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Empirical Centroid Fictitious Play: An Approach for
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Abstract—The paper is concerned with distributed learning in
large-scale games. The well-known fictitious play (FP) algorithm
is addressed, which, despite theoretical convergence results, might
be impractical to implement in large-scale settings due to intense
computation and communication requirements. An adaptation of
the FP algorithm, designated as the empirical centroid fictitious
play (ECFP), is presented. In ECFP players respond to the centroid
of all players’ actions rather than track and respond to the indi-
vidual actions of every player. Convergence of the ECFP algorithm
in terms of average empirical frequency (a notion made precise in
the paper) to a subset of the Nash equilibria is proven under the
assumption that the game is a potential game with permutation in-
variant potential function. A more general formulation of ECFP is
then given (which subsumes FP as a special case) and convergence
results are given for the class of potential games. Furthermore,
a distributed formulation of the ECFP algorithm is presented, in
which, players endowed with a (possibly sparse) preassigned com-
munication graph, engage in local, non-strategic information ex-
change to eventually agree on a common equilibrium.Convergence
results are proven for the distributed ECFP algorithm.
Index Terms—Consensus, distributed learning, fictitious play,

games, Nash equilibria.

I. INTRODUCTION

T HE theory of learning in games is concerned with the
study of dynamical systems induced by repeated play of

a normal-form game. The general question of interest is, can
player behavior rules be assigned that ensure players eventually
learn a Nash equilibrium (NE) strategy? In this paper, we ad-
dress the more focused question: can player behavior rules be
assigned that ensure players learn a NE strategy and are prac-
tical in games with a large number of players?
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In particular, we focus on the well-known fictitious play (FP)
algorithm [1].While FP does not converge1 in all games [2]–[4],
it has been proven that FP converges in games with an arbitrarily
large number of players under the assumption that the game
is a potential game [5], [6]. This theoretically promising result
suggests that FP might be an ideal algorithm for some large-
scale settings; however, the prohibitively demanding communi-
cation and computational requirements of the algorithm make
any large-scale implementation highly challenging, if not im-
practical. In particular, it is to be observed that FP, in its classical
form, may not be practical for implementation in large-scale
games because of the following problems:

(1) demanding communication requirements,
(2) demanding memory requirements,
(3) high computational complexity.

We present an adaptation of FP that mitigates these problems,
and by these criteria, is well suited to large-scale games.
The traditional FP implementation and its variants assume

that each player has instantaneous access to the time-varying
action histories of all other players. Moreover, such informa-
tion access or gathering is assumed to be free, which makes
these implementations infeasible in practical large network sce-
narios. In fact, in such large networks, each player may directly
observe the actions of a few neighboring players only, whereas
the actions of the others need to be communicated efficiently
through an underlying communication infrastructure. In order to
explicitly account for the communication costs that are to be in-
curred in the information gathering/dissemination process, and
thereby address problem (1) of demanding communication re-
quirements of traditional FP, we assume a problem framework
where players are permitted to communicate via a preassigned
(sparse but connected) communication graph . In
this framework, a node in the graph represents a player, and an
edge in the graph signifies the ability for players to exchange
information. We assume that communication and the repeated
game play evolve according to the same discrete time clock and
that players are permitted only one round of communication per
round of game play.
We refer to the classical setting, where players are assumed

to have instantaneous access to the action histories of other
players, as the fully connected information setting. We refer to
the novel setting presented in this paper, where players have a
limited ability to track the actions of others but may communi-
cate with a local subset of neighboring players via some under-
lying communication structure, as the distributed information

1In reference to FP or one of its variants, we use the term convergence to
mean that the empirical frequency distribution of a FP process asymptotically
converges to the set of Nash equilibria, a notion to be made precise in Section II.
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setting. In this context, we also note that in the majority of game
theory literature a graph structure denotes the ability of a player
to observe the actions of a neighbor [7]–[10], not to exchange
information, as in our approach.
In order to address problems (2) and (3), we propose a new

variant of FP wherein players respond to the centroid of the
marginal empirical distributions (the centroid distribution)
rather than track and respond to the entire tuple of independent
marginal distributions.We call this algorithm empirical centroid
fictitious play (ECFP). The advantages of this approach are a
mitigation of the FP complexity problem (see Section VIII-B)
enabled by a computationally simplified best response rule
(thereby mitigating (3)), and a mitigation of the FP memory
problem by requiring players to track only a single distribution
(the centroid distribution) which is invariant to the number of
players in the game (thereby mitigating (2)). ECFP may be
implemented in both the classical fully connected information
setting or the distributed information setting that we introduce
in this paper.
Our main contributions are twofold:
Main Contribution 1: We present empirical centroid fic-

titious play (ECFP)—an adaptation of FP that mitigates the
memory and computational demands of classical FP. ECFP
addresses problems (2)–(3) associated with FP in large-scale
games. We show that ECFP converges in terms of average em-
pirical distribution to a subset of the mixed strategy Nash equi-
libria, which we call the consensus equilibria. Convergence re-
sults are proven for games with identical permutation-invariant
utility functions and can be extended to the larger class of games
known as potential games [6], with the restriction that the po-
tential function be permutation invariant.
In Section VII a generalized formulation of ECFP is given.

In the generalized formulation the set of players is partitioned
into classes, and players track multiple centroids—one centroid
for each class. The formulation allows some of the initial as-
sumptions regarding ECFP to be relaxed. Moreover, classical
FP occurs as a special case of ECFP in this formulation.
A significant issue with many learning algorithms in large-

scale games is the rate of convergence in terms of the number
of players. While we do not present a formal analysis of the
convergence rate of ECFP in this paper, we note that experi-
mental results and illustrative case studies (see Section VIII)
suggest that the convergence rate of ECFP (in its basic formu-
lation) tends to be invariant to the number of players.
Main Contribution 2: We present distributed ECFP—an

implementation of ECFP in which agent policy update de-
pends only on local neighborhood information exchange.
The presented algorithm is an implementation of ECFP within
our distributed information framework. It addresses all three
problems (1)–(3) associated with FP in large games. We prove
convergence of the algorithm to the set of consensus equilibria.
This convergence guarantees that each agent obtains an accu-
rate estimate of the limiting equilibrium strategy.

A. Related Work
An overview of the subject of learning in games can be found

in [11]. Many large-scale learning algorithms exist that are not

based on FP, including no-regret algorithms [12], [13], aspira-
tion learning [14], and other model-free approaches [15]–[17].
These learning algorithms tend to be fundamentally different
than FP in that they do not track past actions of other players.
Variants of FP have been proposed for two player games [11],

[18], [19] and are generally aimed at improving various aspects
of the two player algorithm (i.e., faster convergence, conver-
gence in specific games, etc.).
Sampled FP [20] addresses the problem of computational

complexity of FP in large-scale games by using a Monte Carlo
method to estimate the best response. Although computation-
ally simple in the initial steps of the algorithm, the number of
samples required to ensure convergence grows without bound.
Dynamic FP [9] applies principles of dynamic feedback

from control theory to improve the convergence properties of
a continuous-time version of FP. The algorithm is shown to
be stable around some Nash equilibria where traditional FP is
unstable. While the results generalize to multi-player games,
there is no mitigation of the information gathering problem. In
[21], a similar algorithm utilizing only payoff-based dynamics
is presented. Similar stability results are shown when the class
of games is restricted to games with a pairwise utility structure.
Joint strategy FP [22] is shown to converge for generalized

ordinal potential games. Players track the utility each of their
actions would have generated in the previous round, and then
use a simple recursion to update the predicted utility for each
action in the subsequent round. Actions are chosen by maxi-
mizing the predicted utility. In joint strategy FP, the informa-
tion tracking problem is mitigated by requiring agents to track
only the information germane to the computation of the pre-
dicted utility for actions of interest. No information gathering
scheme is explicitly defined; players are assumed to have full
access to the necessary information at all times. In distributed
ECFP, proposed in this paper, the information gathering scheme
is explicitly defined via a preassigned (but arbitrary) communi-
cation graph, and convergence results are demonstrated when
inter-agent communication is restricted to local neighborhoods
conformant to the graph.
Na and Marden [23] present a systematic methodology for

designing local-agent utility functions such that the NE of the
designed game coincide with optimizers of a prespecified ob-
jective function; moreover, the agent utility functions may be
designed to achieve a desired degree of “locality”, in the sense
that the designed utility functions depend only on information
from a set of local neighboring agents. The desired degree of
locality is achieved by augmenting agents’ action space with a
set of state space variables consisting of a value and an estimate
of the value of each opponent. Although the context is quite dif-
ferent from distributed ECFP (designing the utility structure vs.
designing learning dynamics), both works seek to address the
communication problem in large games by restricting informa-
tion exchange to a local neighborhood of each player. However,
in [23] agents estimate the ‘value’ held by each of the other
players, hence the memory size of the messages that must be
passed grows linearly with the size of the game, as opposed to
distributed ECFP in which the memory size of messages is in-
variant to .
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In payoff based approaches (e.g., [24], [25]) it is assumed
that players measure the instantaneous payoff information and
base future action choices off this information alone. Payoff
based approaches apply when instantaneous payoff informa-
tion is available, and are generally very effective at mitigating
communication, memory, and complexity requirements. How-
ever, there are scenarios in which, even if the utility structure
is available, the instantaneous payoffs are not—in such cases
model-based approaches such as ECFP are applicable.
Thework [26], studies the problem of learningNE in a contin-

uous kernel aggregative game by sharing information through
an overlaid communication graph. The notion of using a com-
munication graph to estimate the aggregate behavior is similar
to distributed ECFP where players use the graph to estimate the
empirical centroid. However, in [26] the underlying game is fun-
damentally different (continuous kernel), and the communica-
tion scheme is based on asynchronous gossip. In this context,
see also [27], our preliminary work on ECFP, which introduces
the concept of graph-theoretic aggregation of information in re-
peated play settings of the type considered in this paper.
The remainder of the paper is organized as follows:

Section II sets up notation to be used in the subsequent
development and introduces the notion of consensus equi-
libria. In Section III the classical FP algorithm is reviewed.
Section IV introduces ECFP as a low-information-overhead,
repeated-play alternative to FP for learning consensus equi-
libria in multi-agent games. Section V presents the distributed
information learning framework. A fully distributed imple-
mentation of the proposed ECFP, the distributed ECFP, in
multi-agent scenarios in which agent information dynamics is
restricted to communication over a preassigned sparse commu-
nication network is presented and analyzed in Section VI. In
Section VII we discuss the generalized formulation of ECFP,
and present generalized convergence results. In Section VIII we
demonstrate an application of distributed ECFP in a cognitive
radio scenario with a view to illustrating the analytical concepts
developed in the paper. Finally, Section IX concludes the paper.

II. PRELIMINARIES

A. Game Theoretic Setup

A normal form game is given by the triple
, where represents

the set of players, —a finite set of cardinality —denotes
the action space of player , and repre-
sents the utility function of player .
In order to guarantee the existence of NE and work in an

overall richer framework, we consider the mixed extension of
in which players may use probabilistic strategies, and players’
payoffs are extended to account for such strategies.
The set of mixed strategies for player is given by

,
the -simplex. A mixed strategy may be thought
of as a probability distribution from which player samples to
choose an action. The set of joint mixed strategies is given by

. A joint mixed strategy is represented by the
-tuple , where represents the marginal

strategy of player , and it is implicity assumed that players’
strategies are independent.
A pure strategy is a degenerate mixed strategy which places

probability 1 on a single action in . We denote the set of pure
strategies2 by where is the number of
actions available to player , and is the th canonical vector in

. The set of joint pure strategies is given by .
Themixed utility function for player is given by the function

, such that,

(1)

Note that may be interpreted as the expected value of
given that the players’ mixed strategies are statistically

independent. For convenience the notation will often be
written as , where is the mixed strategy for
player , and indicates the joint mixed strategy for all players
other than . This paper will often deal with games with iden-
tical utility functions such that ; in such
cases we drop the subscript on the utility of player and write

.
The set of Nash equilibria of is given by

, and the subset of
consensus equilibria3 as

. The set of -Nash equilibria is given by

and the set of -consensus equilibria as

The distance of a distribution from a set
is given by . Throughout
the paper denotes the standard Euclidean norm unless
otherwise specified. For we denote the set

and .
In what follows (with the exception of Section VII where we

pursue generalizations), we will restrict attention to games with
identical permutation-invariant utilities; formally, we assume:
A.1: All players use the same strategy space.
A.2: The players’ utility functions are identical4 and permu-

tation invariant. That is, for any , , and
where, for any

player , the notation indicates the action

2A player’s set of pure strategies is closely related to the player’s action
set . A pure strategy is a delta distribution over the set . There is
a one-to-one correspondence between and . The notion of a pure strategy
is useful since it allows us to refer to a single “action” while working
in the more general context of mixed strategies.

3The concept of a consensus equilibrium is closely related to that of a sym-
metric equilibrium. The existence of symmetric equilibrium in finite normal
form games was first proven by Nash [28] in the same work where the concept
of Nash equilibrium was originally presented. In general, a symmetric equilib-
rium is a Nash equilibrium that is invariant under automorphisms of the game.
A consensus equilibrium, on the other hand, is a Nash equilibrium in which all
players use an identical strategy. In the case of a symmetric game, the two con-
cepts coincide.

4Games where players have identical utility functions are referred to as
“identical interests games” [5]. They are closely related to potential games [6]
and have many useful applications in both engineering and economics [23],
[29]–[31].
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Fig. 1. Terms related to the empirical centroid.

being played by player , and denotes the set of actions
being played by all players other than and .
Note that because of assumption A.1, permutations of the

form given in A.2 are necessarily well defined. Also note that
under these assumptions, the set of consensus equilibria is
known to be nonempty [32].

B. Repeated Play
In a repeated-play learning algorithm, players repeatedly face

off in a fixed game . An algorithm designer’s objective is to
design the behavior rules of individual players in such a way as
to ensure that the players eventually learn a Nash equilibrium of
through the repeated interaction.
Let be a sequence of actions for player , where

. Let be the associated sequence of joint
actions . Note that
(in fact, is a Dirac delta distribution); when necessary, we
denote the th element of the vector by .
Let be the normalized histogram (empirical distribution)

of the actions of player up to time , i.e., .
Similarly, let be the joint empirical distri-
bution corresponding to the joint actions of the players up to
time .
Under assumption A.1 (i.e., when all players have identical

action spaces), let .
Note that , where denotes the cardinality
of the action spaces (assumed identical) of the individual
players. We refer to as the (eponymous) empirical cen-
troid distribution, or the average empirical distribution. Let

denote the mixed strategy
where all players use the empirical average as their individual
strategy.
In the exposition of ECFP and distributed ECFP, several

terms will be introduced that are related to the empirical cen-
troid. Though we do not define all these terms now, the table in
Fig. 1 may be used for reference in determining the relationship
between these terms.

III. FICTITIOUS PLAY
A fictitious play process is a sequence of actions

such that, for all and ,5

(2)

Intuitively speaking, this describes a process where each player
(naively) assumes that her opponents are playing according

5The initial action may be chosen arbitrarily.

to stationary independent strategies. Following this intuition,
the player assumes that accurately represents the mixed
strategy of her opponents and chooses a next-stage action in
order to myopically optimize her next-stage utility.
In games where an FP process leads players to learn a NE, the

equilibrium learning traditionally occurs in the sense that the
empirical frequency distribution converges to the set of Nash
equilibria, i.e., as . We refer to
this form of learning as convergence in empirical distribution.
In [5] it was shown that a fictitious play process converges in
this sense for games satisfying A.1—A.2. While theoretically
promising, the result is of limited practical value due to the dif-
ficulties involved in a large-scale implementation of FP. In par-
ticular, we propose that FP, in its classical form, may not be
practical for implementation in large-scale games because of the
following 3 problems: (1) demanding communication require-
ments, (2) demanding memory requirements, and (3) high com-
putational complexity. We discuss each in detail below.

A. Demanding Communication Requirements
Implicit in (2) is the assumption that agent has instantaneous

access to the action history of each opponent. We refer to this
setting, where players have instantaneous access to information
about the action histories of all opponents, as a fully connected
information setting. This might be impractical in a game with a
large number of players.
In this paper we consider a more practical and realistic set-

ting in which players may be incapable of directly observing
the actions of opponents but are permitted to exchange infor-
mation with a local subset of neighboring players in order to
estimate action histories they cannot directly observe. We refer
to this setting as a distributed information setting; the topic is
discussed in Section V.

B. Demanding Memory Requirements
Inspection of (2) shows that each player must track the vector

. The size of this vector grows linearly
in the number of players. In order to mitigate this problem, we
consider ECFP, a variant of FP which uses a modified best re-
sponse function. In ECFP players track only the centroid distri-
bution, , thememory size of which is invariant to the number
of players.

C. High Computational Complexity
In order to choose a next-stage action, player must solve

the optimization problem (2). The computational complexity
of computing the mixed utility given an -dimensional proba-
bility density function grows exponentially with the number of
players, . In order to address this issue, we consider ECFP, a
variant of FP that mitigates this problem by means of a modified
best response rule.

IV. EMPIRICAL CENTROID FICTITIOUS PLAY
The key idea of ECFP is a modification of the FP best re-

sponse rule (2) which allows for mitigations in the problems of
memory, and computational complexity, associated with FP.
Consider a scenario in which a player does not have the

ability to track the individual actions, , of any single
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player. Rather, a player is only able to track the average
action, , of the collective and there-
fore has access only to the average empirical distribution,

. An ECFP process is a sequence of
actions such that for all and ,6

(3)

where is the -tuple containing
repeated (identical) copies of . Intuitively speaking,

this describes a process where each player (naively) assumes op-
ponents are playing mixed strategies which are stationary, inde-
pendent, and identical—the last assumption (identical opponent
strategies) being the primary difference between ECFP and FP.
The player naively assumes accurately represents the (iden-
tical) mixed strategy used by each opponent, and accordingly,
chooses a best response to myopically optimize her next-stage
utility.
In an ECFP process (3), the problem of demanding memory

requirements is mitigated by requiring players to track only the
centroid distribution, , a vector whose memory size is in-
variant to the number of players in the game.
In ECFP, the mitigation in computational complexity is

enabled by the introduction of the distribution into the
best response computation. In the joint distribution , all
players are assumed to use independent and identical mixed
strategies. Analogous to the manner in which independent
and identically distributed (i.i.d.) random variables always
make life simpler in statistics, the introduction of the “i.i.d.”
joint distribution enables simplifications in the ECFP
best response computation. (See Section VIII for a detailed
illustration.)
In contrast to FP, ECFP, in general, admits reduced com-

plexity best response computation at the players, which is
enabled by the “i.i.d.” nature of the used in the ECFP
best response computation (see (3)). This same factor may
enable an explicit characterization of the distribution of certain
essential statistics involved in the mixed utility computation in
terms of parametric statistical families. The FP best response
(2), in contrast, is based on an optimization involving the
collection of individual empirical distributions; since
the individual distributions are generally different, the collec-
tion does not admit a similar simplification or reduced
parameterization as far as the best response computation is
concerned. For more detailed illustrations of the relative com-
plexities of FP and ECFP best response computations, we refer
the reader to Section VIII-B.
In a distributed information setting (see Sections III-A and V)

players are unable to directly observe the actions of others, and
therefore may not have precise knowledge of . However,
they may form an estimate of by exchanging information
with a local subset of neighboring players. Similarly, in general,
even in more fully connected information settings, due to other
forms of uncertainty the may not be tracked exactly at each
player.

6The initial action, , may be chosen arbitrarily.

In general, we denote by the estimate which player
maintains of . Let be the error in
player ’s estimate of at time . In practice, since is not
available, the player uses its estimate as a surrogate in
the best response computation (3). However, in order to ensure
convergence of the ECFP algorithm in such erroneous best re-
sponse computation environments, we require that the following
assumption be satisfied.
A.3: , for some .
Under this assumption, players’ estimates, , are asymp-

totically ‘close enough’ to the true empirical centroid to
ensure the algorithm converges. We emphasize that the exact
manner in which players form estimates of varies
from one environment to another. For the specific distributed in-
formation setting treated in Sections V and VI, we will provide
a distributed graph-based consensus-based estimation mecha-
nism by which the players can generate their estimates ’s
and the latter will be shown to satisfy A.3.
By abusing notation, we will also refer to a sequence of ac-

tions as an ECFP process if

(4)

where the initial action may be chosen arbitrarily.7 Note
that, in the special case in which , (4) reduces to
(3) and this corresponds to the fully connected information set-
ting with perfect information.8 Finally, we note that assumption
A.3 (and its implication on erroneous best response computa-
tion) may be applicable in other imperfect information settings
beyond the specific distributed information formulation that we
develop in Sections V–VI.
In summary, in (4) each player best responds using (her

personal estimate of ) as the assumed mixed strategy for the
other players. In ECFP, players learn a strategywhich is a
consensus Nash equilibrium strategy. The result is summarized
in the following theorem.
Theorem 1: Let be an ECFP process as given in

(4). Assume A.1–A.3 hold. Then as .
Proof: Let , where . Let

be the -tuple .
Note that for

(5)

Using (5) we write

7We note that the traditional definition of the mixed utility , given in
(1), is defined over the domain . The restriction of the domain to is
not necessitated by the definition; rather, it is a consequence of the traditional
approach dealing only with mixed strategies . The approximated empir-
ical distribution , however, is permitted to be outside the simplex,

, and may even take negative values. In this case we retain the definition of
, given by (1), but extend the domain to the set of all -tuples of vectors

in . This adjustment of the traditional definition expands the domain to an
unbounded set, but for practical purposes, we note that assumption A.3 implies

belongs to a compact set.
8In the context of repeated play, we use the term perfect information to mean

that players have precise knowledge of the action history of all opponents. Note,
this is an abuse of terminology, and is distinct from the common usage found in
the related field of extensive-form games.
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Applying the multilinearity of , we obtain

where we have explicitly written the first order terms of the
expansion and collected the remaining terms in .
Note that the number of second order terms in the above
expansion is finite and the terms are uniformly bounded
since . Hence, there exists a posi-
tive constant (independent of ) large enough such that

for all . Thus,

The permutation invariance and multilinearity of permits a
rearranging of terms. The notation indicates
the expected utility player would receive were she to use the
strategy and all other players use the strategy :

Thus,

(6)

Let ,
, where is the -tuple and

is an -tuple. Let
. Substituting in , (6) becomes

where .
Note that is multilinear and therefore locally Lips-
chitz continuous. As noted earlier, assumption A.3 implies
that is contained in a compact subset of .
Therefore, there exists a positive constant (indepen-
dent of ), such that ,

, , , for all
. By assumption A.3, , and hence

, which,
by (4), implies . In particular,
is bounded above by some for all . Summing over

in (7),

(7)

Note that is summable; therefore all terms on the
left hand side are bounded above for all , and hence it
follows that

is bounded above by some , for all . Let
, and note that, by defini-

tion of , for all . By Lemma 4 in the appendix,
. Thus,

and hence by Lemma 5, converges as .
By Lemma 3 it then follows that

Subsequently, by Lemma 6, we obtain for every ,

By Lemma 7, this is equivalent to

for every . Finally, by Lemma 8, we obtain
as .
We emphasize that Theorem 1 shows that the -tuple of

the average empirical distribution converges to , that is,
. This is not the same as the more traditional

definition of convergence in empirical frequency,

(8)

In the former, the -tuple containing repeated copies of the
empirical centroid converges to equilibrium, in the latter, the
-tuple of individual empirical distributions converges to

equilibrium.
The practical meaning of Theorem 1 is that players do in fact

learn a consensus equilibrium strategy. It is true that each player
has access only to the distribution . However, the tuple

of these distributions also converges
asymptotically to the set of consensus equilibria (see A.3), i.e.,
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byA.3. Therefore, player has direct access to her portion of the
convergent joint strategy. Thus each player learns a strategy
which is a Nash (consensus) equilibrium with respect to the
strategies learned by other players.
Note also the set of limit points of ECFP is restricted to —a

subset of the NE. Thus, if Pareto superior Nash equilibria exist
outside the set , then ECFP will never reach these points,
though an algorithm such as FP may. This may be seen as
a tradeoff for the improvements in memory and complexity
achieved in ECFP.

V. DISTRIBUTED INFORMATION SETTING

In the fully connected information setting (with perfect infor-
mation), players are assumed to have instantaneous knowledge
of the action histories of all other players. Such an assumption
is clearly impractical in a large-scale scenario. We refer to a set-
ting where players are unable to directly observe the actions of
all opponents but are equipped with an underlying communica-
tion infrastructure through which they can communicate with a
local subset of neighboring players, as a distributed information
setting. This is the framework used by the distributed algorithms
considered in this paper.
In order to explicitly account for the communication costs

that are to be incurred in the information gathering/dissemina-
tion process, we assume a problem framework wherein players
are permitted to communicate via a preassigned (sparse but
connected) communication graph . Formally, we
assume:
A.4: Players are endowed with a preassigned communication

graph , where the vertices represent the players
and the edge set consists of communication links (bidirec-
tional) between pairs of players that can communicate directly.
The graph is connected.
A.5: Players directly observe only their own actions.
A.6: A player may exchange information with immediate

neighbors, as defined by , at most once for each iteration or
round of the repeated play.
Communication is treated as non-strategic—players do not

manipulate the information they send for strategic gain. Also,
we emphasize that this is a 1-time step approach—game play
and communication take place at the same rate, i.e., evolve ac-
cording to the same discrete time clock. In particular, communi-
cation between players is only allowed within 1-hop neighbors
and no routing is permitted. Note that if players could commu-
nicate arbitrarily often between game plays then, in a certain
sense, we would be back to the fully connected setting since
infinite rounds of consensus deliver at each player. By re-
stricting ourselves to one round of consensus per game play, we
face a more realistic and challenging scenario.
In a distributed information implementation of ECFP, subse-

quent to each round of the repeated play, players exchange in-
formation once with immediate neighbors to form an updated
estimate, . The next stage action is then chosen
as a best response to this estimate according to (4).
The exact manner in which players update their estimate

is a question of algorithmic design. The important factor is that
the estimates be formed in a way such that assumption A.3 is

satisfied. In Section VI we present a distributed information im-
plementation of ECFP where players update according to
a consensus-type algorithm.

VI. DISTRIBUTED IMPLEMENTATION OF ECFP

A. Distributed Problem Formulation
We present an implementation of the ECFP algorithm which

utilizes the underlying communication infrastructure presented
in Section V; we refer to this implementation as distributed
ECFP.
Define the following two matrices:

where denotes player ’s estimate of . Let
be the -tuple . The tuple will

be important in distributed ECFP; in particular we will prove
that converges to the set of consensus equilibria.

B. Distributed ECFP Algorithm
Initialize:
(i) At time , each player chooses an arbitrary initial

action . The initial empirical distribution for player
is given by . Player initializes her local

estimate of the empirical distribution as
(9)

where is the set of neighbors of player and the ’s
are constant neighborhood weighting factors.

Iterate:
(i) At each time , player computes the set of best

responses using as the assumed mixed strategy for
each of the other players. The next action

(10)

is played according to the best response calculation. In the
event of multiple pure strategy best responses, any of the
maximizing actions in (10) may be chosen arbitrarily. The
local empirical distribution is updated to reflect
the action taken, i.e.,

(ii) Subsequently each player computes a new estimate of
the network-averaged empirical distribution using the fol-
lowing update rule:9

(11)

9Note that (11) is equivalent to
. This is closely related to minimizing an aggregate cost function

using a distributed stochastic gradient descent method [33]–[36]:
whose minimizer is the average of actions over time and

over players, and where the expectation is over the empirical distribution of
over time. The key thing to note is that the exact minimizer of this cost is

time-varying and, given that we are operating in a distributed environment with
only one round of communication allowed per time slot, we can only track this
dynamic minimizer using an iterative method as given in (11).
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where is the set of neighbors of player , and is a
weighting constant.10

The update in (11) is represented in more compact notation
as

(12)

where is the weighting matrix with entries . We
assume satisfies the following assumption:
A.7: The weight matrix is an matrix that is sym-

metric, doubly stochastic, aperiodic, and irreducible, with spar-
sity conforming to the communication graph .
Note that given assumptionA.4 ( is a connected graph), it is

always possible to find a matrix satisfying these conditions
(see [37]–[39]).

C. Distributed ECFP: Main Result

It is important to note that the process generated by (9)–(11)
constitutes a special case of the general ECFP best response dy-
namics given in (4), in which the estimates follow the con-
struction (11). Thus, the sequence of actions gener-
ated by (9)–(11) is an ECFP process (in the sense of (4)), al-
though to emphasize the distributed setting and constructions,
we will refer to it as a distributed ECFP process. In a distributed
ECFP process, players learn a consensus equilibrium strategy
in a setting where information exchange is restricted to a local
neighborhood of each agent. The result is summarized in the
following Theorem.
Theorem 2: Let be a distributed ECFP

process such that assumptions A.1–A.2, A.4–A.7 hold. Then
as . In particular, the agents’ estimates

reach asymptotic consensus, i.e.,
as for each pair of agents. Moreover, the
agents achieve asymptotic strategy learning, in the sense that

as for all .
This result implies that the -tuple

converges to the set ; since is available to player , player
learns the component of the consensus equilibrium strategy

relevant to her.
Proof: We would like to apply the results of Theorem 1 to

the distributed ECFP process. Clearly, by hypothesis, assump-
tions A.1 and A.2 hold and, as noted above, the distributed
ECFP process is in fact an ECFP process in the sense of (4).
By Lemma 2, the error in a distributed ECFP process decays as

(13)

thus A.3 is satisfied (with ), and hence, the distributed
ECFP fits the template of Theorem 1. Applying Theorem 1
yields, as . By Lemma 2 we obtain,

as , and the result as
follows.

10Note that the set in the summation indicates that player uses
her own (local) information and that of her neighbors to update her estimate.
The update rule is clearly distributed as information exchange is restricted to
neighboring players only.

Again, we emphasize that this mode of convergence is not the
same as themore traditional convergence in empirical frequency
(cf. Equation (8), and preceeding discussion).

VII. GENERALIZATIONS

A. ECFP in Permutation Invariant Potential Games

The assumption A.2 of identical permutation invariant utility
functions can be relaxed in lieu of the following broader as-
sumption:
A.8: The game is an exact potential game with a permuta-

tion invariant potential function.
A game is an exact potential game if there exists some

function , such that

The function is called a potential function for . The gen-
eralized form of Theorem 1 is as follows:
Theorem 3: Let be an ECFP process such that A.1

(identical action spaces), A.3 ( , for some
), and A.8 hold. Then as .
Proof: Let be an exact potential

game with potential function . Let be
a game with the same set of players and actions as , but with
all players using as their utility function . Let

and be the set of consensus equilibria in and
respectively. Let , be the average empirical distri-
butions corresponding to ECFP processes in and respec-
tively. Note that the set of consensus equilibria in and
coincide [6]. Also note that and are best response equiva-
lent [29], therefore a valid ECFP process for is a valid ECFP
process for , and vice versa. is a game with identical ac-
tion spaces and identical permutation-invariant utility functions
and therefore falls within the purview of Theorem 1. By The-
orem 1, . By best response equivalence,
any valid ECFP process in is a valid ECFP process in ,
therefore . Since and coincide,

.
Potential games are studied in [6]. A game that admits an

exact potential function is known as an exact potential game.
The class of exact potential games includes congestion games
[30]. Congestion games have many useful applications in eco-
nomics and engineering. We present an example of a congestion
game in a distributed cognitive radio context in Section VIII.

B. ECFP in Potential Games With Permutation Invariant
Classes

The ECFP algorithm may be generalized to a setup where
players track multiple centroids, each centroid corresponding to
a different class of players. This generalization allows for ECFP
to be considered in a broader class of games and allows for FP
to be considered as special case of ECFP. Formally, assume:
A.9: is an exact potential game with potential function .
Let the players be partitioned into classes as follows. For

, let , and let be
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a collection of subsets of ; i.e., . A collec-
tion is said to be a permutation invariant partition of if,
(i) , for , ,
(ii) ,
(iii) for , , ,
(iv) for , , there holds for any strategy profile

, , ,

where, for any player , the notation indicates
the action being played by player , and
denotes the set of actions being played by all players other
than and .

Note that the final condition states that the potential function
is invariant to permutations of the strategies of players and
when and are in the same class.
Remark: A partition which places a single player in each

class is always a valid permutation invariant partition. In this
case, the resultant ECFP process is equivalent to FP. Moreover,
if is permutation invariant (as in A.1–A.2), then all players
may be partitioned into a single class; in this case, the resultant
ECFP process is equivalent to that presented in Section VII-A.
For a collection , define to be the unique

mapping such that if and only if .
Given a permutation invariant partition , let the set of sym-

metric Nash equilibra (SNE) relative to be given by,11

For , define12

to be the -th empirical centroid distribution (or -th centroid)
relative to , where indicates the cardinality of the set

. Likewise, define where
, to be the composite empirical centroid distribution rel-

ative to .
As before, we consider a scenario where players do not have

precise knowledge of the centroid distribution. Let be the
estimate which player maintains of the -th centroid .
Formally, assume:
A.10: .
In this context, we say a sequence of actions is an

ECFP process (with respect to if

11A symmetric Nash equilibrium is typically defined as a Nash equilibrium
that is invariant under any automorphism of the game. Note that, in contrast
to this, the definition of SNE given here has the additional constraint that it is
defined relative to the particular partition . If is such that no player is per-
mutation equivalent to a player in another class, then the two concepts coincide.
Furthermore, if is such that there is one player in each class, then the set of
SNE relative to will coincide with the set of NE.

12The terms , , etc. as defined in this section are analogous to the
terms defined in Fig. 1. The notation is changed from ’s to ’s in this section
to emphasize the differences in definition for the generalized setup.

where,

The following theorem asserts that an ECFP process will con-
verge, in this generalized setup, to the set of .
Theorem 4: Let be a potential game, let be a permutation

invariant partition of the player set , and let be an
ECFP process with respect to . Assume A.9–A.10 hold. Then

as .
The proof of this result follows the same reasoning as the

proof of Theorem 1 and is omitted here for brevity.
A distributed-information implementation of ECFP in this

generalized setup may be achieved in a manner analogous to
that of Section V, with the primary difference that, in this con-
text, players exchange estimates for each empirical centroid dis-
tribution , .

VIII. EXPERIMENTAL RESULTS
In this section we illustrate the operation of distributed ECFP

by implementing it in a cognitive radio application.

A. Cognitive Radio Setup
Let indicate a finite collection of permissible frequency

channels. Assume there are two classes of users sharing the al-
located set of channels: primary users and secondary users. As-
sume each primary user has been assigned to a fixed channel
from which they may not deviate. Secondary users are free to
use any channel they wish. The objective in this setup is for the
secondary users to cooperatively learn a channel allocation that
is both fair and in some sense optimal.
Cast this setup in the format of a normal form game

with being the set of sec-
ondary users, and for all . Let (respectively,

) denote the set of users on channel for the
joint strategy .
The cost associated with channel when users are on

channel is given by . The utility for player is given
by , and the mixed utility is given by
the usual multilinear extension. The game is an instance of
a congestion game—a known subset of potential games—and
hence is amenable to ECFP by Theorem 3.
1) Communication Graph Setup: We assume that some small

portion of spectrum is allocated for the purpose of transmitting
data pertinent to the learning algorithm (i.e., disseminating in-
formation about the empirical centroid .) Such an assump-
tion is reasonable when the communication overhead associ-
ated with the learning algorithm is relatively small compared
to the objective data being transmitted, e.g., users objective is
to transmit large video files.
We model user-to-user communication using a geometric

random graph. In implementing the ECFP algorithm of
Section VI, we assign the weight constants of (11) ac-
cording to the Metropolis-Hastings rule [40].

B. Best Response Computation
On the surface, the ECFP best response calculation (3) ap-

pears to have the same complexity as the FP best response cal-
culation (2). However, the symmetry inherent in the distribution
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used in the ECFP best response calculation leads to mit-
igations in computational complexity. We contrast the FP and
ECFP best response computations for the case of the cognitive
radio game.
1) ECFP Best Response Computation: In order to choose a

best response in ECFP, a player must compute13

where is a random variable with distribution ,
and where is an

-tuple. The symmetry in the game allows for the fol-
lowing simplification,

(14)
In the above, players only need to compute the probability as-
sociated with having users on each channel rather than com-
puting the probability of every possible configuration of users.
From here, the symmetry in the i.i.d. distribution al-

lows for further simplifications. Let and note
that14

As the above pattern suggests, the probability is binomial—for
,

Thus, the requisite probability is given by a computationally
simple closed form expression, and the expected utility can be
easily computed using (14). Furthermore, since players compute
a best response each iteration, they reap the computational ben-
efits of using this simplified form for on
each iteration of ECFP.
2) FP Best Response Computation: In order to choose a best

response in FP, a player must compute

where is a random variable with distribution . As be-
fore, the symmetry in the game allows for a simplification to

13In the ECFP best response (3), a player must maximize the mixed utility
. Recall that the mixed utility (1) is the expected

value of given that players are using probabilistic strategies . Thus,
maximizing the mixed utility of (3) is equivalent to maximizing the expected
value below.

14Recall that the notation refers to the th element of the vector . In
ECFP, players (incorrectly) assume that all opponents are independently using
the identical mixed strategy . Under this assumption, the probability of any
given opponent using channel is given by .

Fig. 2. (a) The average utility (taken over the set of players) of the joint empir-
ical distribution, ; and (b) The distance of the joint empirical distribution
to the set of NE.

However, due to the lack of structure in , no further sim-
plifications are possible. To illustrate the complexity of this, let

and note that

In general, when the corresponds to a mixed strategy, the
complexity of evaluating grows combi-
natorially with —even in this game with symmetric payoffs.

C. Simulation Results
We simulated ECFP in two different cognitive radio sce-

narios. In the first, there are 10 channels and 400 users, and
the cost function for channel is given by a cubic
polynomial of the form

where is the number of users on channel and ,
are arbitrary coefficients. Fig. 2(a) shows a plot of the

utilities and in the fully connected and
distributed cases respectively.15 The choice of the distribution
of player 1, , to represent the distributed case was arbi-
trary— for any produces a similar result. In the dis-
tributed case, players communicated via a randomly generated
geometric graph with average node degree of 8.78.
Both the fully connected and distributed algorithms were

started with identical initial conditions. It is interesting to note
that, while multiple NE do exist, both algorithms tend to con-
verge to the same equilibrium, regardless of the communication
graph topology. This trend suggests that the basin of attraction
for any given NE is similar for both fully connected ECFP and
distributed ECFP. Neither algorithm is noticeably superior in
terms of the quality of equilibria attained.
A useful feature of consensus NE (CNE) in this setup is their

adaptability to players entering or exiting the game. If a new
player enters the game after an ECFP learning process has been

15The notation signifies the -tuple containing repeated copies of
.
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running for some time, then incumbent players can simply in-
form the new player of the current empirical distribution ,
and the distribution (meaning the tuple which
contains repeated copies of ) will be an approximate CNE
in the newly formed player game. Similarly, if a player
exits the game, the distribution will be an approximate
CNE in the newly formed player game.
In the second cognitive radio scenario simulated, there are

10 channels, each with a quadratic cost function. This choice of
cost functions guarantees the existence of a unique CNE. We
simulated distributed ECFP in this scenario for the cases of 50,
200, and 500 users; each case had different randomly generated
cost functions. In each case, the communication graph was gen-
erated as a random geometric graph. The average node degree
for the associated communication graph in each case was 8.04,
8.72, and 8.98 respectively.
Fig. 2(b) shows a plot of the normalized distance of

to the unique in each case (the particular choice of
again being arbitrary). Distance was measured using the Eu-
clidean norm, normalized by , where is the number of
players. Simulation results suggest that the convergence rate of
ECFP is independent of the number of players. Indeed, the ana-
lytical properties of ECFP (in general, see Section VII) suggest
that the convergence is dependent only on the number of permu-
tation invariant classes into which the player set is partitioned
and not the overall number of players. A rigorous characteriza-
tion of the precise nature of this relationship may be an inter-
esting topic for future research.

IX. CONCLUSIONS
We have introduced a variant of the well-known FP algorithm

that we call empirical centroid fictitious play (ECFP). Rather
than track and respond to the empirical distribution of each op-
posing player, as in FP, ECFP requires that players track only the
centroid of the marginal empirical distributions and compute a
best response with respect to this same quantity. The memory
problem associated with FP in large-scale games is mitigated by
requiring players to track a distribution which is invariant to the
number of players in the game. The problem of computational
complexity is mitigated by the introduction of symmetry into
the best response calculation. ECFP is shown to converge to the
a subset of the Nash equilibria (the consensus equilibria), for
potential games with permutation invariant potential functions.
In addition, we have presented a general formulation of ECFP

where the player set is partitioned into classes and players track
one centroid for each class.
We have introduced a distributed information learning frame-

work wherein it is assumed that players are unable to directly
observe the actions of others but may communicate with a local
subset of neighboring players via an underlying communication
infrastructure. We presented an implementation of ECFP in this
framework which mitigates all three problems (communication,
memory, and computational complexity) associated with FP in
large-scale games.
An interesting future research direction will be to investigate

the convergence rate of ECFP in terms of both the number
of players and the number of classes into which the player
set is partitioned. It would also be of interest to investigate a

distributed information implementation of the ECFP algorithm
within other communication infrastructures (e.g., random link
failures, asynchronous communications).

APPENDIX

Distributed Averaging in Dynamic Networks:
This appendix concerns topics in distributed consensus in net-

works where node values are dynamic quantities. The results of
this section are used to prove convergence of the distributed al-
gorithms presented in Section VI-B. Results in this section are
similar to results on distributed averaging in networks with ad-
ditive changes in node values and information dynamics in [33],
[41], [42]. For a survey of traditional consensus and gossip al-
gorithms, the reader may refer to [37], [38], [43].
Consider a network of nodes connected through a com-

munication graph . The graph is assumed to be
connected. Let be the value of node at time ,
and let be the vector of values at all nodes. The
goal is for each node to track the instantaneous average

, , given that the value at each node
is time varying. Let be the change in
the value at node , and be the vector of
changes at all nodes, . Suppose the magnitude of the
change at time is bounded by

. We make the following assumption:
A.11: The sequence is monotone non-increasing.
Let be the estimate of at node and let

be the vector of estimates. We make the following
assumption pertaining to the initial error in players’ estimates.
A.12: .
Let the average be estimated using the update rule

(15)

where the matrix is aperiodic, irreducible, and
doubly stochastic with sparsity conforming to . The following
Lemma gives a bound for the error in the estimates of .
Lemma 1: Let the sequence be computed ac-

cording to (15) such that assumptions A.4, A.7, and A.12 hold
and let the incremental change in be bounded according to
assumption A.11. Then the error at any time is bounded by,

where , and
is the time average of .

Proof: Let be the vector of errors in
each players estimate of , where denotes the vector
of all ones. Let . Using the relation (15)
and the properties of doubly stochastic matrices, the vector of
errors may be written recursively as,

(16)

where . Note that
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and,

(17)

Using (16), the error can be rewritten as a function of
and , that is .
Using this relationship we establish an upper bound on the error,

(18)

where we have employed assumptionA.12, . Applying
(17) in (18), we get .
Recall that is the time average of

the sequence up to time , and note that given our as-
sumptions on , it holds that (see [37]). Note that, by
Chebychev’s sum inequality [44] (p. 43–44),

and hence,

giving the desired upper bound for the error.
Lemma 2: Let be a distributed ECFP process as

defined in Section VI-B (see (12)–(10)). Then
, where is the average empirical distribution and

is player ’s estimate of .
Proof: We use the second argument, , to index the com-

ponents of the vector . Noting that

it follows that the maximum incremental change for any single
value in the vector is bounded by

, where we let . Note that the distributed
ECFP process (12) is updated column-wise (each column cor-
responds to an action ) using an update rule equivalent to (15)
of Lemma 1. Also note that, column-wise, all necessary con-
ditions of Lemma 1 are satisfied,16 and specifically, we have

. Thus we apply Lemma 1 column-wise to and
of (12), where of Lemma 1 corresponds to the ’th

column of , and of Lemma 1 corresponds to the ’th
column of , and obtain

16The assumption of zero initial error (A.12) is satisfied since the initialization
of (1) in (9) is equivalent to letting , for all in (11).

where and
. Thus,

, and hence,
.

Intermediate Results:

Lemma 3: Suppose the sum
converges, then .

Proof: By Kronecker’s Lemma [45],
, which implies that

.
Lemma 4: For , let and

be sequences such that
, . Let be the (multilinear)

mixed utility function defined in (1). Then

Proof: Let and .
Let and

.17 is multilinear and is
therefore Lipschitz continuous over the domain .
Let be the Lipschitz constant for such that

for . By Lipschitz
continuity, it holds that

(19)

and thus . By a
symmetric argument to (19), we also establish

, thus
. It follows that,

implying the desired result.
Lemma 5: Suppose , and

is bounded above by for all . Then
converges as .

Proof: Let

if
otherwise.

It follows that and . By hypothesis,
, which implies that . It follows that,

Since is bounded above, con-
verges, and , it follows that converges as

.

17Note that such and exist, as is continuous and the max-
imization set is compact.
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Lemma 6: Let , then
implies that, for every ,

.
Proof: Let be given. By definition,

(20)

The utility function is assumed to be permutation invariant
for all players, so an equivalent statement to (20) is,

Let

if
otherwise.

Note that and ,
thus

Note also that . Clearly,

implying , from which the desired result
follows.
Lemma 7: for all

implies that for all .
Proof: Suppose

for all , but there exists some such that
. Then there

exists an such that

which implies that

This implies that

for some , a contradiction.
Lemma 8: for all

implies .
The proof of this result closely follows the proof of [5],

Lemma 1, and is omitted here for brevity.
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