
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1131

Fast Distributed Gradient Methods
Dušan Jakovetić, Student Member, IEEE, João Xavier, Member, IEEE, and José M. F. Moura, Fellow, IEEE

Abstract—We study distributed optimization problems when
nodes minimize the sum of their individual costs subject to

a common vector variable. The costs are convex, have Lipschitz
continuous gradient (with constant), and bounded gradient.
We propose two fast distributed gradient algorithms based on
the centralized Nesterov gradient algorithm and establish their
convergence rates in terms of the per-node communications
and the per-node gradient evaluations . Our first method,

Distributed Nesterov Gradient, achieves rates and
. Our second method, Distributed Nesterov gradient

with Consensus iterations, assumes at all nodes knowledge of
and – the second largest singular value of the
doubly stochastic weight matrix . It achieves rates
and (arbitrarily small). Further, we give for both
methods explicit dependence of the convergence constants on
and . Simulation examples illustrate our findings.

Index Terms—Consensus, convergence rate, distributed opti-
mization, Nesterov gradient.

I. INTRODUCTION

D ISTRIBUTED computation and optimization have been
studied for a long time, e.g., [1], [2], and have received

renewed interest, motivated by applications in sensor [3], multi-
robot [4], or cognitive networks [5], as well as in distributed
control [6] and learning [7]. This paper focuses on the problem
where nodes (sensors, processors, agents) minimize a sum
of convex functions subject to a common
variable . Each function is convex and
known only to node . The underlying network is generic and
connected.
To solve this and related problems, the literature proposes

several distributed gradient like methods, including: [8] (see

Manuscript received November 30, 2011; revised August 04, 2012; accepted
March 29, 2013. Date of publication January 09, 2014; date of current version
April 18, 2014. This work was supported by the Carnegie Mellon|Portugal
Program under a grant from the Fundação de Ciěncia e Tecnologia (FCT) from
Portugal, FCT grants CMU-PT/SIA/0026/2009, PTDC/EMS-CRO/2042/2012,
SFRH/BD/33518/2008 (through the Carnegie Mellon|Portugal Program man-
aged by ICTI), ISR/IST plurianual funding (POSC program, FEDER), AFOSR
grant FA95501010291, and by National Science Foundation (NSF) grant
CCF1011903. Recommended by Associate Editor A. Ozdaglar.
D. Jakovetic was with the Institute for Systems and Robotics, Instituto Supe-

rior Tecnico (IST), University of Lisbon, Lisbon 1049-001, Portugal, and with
the Department of Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 15213-3890 USA. He is now with University of Novi
Sad, BioSense Center, Novi Sad 21000, Serbia (e-mail: djakovet@uns.ac.rs).
J. Xavier is with the Instituto de Sistemas e Robótica (ISR), Instituto Supe-

rior Técnico (IST), University of Lisbon, Lisbon 1049-001, Portugal (e-mail:
jxavier@isr.ist.utl.pt).
J. M. F. Moura is with the Department of Electrical and Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA, and
also with CUSP, New York University, Brooklyn, NY 11201 USA (e-mail:
moura@ece.cmu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2014.2298712

also [9]–[11]); [12] (see also [13]); [14] (see also [3], [15]);
and [16]. When the nodes lack global knowledge of the net-
work parameters, [14] establishes, for the distributed dual aver-
aging algorithm therein, rate , where is
the number of communicated -dimensional vectors per node,
which also equals the number of iterations (gradient evalua-
tions per node,) and is the second largest singular value
of the underlying doubly stochastic weight matrix .
Further, when is known to the nodes, and after opti-
mizing the step-size, [14] shows the convergence rate to be

.
1) Setup: The class of functions usually considered in the ref-

erences above are more general than we consider here, namely,
they assume that the ’s are (possibly) non-differentiable and
convex, and: 1) for unconstrained minimization, the ’s have
bounded gradients, while 2) for constrained minimization, they
are Lipschitz continuous over the constraint set. In contrast, we
assume the class of convex ’s that have Lipschitz contin-
uous and bounded gradients.
It is well established in centralized optimization, [17], that

one expects faster convergence rates on classes of more struc-
tured functions; e.g., for convex, non-smooth functions, the
best achievable rate for centralized (sub)gradient methods is

, while, for convex functions with Lipschitz con-
tinuous gradient, the best rate is , achieved, e.g., by
the Nesterov gradient method [17]. Here is the number of
iterations, i.e., the number of gradient evaluations.
2) Contributions: Building from the centralized Nesterov

gradient method, we develop for the class two distributed
gradient methods and prove their convergence rates, in terms
of the number of per-node communications , the per-node gra-
dient evaluations , and the network topology. Our first method,
the Distributed Nesterov Gradient (D–NG), uses one commu-
nication per (it has) and achieves convergence rate

, where is an
arbitrarily small quantity, and when the nodes have no
global knowledge of the parameters underlying the optimization
problem and the network: and the ’s gradient’s Lispchitz
constant and the gradient bound, respectively, the
second largest singular value of , and a bound on the dis-
tance to a solution. When and are known by all, D–NG with
optimized step-size achieves the same rate with reduced to 1.
Our second method, Distributed Nesterov gra-

dient with Consensus iterations (D–NC), assumes
global knowledge on and and achieves rates

and

. Further, we establish that, for the class

, both our methods (achieving at least) are strictly
better than the distributed (sub)gradient method [8] and the

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1132 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

distributed dual averaging in [14], even when these algorithms
are restricted to functions in . We show analytically that
[8] cannot be better than and (see
Section VII-A for details), and by simulation examples that
[8] and [14] perform similarly.
3) Distributed Versus Centralized Nesterov Gradient

Methods: The centralized Nesterov gradient method does not
require bounded gradients – an assumption that we make for our
distributed methods. We prove here that if we drop the bounded
gradients assumption, the convergence rates that we establish
do not hold for either of our algorithms. (It may be possible to
replace the bounded gradients assumption with a weaker re-
quirement.) In fact, the worst case convergence rates of D–NG
and D–NC become arbitrarily slow. (See Section VII-B for
details.) This important result illustrates a distinction between
the allowed function classes by the centralized and distributed
methods. The result is not specific to our accelerated methods;
it can be shown that the standard distributed gradient method
in [8] is also arbitrarily slow when the assumption of bounded
gradients is dropped (while convexity and Lipschitz continuous
gradient hold) [18].
Remark: Since we make use here of the bounded gra-

dients assumption, an interesting research direction is to
look for a weaker requirement, e.g., boundedness of all

(, , .) In fact,
with both D–NG and D–NC, we prove elsewhere that we can
assume different setups (corresponding to broad classes of
functions) and still achieve the same convergence rates in terms
of and . With D–NG, we can replace the bounded gradients
assumption with the following: there exists such that,
, whenever . For a natural extension

of D–NC, we can replace the unconstrained problems with
Lipschitz continuous and bounded gradients assumed here by a
constrained optimization problem (compact, convex constraint
set) where the ’s have Lipschitz continuous gradient on a
certain compact set that includes . Due to lack of space, these
alternatives are pursued elsewhere.
Remark: We comment on references [19] and [20] (see also

Section VII-A and [18]). They develop accelerated proximal
methods for time varying networks that resemble D–NC. The
methods in [19] and [20] use only one consensus algorithm per
outer iteration , while we use two with D–NC. Adapting the
results in [19], [20] to our framework, it can be shown that
the optimality gap bounds in [19], [20] expressed in terms of

, and have the same or worse (depending on the
variant of their methods) dependence on and than the
one we show for D–NC, and a worse dependence on . (See
Section VII-A and [18].)
In addition to distributed gradient methods, the literature also

proposes distributed augmented Lagrangian dual or ordinary
dual methods [5], [21]–[27]. These are based on the augmented
Lagrangian (or ordinary) dual of the original problem. They in
general have significantly more complex iterations than the gra-
dient type methods that we consider in this paper, due to solving
local optimization problems at each node, at each iteration, but
may have a lower total communication cost. Reference [22]
uses the Nesterov gradient method to propose an augmented La-
grangian dual algorithm but does not analyze its convergence

rate. In contrast, ours are primal gradient algorithms, with no
notion of Lagrangian dual variables, and we establish the con-
vergence rates of our algorithms. References [26], [27] study
both the resource allocation and the problems that we consider
(see (1)). For (1), [26], [27] apply certain accelerated gradient
methods on the dual problem, in contrast with our primal gra-
dient methods. Finally, [6] uses the Nesterov gradient algorithm
to propose a decomposition method based on a smoothing tech-
nique, for a problem formulation different than ours and on the
Lagrangian dual problem.
4) Paper Organization: The next paragraph introduces

notation. Section II describes the network and optimization
models that we assume. Section III presents our algorithms,
the distributed Nesterov gradient and the distributed Nesterov
gradient with consensus iterations, D–NG and D–NC for short.
Section IV explains the framework of the (centralized) inexact
Nesterov gradient method; we use this framework to establish
the convergence rate results for D–NG and D–NC. Sections V
and VI prove convergence rate results for the algorithms
D–NG and D–NC, respectively. Section VII compares our
algorithms D–NG and D–NC with existing distributed gradient
type methods, discusses the algorithms’ implementation, and
discusses the need for our Assumptions. Section VIII provides
simulation examples. Finally, we conclude in Section IX. Proofs
of certain lengthy arguments are relegated to the Appendix.
Notation: We index by a subscript a (possibly vector) quan-

tity assigned to node ; e.g., is node ’s estimate at itera-
tion . Further, we denote by: the -dimensional real coor-
dinate space; the imaginary unit (); or the
entry in the -th row and -th column of a matrix ; the
-th entry of vector ; the transpose and the conjugate
transpose; , 0, , and , respectively, the identity matrix, the
zero matrix, the column vector with unit entries, and the -th
column of ; and the direct sum and Kronecker product
of matrices, respectively; the vector (respectively, matrix)
-norm of its vector (respectively, matrix) argument;
the Euclidean (respectively, spectral) norm of its vector (respec-
tively, matrix) argument (also denotes the modulus of a
scalar); the -th smallest in modulus eigenvalue;
means that a Hermitian matrix is positive semi-definite;
the smallest integer not smaller than a real scalar ; and

the gradient and Hessian at of a twice differentiable
function , . For two positive sequences
and , the following is the standard notation: if

; if ; and
if and .

II. PROBLEM MODEL

This section introduces the network and optimization models
that we assume.
1) Network Model: We consider a (sparse) network of

nodes (sensors, processors, agents,) each communicating only
locally, i.e., with a subset of the remaining nodes. The commu-
nication pattern is captured by the graph , where

is the set of links. The graph is connected, undi-
rected and simple (no self/multiple links.)

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1133

2) Weight Matrix: We associate to the graph a symmetric,
doubly stochastic (rows and columns sum to one and all the en-
tries are non-negative), weight matrix , with, for ,

if and only if, , and .

Denote by , where is the ideal con-
sensus matrix.We let , where is the diagonal ma-
trix with , and is the matrix of
the eigenvectors of .With D–NC, we impose Assumption1(a)
below; with D–NG, we require both Assumptions 1(a) and (b).
Recall —the second largest singular value of
Assumption 1 (Weight Matrix): We assume that (a)

; and (b) , where is an arbi-
trarily small positive quantity.
Note that Assumption 1 (a) can be fulfilled only by a con-

nected network. Assumption 1 (a) is standard and is also needed
with the existing algorithms in [8], [14]. For a connected net-
work, nodes can assign the weights and fulfill Assumption
1 (a), e.g., through the Metropolis weights [28]; to set the
Metropolis weights, each node needs to know its own degree
and its neighbors’ degrees. Assumption 1 (b) required by
D–NG is not common in the literature. We discuss the impact
of Assumption 1 (b) in Section VII-A.
3) Distributed Optimization Model: The nodes solve the un-

constrained problem

(1)

The function is known only to node . We impose
Assumptions 2 and 3.
Assumption 2 (Solvability; Lipschitz Continuous Gradient):
a) There exists a solution with

.
b) , is convex, differentiable, with Lipschitz contin-
uous derivative with constant :

.
Assumption 3 (Bounded Gradients): such that,
, , .
Examples of ’s that satisfy Assumptions 2–3 include the lo-

gistic and Huber losses (See Section VIII), or the “fair” loss in
robust statistics, , ,
where is a positive parameter, e.g., [29]. Assumption 2 is pre-
cisely the assumption required by [17] in the convergence anal-
ysis of the (centralized) Nesterov gradient method. With respect
to the centralized Nesterov gradient method [17], we addition-
ally require bounded gradients as given by Assumption 3. We
explain the need for Assumption 3 in Section VII-B.

III. DISTRIBUTED NESTEROV BASED ALGORITHMS

We now consider our two proposed algorithms. Section III-A
presents algorithm D–NG, while Section III-B presents algo-
rithm D–NC.

A. Distributed Nesterov Gradient Algorithm (D–NG)

Algorithm D–NG generates the sequence ,
, at each node , where is an auxiliary variable.

D–NG is initialized by , for all . The update
at node and is

(2)

(3)

Here, are the averaging weights (the entries of), and
is the neighborhood set of node (including). The step-size
and the sequence are:

(4)

With algorithm (2)–(3), each node , at each iteration , per-
forms the following: 1) broadcasts its variable to
all its neighbors ; 2) receives from all its
neighbors ; 3) updates by weight-averaging its
own and its neighbors variables , and per-
forms a negative gradient step with respect to ; and 4) up-
dates via the inexpensive update in (3). To avoid notation
explosion in the analysis further ahead, we assume throughout
the paper, with both D–NG and D–NC, equal initial estimates

for all e.g., nodes can set
them to zero.
We adopt the sequence as in the centralized fast gradient

method by Nesterov [17]; see also [30], [31]. With the central-
ized Nesterov gradient, is constant along the iterations.
However, under a constant step-size, algorithm (2)–(3) does not
converge to the exact solution, but only to a solution neighbor-
hood. More precisely, in general, does not converge to
(See [32] for details.) We force to converge to

with (2)–(3) by adopting a diminishing step-size , as in (4).
The constant in (4) can be arbitrary (See also ahead
Theorem 5.)
1) Vector Form: Let

, and
introduce as:

. Then, given initialization ,
D–NG in vector form is

(5)

(6)

where the identity matrix is of size – the dimension of the
optimization variable in (1).

Algorithm D–NC

Algorithm D–NC uses a constant step-size and
operates in two time scales. In the outer (slow time scale) iter-
ations , each node updates its solution estimate , and
updates an auxiliary variable (as with the D–NG); in the
inner iterations , nodes perform two rounds of consensus with
the number of inner iterations given in (7) and (13) below, re-
spectively. D–NC is Summarized in Algorithm 1.

1134 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Algorithm 1 Algorithm D–NC

1: Initialization: Node sets: ; and
.

2: Node calculates:
3: (First consensus) Nodes run average consensus initialized
by :

(7)

and set .
4: Node calculates

5: (Second consensus) Nodes run average consensus
initialized by :

(8)

and set .
6: Set and go to step 2.

The number of inner consensus iterations in (7) increases as
and depends on the underlying network through .

Note an important difference between D–NC and D–NG. D–NC
uses explicitly a number of consensus steps at each . In con-
trast, D–NG does not explicitly use multi-step consensus at each
; consensus occurs implicitly, similarly to [8], [14].
2) Vector Form: Using the same compact notation for ,
, and as with D–NG, D–NC in vector form is

(9)

(10)

The power in (9) corresponds to the first consensus
in (7), and the power in (10) corresponds to the
second consensus in (8). The connection between D–NC and
the (centralized) Nesterov gradient method becomes clearer in
Section IV-B. The matrix powers (9)–(10) are implemented in
a distributed way through multiple iterative steps – they require
respectively and iterative (distributed) consensus
steps. This is clear from the representation in Algorithm 1.

IV. INTERMEDIATE RESULTS: INEXACT NESTEROV
GRADIENT METHOD

We will analyze the convergence rates of D–NG and
D–NC by considering the evolution of the global averages

and . We will
show that, with both distributed methods, the evolution of
and can be studied through the framework of the inexact
(centralized) Nesterov gradient method, essentially like the one

in [33]. Section IV-A introduces this framework and gives the
relation for the progress in one iteration. Section IV-B then
demonstrates that we can cast our algorithms D–NG and D–NC
in this framework.

A. Inexact Nesterov Gradient Method

We next introduce the definition of a (pointwise) inexact first
order oracle.
Definition 1 (Pointwise Inexact First Order Oracle): Con-

sider a function that is convex and has Lips-
chitz continuous gradient with constant . We say that a pair

is a inexact oracle of at point
if:

(11)

For any , the pair satisfies Definition 1

with . If is a inexact oracle

at , then it is also a inexact oracle at , with .
Remark: The prefix pointwise in Definition 1 emphasizes that

we are concerned with finding that satisfy (11) with

at a fixed point . This differs from the conventional
definition (Definition 1) in [33]. Throughout, we always refer
to the inexact oracle in the sense of Definition 1 here and drop
the prefix pointwise.
1) Inexact Nesterov Gradient Method: Lemma 2 gives the

progress in one iteration of the inexact (centralized) Nesterov
gradient method for the unconstrained minimization of . Con-
sider a point , for some fixed

Let be a inexact or-

acle of the function at point and

(12)

Lemma 2 (Progress per Iteration): Consider the update rule
(12) for some Then

(13)

for any , where and
.

Lemma 2 is similar to [[33], Theorem 5], although [33] con-
siders a different accelerated Nesterov method. It is intuitive:
the progress per iteration is the same as with the exact Nesterov
gradient algorithm, except that it is deteriorated by the “gradient
direction inexactness” (). The proof follows the ar-
guments of [33] and [17], [30], [31] and is in [18].

Algorithms D–NG and D–NC in the Inexact Oracle Framework

We now cast algorithms D–NG and D–NC in the inexact or-
acle framework.

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1135

Algorithm D–NG: Recall the global averages
and , and define

(14)

Multiplying (5)–(6) from the left by , using
, letting , and using

in (14), we obtain that , evolve according to

(15)

The following Lemma shows how we can analyze convergence
of (15) in the inexact oracle framework. Define

and . Define analogously
and . We refer to and as the disagreement

vectors, as they indicate how mutually apart the estimates of
different nodes are.
Lemma 3: Let Assumption 2 hold. Then, in (14) is

a inexact oracle of at point with
constants and .
Lemma 3 implies that, if , i.e., if ,

then the progress per iteration in Lemma 2 holds for (15) with
. If , Lemma 2 applies for all

iterations ; otherwise, it holds for all .
Proof of Lemma 3: For notation simplicity, we re-write
and as and , and as .

In view of Definition 1, we need to show inequalities (11). We
first show the left one. By convexity of :

summing over , using
, and expressing

We now prove the right inequality in (11). As is convex and
has Lipschitz continuous derivative with constant , we have:

, which, after
summation over , expressing

, and using the inequality
, gives

and so satisfy the right inequality in (11) with
and

Algorithm D–NC: Consider algorithm D–NC in (9)–(10). To
avoid notational clutter, use the same notation as with D–NG
for the global averages: , and

, re-define for D–NC as in (14), and let
. Multiplying (9)–(10) from the left by

, and using , we get that
satisfy (15). As , we have , and so,
by Lemma 3, the progress per iteration in Lemma 2 applies to

of D–NC for all , with .
In summary, the analysis of convergence rates of both D–NG

and D–NC boils down to finding the disagreements and
then applying Lemma 2.

V. ALGORITHM D–NG: CONVERGENCE ANALYSIS

This section studies the convergence of D–NG. Section V-A
bounds the disagreements and with D–NG;
Section V-B combines these bounds with Lemma 2 to derive
the convergence rate of D–NG and its dependence on the
underlying network.

A. Algorithm D–NG: Disagreement Estimate

This subsection shows that and are ,
hence establishing asymptotic consensus – the differences of the
nodes’ estimates (and) converge to zero. Recall the
step-size constant in (4) and the gradient bound in
Assumption 3.
Theorem 4 (Consensus With D–NG): For D–NG in (2)–(4)

under Assumptions 1 and 3:

(16)

(17)

with .
For notational simplicity, we prove Theorem 4 for , but

the proof extends to a generic . We model the dynamics
of the augmented state as a linear time
varying system with inputs . We present here
the linear system and solve it in the Appendix. Substitute the
expression for in (5); multiply the resulting equation
from the left by ; use ;
and set by assumption. We obtain

(18)

for all , where , for , is in (4),
, and . We emphasize that system (18)
is more complex than the corresponding systems in, e.g., [8],
[14], which involve only a single state ; the upper bound
on from (18) is an important technical contribution of
this paper; see Theorem 4 and Appendix A.

1136 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

B. Convergence Rate and Network Scaling

Theorem 5 (a) states the convergence rate
result for D–NG when the step-size constant ;
Theorem 5(b) (proved in [18]) demonstrates that the

convergence rate still holds if ,
with a deterioration in the convergence constant. Part (b)
assumes , , to avoid notational clutter.
Theorem 5: Consider D–NG under Assumptions 1–3. Let

, . Then:
(a) If , we have, ,

(19)

(b) Let . If , (19) holds ,
, with replaced with

, and
is a constant that depends on , and is

independent of and .
We prove here Theorem 5 (a); for part (b), see [18].
Proof of Theorem 5 (a): The proof consists of two parts.

In the Step 1 of the proof, we estimate the optimality gap
at the point using

Lemma 2 and the inexact oracle machinery. In the Step 2, we
estimate the optimality gap at any node
using convexity of the ’s and the bound on from
Theorem 4.

Step 1. Optimality Gap : Recall that, for
in (14) is a inexact oracle of

at point with and . Note
that is also a inexact oracle of at point
with , because , and so

. Now, we apply Lemma 2 to (15), with ,
and the Lipschitz constant . Recall that

. We get

(20)

Because , and , we
have

By unwinding the above recursion, and using
, gives:

. Applying Theorem 4 to
the last equation, and using ,
and the assumption , leads to, as desired

(21)

Step 2. Optimality Gap : Fix an arbitrary
node ; then, by convexity of , :

, and so:
. Summing the inequalities for

, using , subtracting from
both sides, from Theorem 4

(22)

which, with (21) where the summation variable is replaced by
, completes the proof.

1) Network Scaling: Using Theorem 5, Theorem 6 studies
the dependence of the convergence rate on the underlying net-
work – and , when: 1) nodes do not know and
before the algorithm run, and they set the step-size constant to
a constant independent of , e.g., ; and 2) nodes
know , and they set . See [14] for depen-
dence of on for commonly used models, e.g.,
expanders or geometric graphs.
Theorem 6: Consider the algorithm D–NG in (2)–(4) under

Assumptions 1–3. Then, is

where: (a) for arbitrary ; and (b) for
.

Proof of Theorem 6: Fix and (two
arbitrarily small positive constants). By Assumption 1 (b),

. We show that for in (17)

(23)

where depends only on . Consider
there exists

such that: , . Thus

for all . From the above equation, and using
, , we have
. The latter, applied to (17),

yields (23), with .

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1137

A scaling result , , readily fol-
lows by substitution of (23) in Theorem 5 (a) and (b), respec-
tively. To prove Theorem 6, we modify the argument of (22).
We first prove claim (b). Namely, at any node , using Lipschitz
continuity of (with constant),

, and thus

(24)
where we use . From (21),

. Using again Lipschitz conti-
nuity of (with constant)

Consider (24). Subtracting from both sides, dividing by ,
and substituting the above bound on while using
Theorem 5 (a), we obtain

(25)

We now apply (23) to (25). Claim (b) is proved after setting
. The proof for claim (a) is completely analo-

gous; the argument only replaces the term in (21) with
, see also [18], and sets .

VI. ALGORITHM D–NC: CONVERGENCE ANALYSIS

We now consider the D–NC algorithm. Section VI-A pro-
vides the disagreement estimate, while Section VI-A gives the
convergence rate and network scaling.

A. Disagreement Estimate

We estimate the disagreements , and with D–NC.
Theorem 7 (Consensus With D–NC): Let Assumptions 1 (a)

and 3 hold, and consider the algorithm D–NC. Then, for
: , and .

Proof: For notational simplicity, we perform the proof for
, but it extends to a generic . Denote by

, and fix . We want to upper
bound . Multiplying (9)–(10) by from the left, using

(26)

(27)

We upper bound and from (26), (27). Recall
; from (7) and (13), we have

and . From (26), using the sub-additive
and sub-multiplicative properties of norms, and using

, ,
,

(28)

(29)

Clearly, from (28) and (29): Next,
using , unwind the latter recursion for , to
obtain, respectively: and , and
so the bound in Theorem 7 holds for . Further, for
unwinding the same recursion for

where we use ,

B. Convergence Rate and Network Scaling

We are now ready to state the Theorem on the convergence
rate of D–NC.
Theorem 8: Consider the algorithm D–NC under Assump-

tions 1 (a), 2, and 3. Let , . Then, after

communication rounds, i.e., after outer iterations, at any node

(30)

Proof Outline: The proof is very similar to the proof
of Theorem 5 (a) (for details see [18], second version v2);
first upper bound , and then .
To upper bound , recall that the evolution
(15) with for is the inexact Nes-
terov gradient with the inexact oracle in (14), and

. Then, apply Lemma 2 with
and , and use Theorem 7, to obtain

(31)

1138 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Finally, find the bound on analogously to the
proof of Theorem 5 (a).
1) Network Scaling: We now give the network scaling for

algorithm D–NC in Theorem 9. We assume that nodes know
and before the algorithm run.
Theorem 9: Consider D–NC under Assumptions 1 (a), 2,

and 3 with step-size . Then, after outer iterations
and communication rounds, at any node ,

is and

.

Proof: Fix , and let be the number
of elapsed communication rounds after outer it-
erations. There exists , such that,

.
The latter, combined with ,

, and the upper bound bound on in Theorem 8,
gives: . Plugging the latter in the
optimality gap bound in Theorem 8 gives a scaling result

and . To prove
Theorem 9, we proceed analogously to the proof of Theorem 6.
From Theorem 8 and ,

. Consider (24). Subtracting ,
dividing by , and using and (31),
we obtain .
Finally, substitute in the last bound.

VII. COMPARISONS WITH THE LITERATURE AND
DISCUSSION OF THE ASSUMPTIONS

Section VII-A compares D–NG, D–NC, and the distributed
(sub)gradient algorithms in [8], [14], [19], from the aspects of
implementation and convergence rate; Section VII-B gives a
detailed discussion on Assumptions 1–3.

A. Comparisons of D–NG and D–NC With the Literature

We first set up the comparisons by explaining how to account
for Assumption 1 (b) and by adapting the results in [19], [20] to
our framework.
Assumption 1(b): To be fair, we account for Assumption 1(b)

with D–NG as follows. Suppose that the nodes are given arbi-
trary symmetric, doubly stochastic weights with
– thematrix required byD–NC and [8], [14], [19]. (For example,
the Metropolis weights .) As the nodes may not be allowed to
check whether the given obeys Assumption 1 (b) or not, they
modify the weights to , where
can be taken arbitrarily small. The matrix obeys Assump-
tion 1 (b), whether obeys it or not. The modification is done
without any required knowledge of the system parameters nor
inter-node communication; node sets: 1) , for

, ; 2) , for , ; and
3) . To be fair, when we compare D–NG
with other methods (either theoretically as we do here or nu-
merically as done in Section VIII), we set its weights to .
For theoretical comparisons, from Theorem 5, the convergence
rate of D–NG depends on through the inverse spectral gap

. It can be shown that ,
i.e., the spectral gaps of and differ only by a constant
factor and the weight modification does not affect the conver-
gence rate (up to a numerical constant); henceforth, we express
the theoretical rate for D–NG in terms of .
1) References [19], [20]: These works develop and analyze

non-accelerated and accelerated distributed gradient and prox-
imal gradient methods for time-varying networks and convex
’s that have a differentiable component with Lipschitz contin-

uous and bounded gradient and a non-differentiable component
with bounded gradient. To compare with [20], we adapt it to our
framework of static networks and differentiable ’s. (We set the
non-differentiable components of the ’s to zero.) [19], [20]
assume deterministic time-varying networks. To adapt their re-
sults to our static network setup in a fair way, we replace the pa-
rameter in [19] (see [19, equation (7)]) with . The refer-
ences propose two variants of the accelerated algorithm: the first
(see [19, (6a)–(6d)]) has inner consensus iterations at the outer
iteration , while the second one has
(See [19, Subsection III-C].) The bounds established in [19]
for the second variant give its rate: , when

nodes know and . The first variant has a slower rate [18].
Algorithm Implementation and Convergence Rate: Table I

compares D–NG, D–NC, the algorithm in [14] and the second
algorithm in [19] with respect to implementation and the
number of communications to achieve -accuracy.
Here is the smallest number of communication
rounds after which , . Regarding
implementation, we discuss the knowledge required a priori by
all nodes for: 1) convergence (row 1); and 2) both stopping and
optimizing the step-size (s.s.) (row 2). Stopping determines a
priori the (outer) iteration such that ,

, . Optimizing the step size here means finding the
step-size that minimizes the established upper bound (in the
reference of interest) on the optimality gap (e.g., the bound for
D–NG in Theorem 5 (a).) We assume, with all methods, that
is already given (e.g., Metropolis.) Regarding ,

we neglect the logarithmic and -small factors and distinguish
two cases: 1) the nodes have no global knowledge (row 3);
and 2) the nodes know (row 4). We can see
from Table I that, without global knowledge (row 3), D–NG
has better dependence on than [14] and worse dependence
on . Under global knowledge (row 4), D–NC has better
complexity than [19] and has better dependence on than
[14] and a worse dependence on . Further, while D–NG
and [14] require no knowledge of any global parameters for
convergence (row 1), D–NC and the second algorithm in [19]
need and . The first variant in [19] requires only .
Also, Table I for [14] holds for a wider class of functions, and
in row 4, only is needed [14].
2) Global Knowledge : (as needed, e.g., by

D–NG for stopping) can be obtained as follows. Consider and
suppose each node knows a Lipschitz constant of its own
. Then, can be taken as . Thus, each

node can compute if nodes run a distributed algorithm for
maximum computation, e.g., ([34, (1)]); all nodes get after

per-node communicated scalars, where is the

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1139

TABLE I
COMPARISONS OF ALGORITHMS D–NG, D–NC, [14], AND [19] (ALGORITHMS 1 AND 2)

network diameter. Likewise, a gradient bound can be taken
as , where is a gradient bound for the
. The quantity (equal to the second largest eigenvalue

of) can be computed in a distributed way, e.g., by algorithm
DECENTRALOI, proposed in [35] and adapted to the problem
like ours in [[36, Subsection IV-A, p. 2519]]. With DECEN-
TRALOI, node obtains , the -th coordinate of the
eigenvector of that corresponds to , (up to -accu-

racy) after per-node communicated scalars

[35]; then, node obtains as: .
Consider now D–NC when nodes do not have available their

local gradient Lipschitz constants . Nodes can take a dimin-
ishing step size , , and still guarantee
convergence, with a deteriorated rate . In alterna-
tive, it may be possible to employ a “distributed line search,”
similarly to [37]. Namely, in the absence of knowledge of the
gradient’s Lipschitz constant , the centralized Nesterov gra-
dient method with a backtracking line search achieves the same
rate , with an additional computational cost per iter-
ation ; see [31], [38]. It is an interesting research direction
to develop a variant of distributed line search for D–NC type
methods and explore the amount of incurred additional com-
munications/computations per outer iteration ; due to lack of
space, this is left for future work.
3) The Lower Bound on the Worst-Case Opti-

mality Gap for [8]: We focus on the dependence on and
only (assuming a finite, fixed .) We demonstrate
that D–NG has a strictly better worst-case convergence rate in
(and) than [8], when applied to the ’s defined by Assump-
tions 2 and 3. Thus, D–NC also has a better rate.
Fix a generic, connected network with nodes and that

obeys Assumption 1. Let be the class of all -el-
ement sets of functions , such that: 1) each
is convex, has Lipschitz continuous derivative with constant ,
and bounded gradient with bound ; and 2) Assumption 2 (a)
holds. Consider (1) with , for all ; consider D–NG
with the step-size , , . De-
note by

the optimality gap at the -th iteration of D–NG for the worst
, and the worst (provided .)

From Theorem 5 (a), for any :
, with in (19). Now, consider the al-

gorithm in [8] with the step-size , ,
where , are the degrees of freedom, and

is an arbitrarily small positive number. With this algorithm,
. We show that, for the -node connected network,

the weight matrix with , , and ,
(which satisfies Assumption 1), and ,

and , with [8]

(32)

where

is the worst-case optimality gapwhen the step-size
is used. We perform the proof by constructing a “hard” example
of the functions and a “hard” initial condition to
upper bound ; for any fixed , we set:

, , where

(33)
; and . The proof of (32) is in the

Appendix. We convey here the underlying intuition. When is
-smaller (away) from one, we show

The first summand is the “optimization term,” for which a
counterpart exists in the centralized gradient method also. The
second, “distributed problem” term, arises because the gradi-
ents of the individual nodes functions are non-zero
at the solution . Note the two opposing effects with respect
to : (the smaller , the better) and (the larger

, the better.) To balance the opposing effects of the two
summands, one needs to take a diminishing step-size;
strikes the needed balance to give the bound.

B. Discussion on Assumptions

We now discuss what may occur if we drop each of the
Assumptions made in our main results–Theorems 4 and 5 for
D–NG, and Theorems 7 and 8 for D–NC.
Assumption 1(a): Consider Theorems 4 and 7. If

Assumption 1(a) is relaxed, then with both methods
may not converge to zero. Similarly, consider Theorems 5 and

1140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

8. Without Assumption 1(a), may not converge to
at any node; e.g., take , , and , , in the
next paragraph.
Assumption 1(b): Assumption 1(b) is imposed only for

D–NG – Theorems 4 and 5. We show by simulation that, if
relaxed, and may grow unbounded. Take

and , ; the
Huber losses , if
and else, ; , and

. Then, we verify by simulation [18]
that and grow unbounded.
Assumption 2: Assumption 2 is not needed for consensus

with D–NG and D–NC (Theorems 4 and 7), but we impose it
for Theorems 5 and 8 (convergence rates of D–NG and D–NC).
This Assumption is standard and widely present in the conver-
gence analysis of gradient methods, e.g., [17]. Nonetheless, we
consider what may occur if we relax the requirement on the Lip-
schitz continuity of the gradient of the ’s. For both D–NG
and D–NC, we borrow the example functions ,

, from [20, pages 29–31]: , ;
, ; and . Then, for

D–NGwith , ,
and , simulations show that
and , , grow unbounded. Similarly, with
D–NC, for the same , , and ,
simulations show that , , stays away from
zero when grows [18].
Assumption 3: First consider Theorems 5 and 8 on the con-

vergence rates of D–NG and D–NC. Define the class
to be the collection of all -element sets of convex functions

, where each has Lipschitz continuous gra-
dient with constant , and problem (2) is solvable in the sense
of Assumption 2 (a). (Assumption 3 relaxed.) With the D–NC
for the 2-node connected network, arbitrary weight matrix
obeying Assumption 1 (a), and the step-size , we
show for , , that, for any and arbitrarily
large

(34)

Note that the above means ,
, . That is, no matter how large the (outer) iteration

number is, the worst case optimality gap is still arbitrarily
large.
We conduct the proof by making a “hard” instance for

: for a fixed , we set , ,
, to , where

and

(35)

Similarly to D–NC, with D–NG we show in [18] that (34) also
holds for the 2-node connected network, the symmetric with

(this
obeys Assumption 1), , and . The
candidate functions are in (35), where, for fixed , ,

.

We convey here the intuition why (34) holds for D–NG and
D–NC, while the proof is in the Appendix. Note that the so-
lution to (1) with the ’s in (35) is , while

, . Making and
to be far apart (by taking a large), problem (1) for D–NG and
D–NC becomes “increasingly difficult.” This is because the in-
puts to the disagreement dynamics (18)

are arbitrarily large, even when
is close to the solution .

Finally, we consider what occurs if we drop Assumption 3
with Theorems 4 and 7. We show with D–NG and the above
“hard” examples that , . Hence,
is arbitrarily large by choosing large enough. (see [18].) Simi-
larly, with D–NC: , . (see Appendix C
and [18].)

VIII. SIMULATIONS

We compare the proposed D–NG and D–NC algorithms with
[8], [14], [19] on the logistic loss. Simulations confirm the in-
creased convergence rates of D–NG and D–NC with respect to
[8], [14] and show a comparable performance with respect to
[19]. More precisely, D–NG achieves an accuracy faster than
[8], [14] for all , while D–NC is faster than [8], [14] at least for

. With respect to [19], D–NG is faster for lower accu-
racies (in the range to), while [19] becomes
faster for high accuracies (and finer); D–NC per-
forms slower than [19].
1) Simulation Setup: We consider distributed learning

via the logistic loss; see, e.g., [7] for further details.
Nodes minimize the logistic loss:

, where ,

is the node ’s feature vector, and is its
class label. The functions , , satisfy Assump-

tions 2 and 3. The Hessian ,

where . A Lipschitz constant
should satisfy , . Note that

, because , .

We thus choose . We
generate independently over ; each entry is drawn from
the standard normal distribution. We generate the “true”
vector by drawing its entries indepen-
dently from the standard normal distribution. The labels are

, where the ’s are drawn
independently from a normal distribution with zero mean
and variance 3. The network is a geometric network: nodes
are placed uniformly randomly on a unit square and the
nodes whose distance is less than a radius are connected by
an edge. There are nodes, and the relative de-
gree . We initialize all nodes by

(and with D–NG, D–NC, and [19]). With
all algorithms except D–NG, we use the Metropolis weights
[28]; with D–NG, we use , with

. The step-size is: , with D–NG;
and , with D–NC; , with [19] (both the

first and second algorithm variants – see Section VII-A); and

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1141

Fig. 1. Normalized (average) relative error versus the
number of communications (all nodes) ; Top: Logistic loss; Bottom: Huber
loss.

, with [8] and [14].1 We simulate the normalized
(average) error versus the total number of
communications at all nodes (.)
2) Results: Fig. 1 (top) compares D–NG, D–NC (with step-

sizes and), [8], [14], [19] (both first and second
variant with .) We can see that D–NG converges faster
than other methods for accuracies in the range to

. For example, for , D–NG requires about
transmissions; [19] (second variant) ; D–NC (

) , and D–NCwith ; and
[19] (first variant), [8], and [14] – at least . For high
accuracies, and finer, [19] (second variant) becomes
faster than D–NG. Finally, [19] (second) converges faster than
D–NC, while [19] (first) is slower than D–NC.
3) Further Comparisons of D–NG and D–NC: Huber Loss:

We provide an additional experiment to further compare the
D–NG and D–NC methods. We show that the relative per-
formance of D–NC with respect to D–NG improves when
the instance of (1) becomes easier (in the sense explained
below.) We consider a -node geometric network
with and Huber losses ,

if , and ,
else, with . We divide the set of nodes in two groups.

1With [8], [14], and , gave the best simulation
performance among the choices .

For the first group, , we generate the ’s as
, where is the “signal” and is the uniform

noise on . For the second group, ,
we set , with the ’s from the same uniform
distribution. Note that any is
in , while any lies
in . Intuitively, by making large, we in-
crease the problem difficulty. For a small , we are in the “easy
problem” regime, because the solutions and of the two
nodes’ groups are close; for a large , we are in the “difficult
problem” regime. Fig. 1 (bottom) plots the normalized average
error versus for for D–NG with

, D–NC with , while both algorithms
are initialized by . We can see that, with
D–NC, the decrease of makes the convergence faster, as
expected. (With D–NG, it is not a clear “monotonic” behavior.)
Also, as decreases (“easier problem”), the performance of
D–NC relative do D–NG improves. For , D–NG is
initially better, but the curves of D–NG and D–NC intersect at
the value about , while for , D–NG is better
for all accuracies as fine as (at least) .
We give an intuition on the observed behavior. Consider an

“easy” problem with very similar local costs (small). In such
scenario, over outer iterations D–NC behaves very similarly
to the exact centralized Nesterov gradient method with a con-
stant step-size . However, during each , D–NC uses

per-node communications which, for the “easy” problem,
are unnecessary and “waste” resources. (These communications
are necessary for “difficult” problems.) Hence, D–NC behaves
here as the centralized Nesterov gradient method slowed (re-
scaled) through (unnecessary) multiple consensus rounds. From
the above, it may seem intuitive that the relative performance
of D–NC over D–NG is poorer for “easy” problems due to
“wastes” in communications; but this does not occur in sim-
ulations. To explain why, consider now D–NG for the same
“easy” problem. It behaves over similarly to the exact cen-
tralized Nesterov gradient method with a diminishing step-size

. Hence, not only D–NC behaves as a suboptimal central-
ized gradient method (due to multiple consensus rounds), but
also D–NG does, with the source of sub-optimality being the di-
minishing step-size . An intuitive comparison of these two
suboptimal methods on “easy” problems is the following. For a
given network (given), it is natural to expect that D–NC
converges at a faster rate (steeper slope) than D–NG, but with
the curve “shifted” upwards due to the effect of .
We indeed observe such behavior in Fig. 1, bottom, case

. On the other hand, for “difficult” problems (large), the
dynamics of disagreements play a significant role and cannot be
neglected. Hence, it is much harder to intuitively understand the
behavior. As our simulation example indicates, for more “dif-
ficult” problems (larger), the performance of D–NC relative
to D–NG actually deteriorates. We also performed a simulation
with a deteriorated , while all other parameters are the
same as in the above simulation. We increase by setting,
with both D–NG and D–NC, , where is
the Metropolis matrix. The relative behavior of D–NC with re-
spect to D–NG still deteriorates with the increase of . (Figure
omitted due to lack of space.)

1142 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

IX. CONCLUSION

We propose fast distributed gradient algorithms for nodes in a
network to minimize the sum of their individual cost functions.
Existing literature has presented distributed gradient based al-
gorithms to solve this problem and has studied their conver-
gence rates, for a class of convex, non-differentiable costs, with
bounded gradients. We asked whether faster convergence rates
than the rates established in the literature can be achieved for
more structured costs – convex, with Lipschitz continuous gra-
dient (with constant) and bounded gradient. Building from
the centralized Nesterov gradient method, we answer affirma-
tively this question by proposing two distributed gradient algo-
rithms. Our algorithm D–NG achieves the rates and

. Our algorithm D–NC operates only if and

are available and achieves rates and . We also
found convergence constants in terms of the network param-
eters. Simulations illustrate the performance of the proposed
methods.

APPENDIX

A. Proof of Theorem 4

For notational simplicity, we let , but the proof extends
to . We outline the main steps in the proof. First, we
unwind the recursion (18) and calculate the underlying time
varying system matrices. Second, we upper bound the norms
of the time varying system matrices. Finally, we use these
bounds and a summation argument to complete the proof of the
Theorem.
1) Unwinding (18) and Calculating the System Matrices:

Define the system matrices

(36)
and . Unwinding (18), the solution to (18) is

(37)

We now show the interesting structure of the matrix in
(36) by decomposing it into the product of an orthonormal ma-
trix , a block-diagonal matrix, and . While is indepen-
dent of and , the block diagonal matrix depends on and ,
and has 2 2 diagonal blocks. Consider the matrix in (18) with

, for a generic Using

(38)

where is the permutation matrix (here
is the –th column of the identity matrix)

and is a
2 2 matrix with , ,

and . Using (38), and the fact
that is orthonormal:

, we can
express in (36) as

(39)

2) Bounding the Norm of : As is
orthonormal, has the same singular values as

, and so these two matrices also
share the same spectral norm (maximal singular value.)
Further, the matrix is block di-
agonal (with 2 2 blocks), and so:

We pro-
ceed by calculating . We distinguish two
cases: , and .

Case : As , for all , is a
constant matrix, with , and the entries ,
and of are zero. Note that , and ,

. Thus, as long as , the product
, and so

if
if .

(40)

Case : To simplify notation, let , and
recall is: , where: 1)

, , and and
2) , and .; is

diagonalizable, with , and

(Note that the matrices and are complex.) De-

note by . Then,

. By the

sub-multiplicative property of norms, and using

,

(41)
It remains to upper bound , for all We
will show that

(42)

Denote by , , and .
After some algebra, the entries of are:

,
, which gives:

,

and

. Next, interestingly:

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1143

for any ,
which is the case here because , ,
and . Thus, as for a Hermitean matrix :

.
Applying the last equation and (42) to (41), we get, for :

.

Combine the latter with (40), and use
, Assumption 1(b) and

, to obtain

(43)

3) Summation: We apply (43) to (37). Using the sub-mul-
tiplicative and sub-additive properties of norms, expres-
sion , and the inequalities

,

(44)

We now denote by . To com-
plete the proof of the Lemma, we upper bound the sum

by splitting it into two sums. With the
first sum, runs from zero to , while with the second sum,
runs from to

(45)

(46)

(47)

(48)

Inequality (45) uses the inequality
, and ; (46)

multiplies and divides the first summand on the right hand
side of (45) by ; (47) uses

, for all , and a sim-
ilar bound for the second summand in (46); the left in-
equality in (48) uses
and (note that is convex
in ; we take the derivative of with respect to
and set it to zero); and the right inequality in (48) uses

, ; ,
, and Applying the last to (44),

and using the in (17), Theorem 4 for fol-
lows. Then, as ,
we have that . Fur-
ther, by Theorem 4:

, , and (by assump-
tion). Thus, , . Thus,

, .

B. Proof of the Lower Bound in (32) on the Worst-Case
Optimality Gap for [8]

Consider the ’s in (33), the initialization ,
, and , as

we set in Section VII-A. We divide the proof in four steps. First,
we prove certain properties of (1) and the ’s in (33); second,
we solve for the state with the al-
gorithm in [8]; third, we upper bound ; finally, we use
the latter bound to derive the worst-case optimality
gap.
Step 1: Properties of the ’s: Consider the ’s in (33) for a

fixed . The solution to (1), with ,
is , and the corresponding optimal value is

. Further, the ’s belong to the class .
(Proof is in [18].)
Step 2: Solving for With the Algorithm in [8]: Now,

consider the algorithm in [8], and consider –the so-
lution estimate at node and time . Denote by

–the vector with the -th coordinate
of the estimate of both nodes, ; and

, . Then, the update rule

of [8] is, for the in (33)

(49)

Recall the “hard” initialization ,
. Under this initialization

(50)

for all , for both nodes (proof in [18].) Note that
is the region where the in (33) is quadratic. Thus, evaluating

’s in the quadratic region

(51)

1144 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

, where and . We now evaluate
. Because

, , verify, using (33), and , that

(52)

By unwinding (51), and using ,

Consider the eigenvalue decomposition ,
where , , ,
and is diagonal with the eigenvalues

, . The matrix
decomposes as ;
likewise, . Then,

, and
. Using these

decompositions, and the orthogonality: , and

(53)

(54)

Step 3: Upper Bounding : Note that
, for all . Also, ,

for all . Similarly, we can show
then, ,

, and , . Thus:
Set

, where use
, ,

; and . We obtain: , and

so: where we denote and

. Further, from (54):

and we obtain:

(55)

Step 4: Upper Bounding the Optimality Gap From (55):
From (55), and using (52)

(56)

, . We further upper bound the right hand side in
(56) by taking the infimum of over ; we split
the interval into ; , and , so that

(57)
It is easy to prove that: 1) ; 2)
using , ,

that ; and 3)

. (see [18].) Combining the latter bounds with (57)
completes the proof of (32).

C. Relaxing Bounded Gradients: Proof of (34) for D–NC

We prove (34) for D–NC while the proof for D–NG is similar
and is in [18]. Fix arbitrary and take the ’s in (35). From
(9)–(10), evaluating the ’s

(58)

for We take the initialization at the solution
. Consider the eigenvalue decomposition

, with , , ,
and is diagonal with , . Define

and . Multiplying (58) from
the left by , and using

(59)

, and . Next, note that

(60)

Further, from (59) for the first coordinate , re-
calling that

(61)

Note that (61) is analogous to (28)–(29)
with the identification , ,

; hence, analogously to the proof of Theorem
7, from (61): Using

the latter, (59), and (see (7)):

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1145

, . Thus, from (60) and the latter
inequality, , which
is, for , greater or equal for

.

ACKNOWLEDGMENT

The authors wish to thank an anonymous reviewer whose in-
structive comments led them to develop algorithm D–NC, the
anonymous reviewers and the associate editor for several useful
suggestions regarding the presentation and organization of the
paper, and J. F. C. Mota for pointing them to relevant references
and for useful discussions.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[2] J. N. Tsitsiklis, “Problems in Decentralized DecisionMaking and Com-
putation,” Ph.D., Elect. Eng. Comp. Sci., MIT, Cambridge, MA, 1984.

[3] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proc. 3rd Int. Symp. Inform. Process. Sensor Networks
(IPSN’04), Berkeley, CA, USA, Apr. 2004, pp. 20–27.

[4] B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson, “On
decentralized negotiation of optimal consensus,” Autom., vol. 44, no.
4, pp. 1175–1179, 2008.

[5] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Trans. Signal Process., vol. 58, no. 11, pp.
5262–5276, Nov. 2010.

[6] I. Necoara and J. A. K. Suykens, “Application of a smoothing tech-
nique to decomposition in convex optimization,” IEEE Trans. Autom.
Control, vol. 53, no. 11, pp. 2674–2679, Dec. 2008.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[8] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, Jan. 2009.

[9] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgra-
dient projection algorithms for convex optimization,” J. Optim. Theory
Appl., vol. 147, no. 3, pp. 516–545, 2011.

[10] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed
subgradient methods over random networks,” in Proc. 46th Annu.
Allerton Conf. Commun., Control, Comput., Monticello, IL, Sep.
2008, pp. 353–360.

[11] I. Matei and J. S. Baras, “Performance evaluation of the consensus-
based distributed subgradient method under random communication
topologies,” IEEE J. Selected Topics Signal Process., vol. 5, no. 4, pp.
754–771, 2011.

[12] C. Lopes and A. H. Sayed, “Adaptive estimation algorithms over dis-
tributed networks,” in Proc. 21st IEICE Signal Process. Symp., Kyoto,
Japan, Nov. 2006.

[13] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for dis-
tributed optimization and learning over networks,” IEEE Trans. Sig.
Process., vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[14] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence and network scaling,” IEEE Trans.
Autom. Control, vol. 57, no. 3, pp. 592–606, Mar. 2012.

[15] K. Tsianos and M. Rabbat, “Distributed consensus and optimization
under communication delays,” in Proc. 49th Allerton Conf. Commun.,
Control, Comput., Monticello, IL, Sep. 2011, pp. 974–982.

[16] M. Zhu and S. Martínez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol.
57, no. 1, pp. 151–164, Jan. 2012.

[17] Y. E. Nesterov, “A method for solving the convex programming
problem with convergence rate ,” (in Russian) Dokl. Akad.
Nauk SSSR, vol. 269, pp. 543–547, 1983.

[18] D. Jakovetic, J. Xavier, and J. M. F. Moura, Fast Distributed Gradient
Methods [Online]. Available: http://arxiv.org/abs/1112.2972

[19] A. Chen and A. Ozdaglar, “A fast distributed proximal gradient
method,” in Proc. 50th Allerton Conf. Commun., Control Comput.,
Monticello, IL, Oct. 2012, pp. 601–608.

[20] A. Chen, “Fast Distributed First-Order Methods,” M.S. thesis, Mass.
Inst. Technol. (MIT), Cambridge, 2012.

[21] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex op-
timization in networked systems: Augmented Lagrangian algorithms
with directed gossip communication,” IEEE Trans. Signal Process.,
vol. 59, no. 8, pp. 3889–3902, Aug. 2011.

[22] J. Mota, J. Xavier, P. Aguiar, and M. Pueschel, “Basis pursuit in sensor
networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP’11), Prague, Czech Republic, May 2011, pp. 2916–2919.

[23] J. Mota, J. Xavier, P. Aguiar, and M. Pueschel, “Distributed basis pur-
suit,” IEEE Trans. Sig. Process., vol. 60, no. 4, pp. 1942–1956, Apr.
2012.

[24] U. V. Shanbhag, J. Koshal, and A. Nedic, “Multiuser optimization:
distributed algorithms and error analysis,” SIAM J. Control Optim., vol.
21, no. 2, pp. 1046–1081, 2011.

[25] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent
optimization via dual decomposition,” in Proc. 18th World Congr.
o Int. Fed. Autom. Control (IFAC), Milano, Italy, Aug. 2011, pp.
7391–7397.

[26] E. Ghadimi, I. Shames, and M. Johansson, “Accelerated gradient
methods for networked optimization,” in Proc. Amer. Control Conf.
(ACC’11), San Francisco, CA, Jun. 2011, pp. 1668–1673.

[27] E. Ghadimi, I. Shames, and M. Johansson, Accelerated Gradient
Methods for Networked Optimization 2012 [Online]. Available:
http://arxiv.org/abs/1211.2132

[28] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. Inform. Process. Sensor
Networks (IPSN’05), Los Angeles, CA, 2005, pp. 63–70.

[29] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental gra-
dient method with a constant step size,” Siam J. Optim., vol. 18, no. 1,
pp. 29–51, 2009.

[30] P. Tseng, “On accelerated proximal-gradient methods for convex-con-
cave optimization,” SIAM J. Optim, submitted for publication.

[31] L. Vandenberghe, Optimization Methods for Large-Scale Systems
2010, Lecture notes [Online]. Available: http://www.ee.ucla.edu/~van-
denbe/ee236c.html

[32] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed Nesterov-
like gradient algorithms,” in Proc. 51st IEEE Conf. Decision Control
(CDC’12), Dec. 2012, pp. 5459–5464.

[33] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of
smooth convex optimization with inexact oracle,” Math. Programm.,
submitted for publication.

[34] G. Shi and K. H. Johansson, “Finite-Time and Asymptotic Conver-
gence of Distributed Averaging and Maximizing Algorithms,” Tech.
Rep., 2012 [Online]. Available: http://arxiv.org/pdf/1205.1733.pdf

[35] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” in Proc. 36th Annu. ACM Symp. Theory Comput., Chicago,
IL, Aug. 2004, pp. 561–568.

[36] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip al-
gorithms,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[37] M. Zargham, A. Ribeiro, and A. Jadbabaie, “A distributed line search
for network optimization,” in Proc. Amer. Control Conf., Montréal,
QC, Canada, Jun. 2012, pp. 472–477.

[38] Y. Nesterov, “Gradient Methods for Minimizing Composite Objective
Function,” Center for Operations Research and Econometrics (CORE),
Catholic University of Louvain (UCL),, Tech. Rep. 76, 2007.

Dušan Jakovetić (S’10) received the dipl. ing.
diploma from the School of Electrical Engineering,
University of Belgrade, Belgrade, Serbia, in 2007,
and the Ph.D. degree in electrical and computer
engineering from both the Carnegie Mellon Univer-
sity, Pittsburgh, PA, and the Instituto de Sistemas
e Robótica (ISR), Instituto Superior Técnico (IST),
Lisbon, Portugal, in 2013.
Since October 2013, he has been a Research

Fellow at the BioSense Center, University of Novi
Sad, Serbia. From June to September 2013, he was

a Postdoctoral Researcher at IST. His research interests include distributed
inference and distributed optimization.

1146 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

João Xavier (S’97–M’03) received the Ph.D. degree
in electrical and computer engineering from the In-
stituto Superior Técnico (IST), Lisbon, Portugal, in
2002.
Currently, he is an Assistant Professor in the De-

partment of Electrical and Computer Engineering,
IST. He is also a Researcher at the Institute of
Systems and Robotics (ISR), Lisbon, Portugal. His
current research interests are in the area of optimiza-
tion and statistical inference for distributed systems.

José M. F. Moura (S’71–M’75–SM’90–F’94)
received the engenheiro electrotécnico degree
from the Instituto Superior Técnico (IST), Lisbon,
Portugal, and the M.Sc., E.E., and D.Sc. degrees in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA.
In 2013–2014, he is a Visiting Professor at New

York University (NYU) and at CUSP-NYU on
sabbatical leave from Carnegie Mellon University
(CMU), Pittsburgh, PA, where he is the Philip and

Marsha Dowd University Professor. Previously, he was on the faculty at IST
and was visiting Professor at MIT. He is Founding Director of ICTI, a large
education and research program between CMU and Portugal. He has published
over 470 papers, has 12 patents issued by the U.S. Patent Office, and cofounded
SpiralGen. His research interests include statistical, algebraic, and distributed
signal and image processing, signal processing on graphs, and data science.
Dr. Moura received the IEEE Signal Processing Society Technical Achieve-

ment Award and the IEEE Signal Processing Society Society Award. He is a
member of the U.S. National Academy of Engineering, corresponding member
of the Academy of Sciences of Portugal, and a Fellow of the AAAS. He
was IEEE Division IX Director and member of the IEEE Board of Directors
(2012–13) and has served on several IEEE Boards. He was President (2008–09)
of the IEEE Signal Processing Society, served as Editor in Chief for the IEEE
Transactions in Signal Processing, interim Editor in Chief for the IEEE
Signal Processing Letters, and member of several Editorial Boards, including
IEEE Proceedings, IEEE SP Magazine, and the ACM Transactions on Sensor
Networks.

