Refer to the text for an explanation.

After this period, the recognised label and pose are given by the location of the
maximum activation in the layer two activation values. The recognised pose is
read out in the same way. A reset is triggered and, once it is completed, a new
recognition trial begins.

For comparison, we classified the original dataset using the state of the art
LNBNN classifier [15] with three different kinds of features. The first approach
uses a full range of SIFT features. The second approach (CH27) uses the same
localised colour histograms we use for our approach, but with 27 colour bins. The
third approach (SIFTP10) uses a randomly-selected set of ten SIFT prototypes
and uses the Euclidean distance to each of them as a 10-dimensional feature
vector.

3.2 Results

Results are shown in Table 1. Pose errors are reported as Euclidean distances
between the recognised and the annotated pose.

As Table la shows, even with relatively weak features, we already obtain
good recognition rates. Failures occur for objects with similar feature values.
For example, glue, an object dominated by red and blue colours, was often con-
fused with blue_bozcutter, blue_tape and red_screwdriver. Objects with low local
complexity, such as yellow_stapler presented the biggest difficulty for our system.

4 Conclusions

We have presented a neurally-inspired model for object recognition with simulta-
neous pose estimation based on single views. We expanded and revised previous
work that employed global features and non-neural processing steps such as
histogram rotations. Our approach is entirely based on neural concepts, from
neurally plausible local features to the neural-field-based shift, scale, and ro-
tation estimation. Tests on 30 household items demonstrate the ability of our
method to reliably recognise objects learned from single views.

Our implementation does not currently achieve speeds required for real-time
processing. The current bottleneck is the calculation of the four-dimensional
feature maps.



While our approach outperformed a state-of-the-art approach on our dataset,
we only consider this a preliminary result. In future work, we aim to test our
approach with stronger features on an established database.

We are currently working on stronger invariant features and integration with
a scene representation system. We expect that stronger top-down guidance,
which can be easily added to our framework, can significantly improve detec-
tion speed and results.
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