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a b s t r a c t

This paper addresses the problem of distributed state estimation in formations of vehicles with time-
varying measurement topology. One or more vehicles have access to measurements of their own state,
while the rest must rely on measurements relative to other vehicles in the vicinity and limited commu-
nication to estimate their own state, and it is assumed that the vehicles may gain or lose access to some
measurements over time. The proposed solution consists in the implementation of a local state observer
on-board each vehicle, and the effects of changes in the measurement topology on the estimation error
dynamics are studied resorting to switched systems theory. Sufficient conditions for exponential stability
of the global estimation error dynamics are presented for two different switching laws. The results are
applied to the practical case of a formation of Autonomous Underwater Vehicles (AUVs), and simulation
results are presented that validate the proposed solution.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by the wealth of potential applications for forma-
tions composed of multiple agents working cooperatively, see e.g.
Bender (1991), Curtin, Bellingham, and Webb (1993), and Giuli-
etti, Pollini, and Innocenti (2000), the subjects of estimation and
control in formations of vehicles have been researched extensively
in the past few years. The various solutions proposed by the re-
search community can be divided into two very broad categories:
centralized and decentralized solutions. Centralized solutions con-
sider the formation as a whole and rely on a central processing
node to perform most of the computations, allowing the use of
classical, single-vehicle solutions to tackle the multi-agent prob-
lem. However, implementation is almost guaranteed to be cum-
bersome, as heavy computational and communication loads are to
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be expected due to the necessity of conveying all the information
in the formation to a central processing node, which must then re-
lay the results of its computations back to the vehicles. To avoid
those pitfalls, the aim of decentralized solutions is to break down
the problem in several parts, leaving each agent in the formation
with the responsibility of performing a subset of the computations,
relying on limited information and communication with other ve-
hicles in the formation. On the subject of decentralized and dis-
tributed state estimation, interesting approaches can be found in
works such as Barooah (2007), Sousa, Oliveira, and Gaspar (2009),
and Yuan and Tanner (2010). The closely related area of distributed
control has also seen a wealth of relevant solutions, such as those
in Chen, Wen, Liu, and Wang (2014), Fax (2002), and Tanner and
Christodoulakis (2007), and recentwork on the subject of quadratic
invariance has offered optimal solutions for certain classes of mea-
surement topologies, see e.g. Lessard and Lall (2011) and Rokowitz
(2008).

The problem addressed in this paper is the design of a
distributed state observer for a formation of autonomous vehicles
with time-varying measurement topology. One or more vehicles
have access to measurements of their own state, while the rest
must rely on measurements relative to other vehicles in the
vicinity and limited communication with those agents in order
to estimate their state. Between switches in the measurement
topology, the vehicles only communicate state estimates to use as
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comparison terms for the relative measurements. When there are
changes in the measurement topology, the vehicles also need to
exchange tables of edges and control vectors with other agents in
the vicinity to recover the new measurement graph.

The problem is formulated as a state observer design prob-
lem with a sparsity constraint on the output injection gains to re-
flect the limited amount of information available to each agent.
In Viegas, Batista, Oliveira, and Silvestre (2012), the problem was
addressed for the fixed topology case, that is, when the measure-
ments available to each vehicle remain the same over time. How-
ever, as sensing and communication in formations of vehicles can
be unreliable in most practical cases, it is assumed that the mea-
surements available to the agents can change over time, resulting
in a time-varying measurement topology. To address this issue, a
strategy is outlined for the vehicles to copewith the changes in the
measurements, and a switched systems approach is employed to
study the stability of the distributed state observer. The error dy-
namics are formulated as a switched linear system, and sufficient
conditions for their exponential stability are derived for two differ-
ent switching laws. These stability results can be used by mission
planners for multi-agent systems as they establish requirements
for the behavior of the formation and the sensing and communi-
cation equipment of each vehicle that guarantee position and ve-
locity estimates with stable error dynamics over the course of the
mission. The behavior of this solution is then assessed in simula-
tion for a formation of Autonomous Underwater Vehicles (AUVs).
Preliminary results on this subject can be found in Viegas, Batista,
Oliveira, and Silvestre (2013). This paper extends this work with
more complete theoretical results, and amore thorough treatment
of the transition periods between stable configurations.

The rest of the paper is organized as follows. Section 2 describes
the problem at hand and introduces the dynamics of the vehicles
and their respective local observers, while Section 3 details the
framework necessary to describe the formation-wide dynamics.
Section 4 outlines the strategy followed by the vehicles to cope
with changes in the measurement topology, and in Section 5 the
stability of the error dynamics is analyzed. Section 6 presents
simulation results for a formation of AUVs and, finally, Section 7
summarizes the main conclusions of the paper.

1.1. Notation

Throughout the paper the symbol 0 denotes amatrix (or vector)
of zeros and I an identity matrix, both of appropriate dimensions.
Whenever relevant, the dimensions of an n× n identity matrix are
indicated as In. The Kronecker product of two matrices A and B is
denoted by A⊗ B. For x ∈ R, ⌊x⌋ represents the largest integer not
larger than x.

2. Problem statement

Consider a formation composed of N autonomous vehicles,
in which each vehicle is indexed by a distinct positive integer
i ∈ {1, 2, . . . ,N}, and has sensors mounted on-board which give
access to either:

• measurements based on its own state, denoted as ‘‘absolute’’
measurements for convenience; or

• measurements based on its state relative to Ni other vehicles in
the vicinity. Furthermore, it is assumed that those vehicles send
updated state estimates to vehicle i through communication.

The problem considered in this paper is the design of a distributed
state observer that allows each vehicle to estimate its state based
primarily on the aforementionedmeasurements, as well as limited
communication between vehicles. The solution proposedhere con-
sists in the implementation of a local state observer on-board each
vehicle. To achieve a decentralized structure, those local observers
must be designed such that, during operation, each vehicle only re-
quires locally availablemeasurements and limited communication
with other vehicles in its vicinity to estimate its state. Doing this al-
lows to greatly reduce the communication and computational load
in the formation in comparison with a standard centralized imple-
mentation, in which all measurements would need to be commu-
nicated to a central processing node, which would then perform
all the computations and then broadcast the state estimates to the
whole formation. This is specially relevant in cases where com-
munication between agents is challenging, such as in underwater
applications, or when strict limits on the payload condition the
processing, sensing, and communication equipment that can be
mounted on-board each vehicle, such as with airborne vehicles.

This section details the dynamics of the vehicles and their
respective local state observers, leaving the analysis of the
formation-wide dynamics to subsequent sections.

2.1. Local state observer design

For a vehicle i which has access to absolute measurements, its
dynamics are described by the Linear Time-Invariant (LTI) system
ẋi(t) = ALxi(t) + BLui(t)
yi(t) = CLxi(t),

(1)

where xi(t) ∈ RnL is the state of vehicle i, to be estimated, ui(t) ∈

RmL is the input of the system, and yi(t) ∈ RoL is the output. AL, BL,
and CL are given constant matrices of appropriate dimensions. For
this case, it is straightforward to design a Luenberger observerwith
globally exponentially stable error dynamics, see e.g. Astrom and
Murray (2008). On the other hand, if vehicle i has access to relative
measurements to Ni other vehicles in the formation, its dynamics
follow
ẋi(t) = ALxi(t) + BLui(t)
yi(t) = Ci1xi(t),

(2)

in which yi(t) ∈ RoL×Ni , Ci = INi ⊗ CL, and

1xi(t) :=


xi(t) − xθi,1(t)
xi(t) − xθi,2(t)

...
xi(t) − xθi,Ni

(t)

 ∈ RnLNi , θi,j ∈ Θi,

where

Θi :=

θi,1, θi,2, . . . , θi,Ni |θi,j ∈ {1, . . . ,N}


is the set of other vehicles’ indexes corresponding to the relative
measurements available to vehicle i. For this case, the following
local observer structure for the system (2) can be implemented:

˙̂xi(t) = ALx̂i(t) + BLui(t) + Li(yi(t) − ŷi(t))
ŷi(t) = Ci1x̂i(t),

(3)

where Li ∈ RnL×oLNi is a constant matrix of observer gains, to be
computed, and1x̂i(t) is an estimate of1xi(t), computed using the
received state estimates:

1x̂i(t) :=


x̂i(t) − x̂θi,1(t)
x̂i(t) − x̂θi,2(t)

...
x̂i(t) − x̂θi,Ni

(t)

 ∈ RnLNi , θi,j ∈ Θi.

3. Estimation error dynamics

The structure of the formation can be described using two
graphs: a directed measurement graph GM and a communication
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Fig. 1. Example of a measurement graph for a formation of 7 vehicles and
associated communication graph which satisfies Assumption 1.

graph GC (see Fig. 1 for an example with a formation of 7 vehi-
cles). For this work, it is assumed that the communication graph
is undirected, that is, all communication links are two-way. While
one-way communication is relevant in some applications, it falls
outside the scope of this paper as the use of directed communica-
tion graphs may significantly increase the complexity of the dis-
tributed problems addressed in Section 4 (see e.g. Barooah, 2007).
In the measurement graph GM each vertex represents a distinct
vehicle, and an edge (a, b) means that vehicle b has access to a
measurement relative to vehicle a. To represent the absolute mea-
surements available to some of the vehicles, define a special set of
edges of the form (0, i), connected to only one vertex, which rep-
resents the absolute state measurement available to vehicle i.

In a similar fashion, in the communication graphGC each vertex
represents a distinct vehicle, and an edge (a, b)means that vehicles
a and b can exchange data through some communication channel.
Note that, for the vehicles to be able to implement the local
state observers defined in (3), each relative measurement must
be accompanied by the corresponding state estimate, received
through communication. Thus, for each edge in the measurement
graphGM the corresponding edgemust exist in the communication
graph GC , and the following assumption is needed for the
implementation of the proposed distributed state observer:

Assumption 1. If the measurement graph GM contains the edge
(a, b) (excluding the special edges of the form (0, i)), then the com-
munication graph GC also contains the edge (a, b).

The global dynamics of the formation can be represented by the
LTI system
ẋ(t) = Agx(t) + Bgu(t)
y(t) = Cgx(t),

(4)

where x(t) :=

xT1(t) · · · xTN(t)

T
∈ RnLN is the concate-

nation of the states of each vehicle in the formation, y(t) :=
yT1(t) · · · yTN(t)

T
∈ RoLM is the concatenation of themeasure-

ments available to each vehicle, M being the total num-
ber of measurements in the whole formation, and u(t) :=
uT
1(t) · · · uT

N(t)
T

∈ RmLN is the concatenation of the input
vectors associated with each vehicle. The matrices Ag , Bg , and Cg
are built from the dynamics of the individual agents, following
Ag = IN ⊗ AL, Bg = IN ⊗ BL, and Cg = STGM

⊗ CL, where SGM is
the incidence matrix of the measurement graph GM of the forma-
tion. The local state observers can also be grouped in a similar way,
yielding

˙̂x(t) := Ag x̂(t) + Bgu(t) + L(y(t) − ŷ(t))
ŷ(t) := Cg x̂(t),

(5)

where x̂(t) :=

x̂T1(t) x̂T2(t) · · · x̂TN(t)

T
∈ RnLN is the

concatenation of the state estimates of each vehicle in the
formation, and L ∈ RnLN×oLM is the matrix of observer gains. To
account for the fact that each local observer only has access to some
measurements, L must follow a given structural constraint. More
specifically, define an augmented incidence matrix

S′

GM
= SGM ⊗ 1nL,oL ,

where 1n,m is a n×mmatrix whose entries are all equal to 1. Then,
the individual entries of L follow

[S′

GM
]jk = 1 ⇒ Ljk can be set to an arbitrary value

[S′

GM
]jk ≠ 1 ⇒ Ljk = 0. (6)

3.1. Computation of stable observer gains

The global error of the distributed state observer (5), x̃(t) ∈

RnLN , is defined as

x̃(t) := x(t) − x̂(t).

Taking its time derivative and using (4) and (5) yields

˙̃x(t) = (Ag − LCg)x̃(t). (7)

In this case, the computation of gains differs from standard ob-
server design problems because the sparsity constraint in (6) must
be satisfied. The problem of finding such observer gains was ad-
dressed in previous work by the authors in Viegas et al. (2012),
which introduced two methods to compute gains for the dis-
tributed state observer:

• Method 1: If the measurement graph GM associated with the
formation is acyclic, the gains can be computed independently
from the measurement topology and with a low computational
burden, but without performance guarantees, see Viegas et al.
(2012, Theorem 1);

• Method 2: an iterative algorithm (see Viegas et al., 2012, Table
1) to minimize the H2 norm of the total estimation error in the
formation. Thismethod ismore expensive computationally, but
offers H2 performance guarantees and can be applied to cyclic
measurement graphs.

4. Time-varying measurement topology

This section and the next extend the analysis of the distributed
state observer presented in the previous section to the case where
themeasurement topology of the formation changes over time. The
changes considered here consist in the gain or loss of measure-
ments between vehicles, which can be represented by the addition
or removal of edges from the measurement graph GM of the for-
mation. When faced with these changes, the local observers must
adapt to the new topology as, in general, observer gains computed
for a given measurement graph may result in unstable error dy-
namics when applied to a different topology. Due to this, several
new problems arise:

(1) When a change is detected in the available measurements, the
vehicles have to compute the new measurement graph.

(2) Once the measurement graph is computed, the vehicles must
select suitable local observer gains.

(3) A strategy must be chosen for the local observers to cope with
the changes in the formationuntil the newmeasurement graph
is computed and suitable gains are applied.

4.1. Measurement graph determination

To determine the new measurement topology in a decentral-
ized fashion, the vehicle(s) that lose or gain measurements could
execute an algorithm such as the one detailed in Table 1. It is
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Table 1
Algorithm for determination of the new measurement graph, for vehicle i.

(1) Conditions for initialization: the vehicle gained or lost access to one or more measurements, or received a message generated by step (3) from a neighboring
vehicle.

(2) Initialization: create a table to store the edges, Ei , and initialize it with the currently known edges, that is, the measurements available to the vehicle. Create a
control vector vi ∈ RN , and set it to zero except for the i-th component, which is set to 1. Create an integer variable niter and initialize it to zero, and create a
constant MaxIter set to the desired maximum number of iterations.

(3) Send Ei and vi to neighboring agents (the ones with which communication is available) and wait until the same data is received from them.

(4) Compare Ei with its counterparts received through communication, and add any previously unknown edges. For each nonzero component in each received vj , set
the corresponding component in vi to 1.

(5) If all components of vi are equal to 1, and if no changes were made to vi and Ei in this iteration, stop the algorithm. Increase niter by 1. If niter ≥ MaxIter , stop the
algorithm. Otherwise, go to (3).
straightforward to verify that, if the communication graph GC of
the formation is connected, then the algorithm will complete its
execution in at most dG + 1 iterations, where dG is the maximum
graph distance in GC . The upper bound MaxIter on the number of
iterations is included for the cases in which one or more vehicles
become disconnected from the rest of the formation. If the algo-
rithm reaches MaxIter iterations, it will stop its execution and the
vehicleswhose corresponding entry in vi is still zero should be con-
sidered disconnected from the rest of the formation.

4.2. Selection of new observer gains

After the measurement graph is determined, the vehicles must
select and apply suitable observer gains. As the gains for a given
topology can be computed beforehand using the methods detailed
in Section 3.1, one way to do this would be to store a database of
observer gains for a large number of possible measurement graphs
on-board each vehicle. Since the local observer gains are constant
matrices of relatively low dimension, nowadays it is perfectly
feasible to store hundreds or even thousands of precomputed
observer gains in each vehicle. However, as the number of possible
measurement graphs increases exponentially with the number of
vehicles in the formation, it might not be feasible to store gains for
all different possible configurations in large formations. However,
note that even if gains for a given measurement graph are not
available, gains computed for a subgraph of the measurement
graph (with the same number of nodes, but fewer edges) are valid:
for each measurement also present in the subgraph, apply the
corresponding gains and, for the measurements that are missing
in the subgraph, set the corresponding observer gains to zero. In
this way, the stable error dynamics associated with the subgraph
are replicated exactly.

Suppose that each vehicle stores a database of precomputed ob-
server gains for a number of different formation topologies. Follow-
ing the steps in Table 2 ensures that stabilizing gains for the new
formation topology are applied to the local state observers. Note
that, in case the first step fails, it is important that all the vehicles
choose the same subgraph of the measurement graph, as failing to
do so can lead to instability of the estimation error dynamics. It is
easy to ensure that this happens by having all vehicles use the same
criterion for selecting the subgraph.

4.3. Behavior during transition periods

Regarding the strategy followed by each agent when there are
changes in the measurement graph, one possible approach, which
is the one used in the simulations in Section 6, is as follows.

• The vehicle lost measurements: propagate the dynamics in
open loop, that is, set the local observer gains to zero until new
gains are selected and applied.

• The vehicle kept the same measurements, or gained new
ones: keep the old observer gains until new gains are selected
and applied.
With this strategy, the transition periodswhennewmeasurements
appear in the formation are stable, limiting the potential periods
of instability to the cases where one or more vehicles lose
measurements.

4.4. Assumptions on the measurement and communication graphs

Themethods and algorithmsdiscussed in this section addressed
the problem of how to deal with a single change in the measure-
ment graph GM . However, supposing that the measurement and
communication graphs GM and GC may switch multiple times dur-
ing themission, theymust verify additional assumptions to ensure
that the proposed distributed estimation solution functions cor-
rectly over time.

Assumption 2. For the discussion on stability in the next section,
it is assumed that the following is always verified.

(1) The measurement graph always switches to a stabilizable
configuration, that is, for each new measurement graph GM
there exists a L which satisfies the structural constraint (6)
such that thematrix (Ag −LCg) of closed-loop estimation error
dynamics is Hurwitz stable.

(2) The communication graph GC is always connected.
(3) The switches in themeasurement graph GM are not faster than

the determination of said graph. That is, the execution time
of the algorithm in Table 1 is bounded by a constant tG and
ti+1− ti ≥ tG, in which t1, t2, t3, . . . denote the switching times
of the measurement graph GM .

5. Stability analysis

This section details the stability analysis of the error dynam-
ics of the distributed state observer when there are changes in
the measurement graph of the formation over time. To model
the successive stable operation phases with potentially unstable
transition periods between them, switched systems concepts are
employed. See Liberzon (2003) for an introduction on switched
systems, and Lin and Antsaklis (2009) for a more recent survey
on the subject. Results also exist for cases where the systems
can switch to unstable configurations, such as in Hespanha, Yaki-
menko, Kaminer, and Pascoal (2004) and Zhai, Hu, Yasuda, and
Michel (2000). The results detailed in this section differ from the
ones cited above by being based on the sequential aspect of the
switching in the scenario considered in this paper.

If the distributed state observer operates according towhatwas
discussed in the previous section and the graphs associated with
the formation verify Assumption 2, its error dynamics can be rep-
resented in the following manner: starting at time instant t0, the
error dynamics follow
˙̃x(t) = (Ag − L1C1

g)x̃(t) := 31x̃(t),

with 31 Hurwitz. Now, suppose that at t = t1 there is a change
in the measurement graph of the formation and assume that, af-
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Table 2
Selection of new observer gains.

(1) Search the database for gains corresponding to the new measurement graph. If such gains are found, apply them to the local observer. Otherwise, proceed to step 2.

(2) Search the database for gains corresponding to a subgraph of the new measurement graph. If such gains are found, apply them to the local observer. In this case, the
gains corresponding to missing edges are set to zero to preserve stability. If no such gains are found, proceed to step 3.

(3) Remove edges from the new measurement graph to find a directed acyclic subgraph, allowing to apply observer gains independently of the measurement topology
at the cost of losing performance (but not stability) guarantees. This process is detailed in Theorem 1 and Remark 3 from Viegas et al. (2012).
ter some time interval no longer than a positive scalar constant τu,
the vehicles are able to determine the new measurement graph
and synchronously apply suitable observer gains. During that time,
the error dynamics of the distributed state observer will follow
˙̃x(t) = 32x̃(t), where 32 depends on the strategy adopted by the
vehicles when losing or gainingmeasurements, and is possibly un-
stable. Then, at t = t2, the new observer gains are applied, and the
distributed state observer has stable error dynamics
˙̃x(t) = (Ag − L3C3

g)x̃(t) := 33x̃(t).

Now, suppose that these changes in measurement topology con-
tinue to happen over time, and the error dynamics alternate se-
quentially between periods of stability and potential instability.
This scenario can be represented by the linear switched system

ẋ(t) = Aσ(t)x(t), (8)

where x(t) ∈ Rn is the state, σ(t) : [t0, ∞[→ NP = {1, 2, . . . , P}

is a piecewise constant switching signal, and Aσ takes values in a
family of n × n matrices, A := {Ap : p ∈ NP}. With no loss of
generality, assume that Ap is stable for 1 ≤ p ≤ q, and unstable or
marginally stable for q < p ≤ P . Then, there exist scalar constants
a1 > 0, a2 > 0, . . . , aP > 0, λ1 > 0, λ2 > 0, . . . , λq > 0, and
λq+1 ≥ 0, λq+2 ≥ 0, . . . , λP ≥ 0 such that

∥eApt∥ ≤ eap−λpt , 1 ≤ p ≤ q
∥eApt∥ ≤ eap+λpt , q < p ≤ P.

(9)

Denote the switching times by t1, t2, t3, . . .. Then, to reflect the
dynamics of the problem at hand, the switching signal satisfies the
following assumption:

Assumption 3. For t2j−2 ≤ t < t2j−1, j ∈ N, the switching signal
follows 1 ≤ σ(t) ≤ q. For t2j−1 ≤ t < t2j, j ∈ N, the switching
signal follows q < σ(t) ≤ P . Furthermore, there exists a scalar
constant τu > 0 such that (t2j − t2j−1) ≤ τu for all j ∈ N.

The first part of the assumption encodes the sequential switch-
ing between the periodswith stable estimation error dynamics and
the transition periods in which the error dynamics might be un-
stable. The second part sets an upper bound τu on the duration of
the transition periods. It is assumed that, under normal operating
conditions, there is a known upper bound on the time the vehicles
take to determine the new measurement topology and apply suit-
able gains, as otherwise it would be impossible to derive stability
results.

5.1. Stability of the switched system

Concerning the duration of the stable periods, two different
cases are considered. In the first one, theminimum activation time
of the stable subsystems is bounded below by a constant:

Assumption 4. There exists a scalar constant τs > 0 such that
(t2j−1 − t2j−2) ≥ τs for all j ∈ N.

As itmight not be possible to guarantee aminimumduration on the
stable periods, the second case adapts the concept of average dwell
time introduced in Hespanha and Morse (1999) to the scenario
considered in this paper:
Assumption 5. Let Nu
σ (t0, t) denote the number of switchings to

unstable subsystems in the interval ]t0, t]. Then, there exists scalar
constants N0 > 0 and τa > 0 such that, for all t ≥ t0,

Nu
σ (t0, t) ≤ N0 +

t − t0
τa

. (10)

This assumption states that, on average, the time interval between
two consecutive switchings to unstable configurations will be no
less than τa, and the chatter bound N0 is included to account for
an eventual limited number of faster switchings. If Assumption 3
is also verified, it follows that the duration of each successive
‘‘stable/unstable’’ pair will be, on average, no less than τa.

The following result presents a sufficient condition for the
stability of (8) for the first case.

Theorem 1. Consider the linear switched system (8), assume that the
switching signal σ(t) verifies Assumptions 3 and 4, and let

α∗
:= sup

1≤k≤q
q<l≤P

{ak − λkτs + al + λlτu}.

If α∗ < 0, then there exists a scalar constant a > 0 such that the
state x(t) of (8) follows

∥x(t)∥ ≤ ea−λ(t−t0)∥x(t0)∥

for all t ≥ t0 and any 0 < λ ≤ λ∗, with λ∗
:= −

α∗

τs+τu
.

Proof. Let v ∈ NP , w ∈ NP , tv ∈ R, and tw ∈ R, and note that

aw + λwtw + av − λvtv
= av − λvτs + aw + λwτu − λv(tv − τs) + λw(tw − τu). (11)

Assume that 1 ≤ v ≤ q, q < w ≤ P, tv ≥ τs, and tw ≤ τu. Then, it
can be shown that, for any 0 < λ ≤ λ∗, the following inequalities
are verified:av − λvτs + aw + λwτu ≤ −λ(τs + τu)

−λv(tv − τs) ≤ −λ∗(tv − τs) ≤ −λ(tv − τs)
λw(tw − τu) ≤ 0 ≤ −λ(tw − τu).

(12)

Then, taking the exponential of (11) and using (12) yields

eaw+λw tw+av−λv tv ≤ e−λ(tw+tv). (13)

Let pl denote the value of σ(t) between tl and tl+1. Then, for any
j > 0 and any t such that tj ≤ t ≤ tj+1, the state of the system (8)
follows

x(t) = eApj (t−tj)eApj−1 (tj−tj−1) . . . eAp0 (t1−t0)x(t0),

and its norm verifies the inequality

∥x(t)∥ ≤ ∥eApj (t−tj)
∥

j
l=1


∥eApl−1 (tl−tl−1)∥


∥x(t0)∥. (14)

Suppose that at time t the system (8) is in an unstable configura-
tion, and let j∗ = ⌊j/2⌋. Using (9) in (14) yields

∥x(t)∥ ≤ ∥x(t0)∥e
apj+λpj (t−tj)+apj−1−λpj−1 (tj−tj−1)

j∗
l=1


eap2l−1+λp2l−1 (t2l−t2l−1)+ap2l−2−λp2l−2 (t2l−1−t2l−2)


,
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and applying the inequality (13) results in

∥x(t)∥ ≤ e−λ(t−tj−1)
j∗
l=1


e−λ(t2l−t2l−2)


∥x(t0)∥

≤ e−λ(t−t0)∥x(t0)∥.

On the other hand, if at time t the system (8) is in a stable config-
uration, following the same reasoning yields

∥x(t)∥ ≤ eaj−λ(t−tj)
j∗
l=1


e−λ(t2l−t2l−2)


∥x(t0)∥

≤ eaj−λ(t−t0)∥x(t0)∥. �

The following result presents a sufficient condition for the
stability of (8) for the second case.

Theorem 2. Consider the switched linear system (8), assume that the
switching signal σ(t) verifies Assumptions 3 and 5, and let

α∗

a := as + au + λsτu + λuτu − λsτa,

where

as = sup
1≤k≤q

{ak}, au = sup
q<k≤P

{ak},

λs = inf
1≤k≤q

{λk}, and λu = sup
q<k≤P

{λk}.

Then, if α∗
a < 0, there exists a scalar constant a > 0 such that the

state x(t) of (8) follows

∥x(t)∥ ≤ ea−λ(t−t0)∥x(t0)∥

for all t ≥ t0 and any 0 < λ ≤ λ∗
a , where λ∗

a := −
α∗
a

τa
.

Proof. As in the previous case, for any j > 0 and any t such that
tj ≤ t ≤ tj+1, the norm of the state of the system (8) verifies

∥x(t)∥ ≤ ∥eApj (t−tj)
∥

j
l=1


∥eApl−1 (tl−tl−1)∥


∥x(t0)∥. (15)

Now, denote the total activation time of stable subsystems on
[t0, t] by Ts(t0, t), the total activation time of unstable systems
on [t0, t] by Tu(t0, t), and the number of switchings to stable
subsystems on ]t0, t] by N s

σ (t0, t). Then, using (9) in (15), it follows
that

∥x(t)∥ ≤ e(Ns
σ (t0,t)+1)as+Nu

σ (t0,t)aue−λsTs(t0,t)+λuTu(t0,t)∥x(t0)∥. (16)

Due to Assumption 3, N s
σ (t0, t) ≤ Nu

σ (t0, t), and (16) can be
rewritten as

∥x(t)∥ ≤ eas+Nu
σ (t0,t)(as+au)−λsTs(t0,t)+λuTu(t0,t)∥x(t0)∥. (17)

As

Tu(t0, t) ≤ Nu
σ (t0, t)τu, (18)

it follows that

Ts(t0, t) = (t − t0) − Tu(t0, t) ≥ (t − t0) − Nu
σ (t0, t)τu. (19)

Using (18) and (19) in (17) yields

∥x(t)∥ ≤ eas+Nu
σ (t0,t)(as+au+λsτu+λuτu)−λs(t−t0)∥x(t0)∥

and, given (10), it follows that

∥x(t)∥ ≤ ea−
α∗
a

τa (t−t0)∥x(t0)∥,

with a = as +N0(as +au +λsτu +λuτu). Then, for any 0 < λ ≤ λ∗
a ,

the inequality ∥x(t)∥ ≤ ea−λ(t−t0)∥x(t0)∥ is verified for all t ≥ t0,
which concludes the proof. �
6. Simulations for a formation of AUVs

This section details the application of the results introduced in
the previous sections to the practical case of decentralized position
and velocity estimation in a formation of AUVs, supported by
simulation results.

Consider a formation composed of N AUVs, and suppose that
each has sensors mounted on-board which give access to either
measurements of its own position in an inertial reference coordi-
nate frame {I}, or measurements of its position relative to one or
more AUVs in the vicinity, as well as updated position estimates
communicated by those same AUVs. For the first case, i.e., with in-
ertial position readings, the local dynamics for AUV i follow
ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = pi(t),

where pi(t) ∈ R3 is the inertial position of the vehicle, vi(t) ∈ R3

denotes its velocity relative to {I}, expressed in body-fixed coor-
dinates of the i-th AUV, Ri(t) ∈ SO(3) is the rotation matrix from
the body-fixed frame {Bi} of the vehicle to {I}, ωi(t) ∈ R3 is the
angular velocity of {Bi}, expressed in body-fixed coordinates, S(ω)
is the skew-symmetric matrix such that S(ω)x is the cross product
ω × x, ai(t) ∈ R3 is a linear acceleration measurement provided
by an accelerometer mounted on-board each AUV, and gi(t) ∈ R3

is the acceleration of gravity expressed in body-fixed coordinates,
which is treated as an unknown variable for performance reasons,
see Batista, Silvestre, and Oliveira (2010) for further details. It is
assumed that an Attitude and Heading Reference System (AHRS)
installed on-board each AUV provides measurements of both Ri(t)
and ωi(t).

Using the state transformation introduced in Batista, Silvestre,
and Oliveira (2009),x1i (t)

x2i (t)
x3i (t)

 :=

 I 0 0
0 Ri(t) 0
0 0 Ri(t)

 pi(t)
vi(t)
gi(t)


, (20)

which preserves stability and observability properties (Brockett,
1970), and making ui(t) := Ri(t)ai(t), the system dynamics can
be written as the LTI system (1), with

AL =

0 I 0
0 0 I
0 0 0


, BL =

0
I
0


, and CL =


I 0 0


.

When the AUV has access to relative position measurements
and receives position estimates from the corresponding vehicles,
the local dynamics for AUV i follow
ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = 1pi(t),

in which 1pi(t) denotes the relative position measurements
available to AUV i. Applying (20) yields the system (2), where
AL and BL are defined as in the previous case, and Ci = INi ⊗

CL ∈ RoLNi×nLNi . Following this, a local state estimator can be
designed for eachAUV resulting in a distributed state observerwith
estimation error dynamics given by (7). The local observers are
then implemented in the body-fixed coordinate space of each AUV,
by reversing the Lyapunov state transformation (20). This process
is described in detail in Viegas et al. (2012).

To assess the stability of the proposed solution, simulations
were carried out for a formation of 6 AUVs, whose structure
alternates between the 4 measurement graphs depicted in Fig. 2.
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Fig. 2. Formation graphs considered in the simulations.

Table 3
Bounding constants for each measurement graph and the worst case of the
transition periods.

Graph G1 G2 G3 G4 Transition

a 2.655 2.297 2.861 2.964 3.861
λ −0.118 −0.089 −0.092 −0.104 0.1

Fig. 3. Initial positions and trajectory followed by the AUVs.

In line with the stability analysis of Section 5, Table 3 details
bounding constants that were computed for the error dynamics
of the distributed state observer for each measurement graph, as
well as for theworst case of the transition periods. Using the values
in Table 3 and the results of Section 4.3, it can be concluded, for
example, that if the unstable transition times last at most τu =

10 s, then stability is guaranteed if the stable periods last at least
τs = 85 s, approximately. However, those figures are conservative,
as it will be seen in the simulation results that follow.

The durations of the stable configurations were computed by
sampling a normal distribution with an expected value of ts =

75 s and a standard deviation of σs = 15 s, while the duration
of the transition periods follows a normal distribution with an
expected value of tu = 15 s and a standard deviation of σu = 1 s.
The measurement graph and observer gains changed following a
randomly generated sequence. The initial positions of the AUVs, as
well as the trajectory followed by the formation, are depicted in
Fig. 3. Fig. 4 depicts the evolution and a detailed view of the sum
of the modulus of all estimation error variables in the formation.
As it can be seen, during the unstable periods the estimation error
Fig. 4. Total estimation error in the formation.

increases, but the stable periods last long enough to stabilize the
error dynamics.

7. Conclusions

This paper addressed the problem of distributed state estima-
tion in formations of vehicles with time-varying measurement
topology. The proposed solution consists in the implementation
of a local state observer on-board each vehicle, resulting in a dis-
tributed state estimator at the formation level. A strategy was out-
lined for the vehicles to copewith the gain or loss ofmeasurements
and to apply new gains that stabilize the new error dynamics. The
error dynamics of the distributed state estimator were modeled as
a switched linear system, and sufficient conditions for exponential
stability of the global estimation error dynamics were presented
for two different switching laws. The results were then applied to
the practical case of a formation of Autonomous Underwater Vehi-
cles (AUVs), and simulations were detailed to verify the stability of
the proposed decentralized state estimator.
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