
0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

1

Distributed Optimization With Local Domains: Applications in

MPC and Network Flows
João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar, and Markus Püschel

Abstract—We consider a network where each node has exclusive

access to a local cost function. Our contribution is a communication-
efficient distributed algorithm that finds a vector x

⋆ minimizing the

sum of all the functions. We make the additional assumption that the

functions have intersecting local domains, i.e., each function depends

only on some components of the variable. Consequently, each node is
interested in knowing only some components of x⋆, not the entire vector.

This allows improving communication-efficiency. We apply our algorithm

to distributed model predictive control (D-MPC) and to network flow
problems and show, through experiments on large networks, that the

proposed algorithm requires less communications to converge than prior

state-of-the-art algorithms.

Index Terms—Distributed algorithms, alternating direction method of

multipliers (ADMM), model predictive control, network flows.

I. INTRODUCTION

Consider a network with P nodes and the following problem:

minimize
x∈Rn

f1(x) + f2(x) + · · ·+ fP (x) , (1)

where each function fp is known only at node p. We say an algorithm

solving (1) is distributed if it uses no central node and no all-to-all

communications. In a typical distributed algorithm, each node holds

an estimate of a solution x⋆ and iteratively updates and exchanges

it with its neighbors. Such an algorithm implicitly assumes that each

node is interested in knowing all the components of a solution x⋆.

While this holds for problems like consensus or distributed SVMs,

there are important problems where it does not hold, especially in the

context of large networks. Two examples we explore are distributed

model predictive control (D-MPC) [1]–[3] and network flows [4].

We solve (1) assuming that each function fp depends only on a

subset of the components of the variable x ∈ R
n. This situation is

illustrated in Fig. 1(a) with n = 3; there, for example, f1 depends

on x1 and x2, but not on x3. To capture these dependencies, we

write xS , S ⊆ {1, . . . , n}, to denote a subset of the components

of x. For example, if S = {2, 4}, then xS = (x2, x4). With this

notation, our goal is to solve

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · ·+ fP (xSP
) , (2)

where Sp is the set of components that the function fp depends on.

Accordingly, node p is interested in finding only the components of

a solution x⋆ that are indexed by Sp, i.e., x⋆
Sp

. Fig. 1 illustrates two

instances in a network with P = 5 nodes and a variable of size n = 3.

In Fig. 1(a), all nodes but node 2 depend on a strict subset of the

components of the variable; in Fig. 1(b), all nodes depend on all the

J. Mota was with Institute of Systems and Robotics, Instituto Superior
Técnico, Technical University of Lisbon, Portugal and now is with the Elec-
tronic & Electrical Engineering Department at University College London,
UK. Email: j.mota@ucl.ac.uk.

J. Xavier, and P. Aguiar are with Institute of Systems and Robotics,
Instituto Superior Técnico, Technical University of Lisbon, Portugal. Email:
{jxavier, aguiar}@isr.ist.utl.pt.

M. Püschel is with the Department of Computer Science at ETH Zurich,
Switzerland. Email: pueschel@inf.ethz.ch.

This work was supported by the following grants from Fundação para a
Ciência e Tecnologia: CMU-PT/SIA/0026/2009, PEst-OE/EEI/LA0009/2011,
and SFRH/BD/33520/2008 (Carnegie Mellon/Portugal Program, ICTI).

1

2

3
4

5

6

f1(x1, x2)

f2(x1, x2, x3)

f3(x2, x3)
f4(x1, x3)

f5(x2, x3)

f6(x1, x2)

(a) Non-global variable

1

2

3
4

5

6

f1(x1, x2, x3)

f2(x1, x2, x3)

f3(x1, x2, x3)
f4(x1, x2, x3)

f5(x1, x2, x3)

f6(x1, x2, x3)

(b) Global variable

Figure 1. Example of a (a) non-global variable and a (b) global variable, for
a variable x = (x1, x2, x3) with 3 components. While in (a) only node 2
depends on all of them, in (b) all nodes depend on all the components.

components. Thus, Fig. 1(b) is an instance of problem (1), which we

say has a global variable. Problem (2) generalizes problem (1), since

it becomes (1) when Sp = {1, . . . , n} for all nodes p. However, any

algorithm designed to solve (1) can also solve (2) by making all nodes

estimate all the components of a solution x⋆. This approach, however,

introduces unnecessary communications, since nodes exchange more

components than necessary. The goal of this paper is to design

distributed algorithms solving (2) that use its structure to reduce the

total number of communications.

Contributions. We propose a distributed algorithm that solves (2)

in full generality, for arbitrary sets Sp. This is done by classifying its

variable into two categories and designing algorithms for both. We

then apply our algorithms to D-MPC and network flow problems.

We show that, with our general solution, we can outperform prior

algorithms, even application-specific ones. Due to space constraints,

we omit some proofs and a detailed derivation for the non-connected

case. Both, however, can be found in [5].

Related work. Many algorithms have been proposed for the global

variable problem (1), including methods based on the alternating

direction method of multipliers (ADMM) [6], [7]. As mentioned

before, solving (2) with an algorithm designed for (1) introduces

unnecessary communications.

To our knowledge, this is the first time that problem (2) has

been explicitly stated in a distributed context. For example, [8,

§7.2] proposes an algorithm for (2), but is not distributed in our

sense, since it requires either a platform that supports all-to-all

communications (in other words, a central node) or running consensus

algorithms on each induced subgraph at each iteration [8, §10.1].

Thus, that algorithm is only distributed when every component

induces subgraphs that are stars, in which case we say the variable is

star-shaped. Actually, we found only one algorithm in the literature,

namely [9], that is distributed (or that can easily be made distributed)

for all the scenarios considered in this paper. Yet, that algorithm was

proposed for a problem with a star-shaped variable: power system

state estimation (our algorithm can be applied to this problem as

well). Our simulations show that the algorithm in [9] requires always

more communications than the algorithm we propose. Although

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

2

we found just one (communication-efficient) distributed algorithm

solving (2), many other algorithms solve particular instances of it;

see, e.g., [5], [10], [11]. For example, in network flow problems, each

component of the variable is associated to an edge of the network

which, as we will see, enables writing them as (2) with a star-shaped

variable. In this case, not only [8, §7.2] becomes distributed, but

also gradient/subgradient methods can be applied directly and yield

distributed algorithms [12]. Distributed Model Predictive Control

(D-MPC) [1]–[3] is another problem that has been addressed with

algorithms solving (2), again in the special case of a star-shaped

variable. Such algorithms include fast gradient [13] and ADMM-

based [13] methods (which applies [8, §7.2]). Akin to [8, §7.2], these

methods were designed for the special case of star-shaped variables

and become inefficient when applied to more generic cases. In spite of

its generality, the algorithm we propose requires less communications

than previous algorithms that were designed specifically for D-MPC

or for network flow problems.

II. TERMINOLOGY AND PROBLEM STATEMENT

We first define communication network and variable connectivity:

Communication network. A communication network is repre-

sented as an undirected graph G = (V, E), where V = {1, . . . , P}
is the set of nodes and E ⊆ V × V is the set of edges. Two nodes

communicate if there is an edge connecting them in G. We assume:

Assumption 1. G is connected and its topology does not change

over time; also, a coloring scheme C of G is available beforehand.

A coloring scheme C is a set of numbers, called colors, assigned

to the nodes such that two neighbors never have the same color.

Given its importance in TDMA, a widespread protocol for avoiding

packet collisions, there is a large literature on coloring networks, as

briefly overviewed in [5, §3.1]. Our algorithm integrates naturally

with TDMA, since both use coloring as a synchronization scheme:

nodes work sequentially according to their colors, and nodes with

the same color work in parallel. The difference is that TDMA uses a

more restrictive coloring, as nodes within two hops cannot have the

same color. Note that packet collision is often ignored in the design

of distributed algorithms, as confirmed by the ubiquitous assumption

that all nodes can communicate simultaneously. We associate with

each node p in the network a function fp : R
np −→ R ∪ {+∞},

where 1 ≤ np ≤ n, and make the

Assumption 2. Each function fp is closed, proper, and convex

over R
np , and is known only at node p. The neighbors of node p

know the set of components Sp that fp depends on.

Since we allow fp to take infinite values, constraints can be

imposed via indicator functions, i.e., functions that evaluate to +∞
when the constraints are not satisfied, and to 0 otherwise.

Variable connectivity. Although each function fp is available only

at node p, each component of the variable x may be associated with

several nodes. Let xl be a given component. The subgraph induced

by xl is Gl = (Vl, El) ⊆ G, where Vl is the set of nodes whose

functions depend on xl, and an edge (i, j) ∈ E belongs to El if both i
and j are in Vl. For example, the subgraph induced by x1 in Fig. 1(a)

consists of V1 = {1, 2, 4, 6} and E1 = {(1, 2), (1, 6), (2, 6)}. We

say xl is connected if its induced subgraph is connected, and non-

connected otherwise. Likewise, a variable is connected if all its

components are connected, and non-connected if it has at least one

non-connected component. In Fig. 1(a), the variable is non-connected,

because x1 induces a non-connected subgraph.

Problem statement. Given a network and a set of functions satis-

fying Assumptions 1 and 2, we design a distributed, communication-

efficient algorithm that solves (2), with either a connected or a non-

connected variable. Recall that a distributed algorithm uses neither a

central node nor all-to-all communications.

III. CONNECTED CASE

In this section we derive a distributed algorithm for (2) assuming

a connected variable. The main idea is to manipulate (2) to make

the Extended ADMM (E-ADMM) [14] applicable. Our algorithm

generalizes [7], which proposed an algorithm for (1).

Problem manipulation. Let xl be a given component and Gl =
(Vl, El) be the respective induced subgraph, assumed connected.

Since all nodes in Vl are interested in xl, we create copies of xl

in each of those nodes: x
(p)
l is the copy at node p, and x

(p)
Sp

:=

{x(p)
l }l∈Sp denotes all copies at node p. We then rewrite (2) as

minimize
{x̄l}

n
l=1

f1(x
(1)
S1

) + f2(x
(2)
S2

) + · · ·+ fP (x
(P)
SP

)

subject to x
(i)
l = x

(j)
l , (i, j) ∈ El , l = 1, . . . , n ,

(3)

where the optimization variable {x̄l}
n
l=1 is the set of all copies. We

used x̄l := {x(p)
l }p∈Vl

to denote all copies of xl, which are located

only in the nodes of Gl. The constraints in (3) enforce equality among

the copies of the same component: if two neighboring nodes i and j
depend on xl, then x

(i)
l = x

(j)
l appears in the constraints of (3). We

assume that any edge in the communication network is represented

as the ordered pair (i, j) ∈ E , with i < j. As such, there are no

repeated equations in (3). Problems (2) and (3) are equivalent because

each induced subgraph is connected. We observe that x
(i)
l = x

(j)
l ,

(i, j) ∈ El, can be written as Alx̄l = 0, where Al is the transposed

node-arc incidence matrix of the subgraph Gl. The node-arc incidence

matrix associates each edge of a graph with a column of a matrix. The

column associated with the edge (i, j) has 1 in the ith entry, −1 in

the jth entry, and zeros elsewhere. We next partition the optimization

variable according to the coloring scheme: for each l = 1, . . . , n,

x̄l = (x̄1
l , . . . , x̄

C
l), where x̄c

l = {x(p)
l }p∈Vl∩Cc if Vl ∩ Cc 6= ∅, and

x̄c
l = ∅ if Vl ∩Cc = ∅. Also, Cc is the set of nodes that have color c.

Thus, x̄c
l is the set of copies of xl held by the nodes that have color c.

If no node with color c depends on xl, then x̄c
l is empty. A similar

notation for the columns of the matrix Al enables writing Alx̄l as

Ā1
l x̄

1
l + · · ·+ ĀC

l x̄
C
l , and thus (3) equivalently as

minimize
x̄1,...,x̄C

∑

p∈C1
fp(x

(p)
Sp

) + · · ·+
∑

p∈CC
fp(x

(p)
Sp

)

subject to Ā1x̄1 + · · ·+ ĀC x̄C = 0 ,
(4)

where x̄c = {x̄c
l }

n
l=1, and Āc := diag(Āc

1, Ā
c
2, . . . , Ā

c
n) is the

diagonal concatenation of the matrices Āc
1, Āc

2, . . . , Āc
n. The format

of (4) is exactly the one to which E-ADMM applies, as explained

next.

E-ADMM. The Extended ADMM (E-ADMM) is a natural general-

ization of the Alternating Direction Method of Multipliers (ADMM).

Given a set of closed, convex functions g1, . . ., gC , and a set of full

column rank matrices E1, . . . , EC , E-ADMM solves

minimize
x1,...,xC

g1(x1) + · · ·+ gC(xC)

subject to E1x1 + · · ·+ ECxC = 0 .
(5)

It consists of iterating on k the following equations:

xk+1
1 = argmin

x1

Lρ(x1, x
k
2 , . . . , x

k
C ; λ

k) (6)

..

.

xk+1
C = argmin

xC

Lρ(x
k+1
1 , xk+1

2 , . . . , xk+1
C−1, xC ;λ

k) (7)

λk+1 = λk + ρ

C
∑

c=1

Ecx
k+1
c , (8)

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

3

where Lρ(x;λ) =
∑C

c=1

(

gc(xc) +λ⊤Ecxc

)

+ ρ

2

∥

∥

∑C

c=1 Ecxc

∥

∥

2
is

the augmented Lagrangian of (5), λ is the dual variable, and ρ > 0.

The original ADMM is recovered whenever C = 2, i.e., when there

are only two terms in the sums of (5). The following theorem gathers

some known convergence results for (6)-(8).

Theorem 1 ([14]–[17]). For each c = 1, . . . , C, let gc : Rnc −→
R ∪ {+∞} be closed and convex over R

nc and dom gc 6= ∅. Let

each Ec be an m×nc matrix. Assume (5) is solvable and that either

1) C = 2 and each Ec has full column rank, or 2) C ≥ 2 and each gc
is strongly convex. Then, the sequence {(xk

1 , . . . , x
k
C , λ

k)} generated

by (6)-(8) converges to a primal-dual solution of (5). Furthermore, if

each function gp is strongly convex, differentiable, and its gradient is

Lipschitz-continuous, then linear convergence holds whenever C = 2,

or C > 2 and ρ in (8) is replaced by a small constant.

It is believed that (6)-(8) converges even when C > 2, each gc is

closed and convex (not necessarily strongly convex), each matrix Ec

has full column rank, and is sufficiently orthogonal to the other

matrices [18]. Such belief is supported by empirical evidence [5],

[14] but proving it remains an open problem.

Applying E-ADMM. The clear correspondence between (4)

and (5) makes (6)-(8) directly applicable to (4). Associate a dual

variable λij
l to each constraint x

(i)
l = x

(j)
l in (3). Translating (8)

component-wise, λij
l is updated, for a given (i, j) ∈ E , as

λij,k+1
l = λij,k

l + ρ
(

x
(i),k+1
l − x

(j),k+1
l

)

, (9)

where x
(p),k+1
l is the estimate of xl at node p after iteration k.

This estimate is obtained from the sequence (6)-(7), where we will

focus our attention now. This sequence will yield the synchronization

mentioned in Section II: nodes work sequentially according to their

colors, with the same-colored nodes working in parallel. In fact,

each problem in (6)-(8) corresponds to one color. Moreover, each

of these problems decomposes into |Cc| problems that can be solved

in parallel, each by a node with color c. For example, the copies of

the nodes with color 1 are updated by solving (6):

min
x̄1

∑

p∈C1

fp(x
(p)
Sp

) + λk⊤
Ā1x̄1 +

ρ

2

∥

∥

∥

∥

Ā1x̄1 +

C
∑

c=2

Ācx̄c,k

∥

∥

∥

∥

2

, (10)

or, equivalently (see [5, Lemma 4.6]),

min
x̄1

∑

p∈C1

fp(x
(p)
Sp

) +
∑

l∈Sp

[

∑

j∈Np∩Vl

ηpj,k
l

⊤
x
(p)
l +

ρDp,l

2

(

x
(p)
l

)2
]

,

(11)

where ηpj,k
l := sg(j − p)λpj,k

l − ρ x
(j),k
l , and sg(·) is the sign

function, defined as sg(a) = 1 if a ≥ 0, and sg(a) = −1 if

a < 0. Also, Dp,l is the degree of node p in the subgraph Gl, i.e., the

number of neighbors of node p that also depend on xl. Note that (11)

decomposes into |C1| problems that can be solved in parallel. This

is because x̄1 consists of the copies held by the nodes with color 1;

and, since same-colored nodes are never neighbors, none of the copies

in x̄1 appears as x
(j),k
l , through ηpj,k

l , in the second term of (11).

Therefore, all nodes p in C1 can solve in parallel:

min
x
(p)
Sp

fp(x
(p)
Sp

)+
∑

l∈Sp

[

∑

j∈Np∩Vl

ηpj,k
l

⊤
x
(p)
l +

ρDp,l

2

(

x
(p)
l

)2
]

, (12)

where x
(p)
Sp

= {x(p)
l }l∈Sp . However, node p can solve (12) only if it

knows ηpj,k
l , i.e., x

(j),k
l and λpj,k

l , for j ∈ Np∩Vl and l ∈ Sp. This is

possible if, in the previous iteration, it received the respective copies

of xl from its neighbors. This is also enough for knowing the dual

variable λpj,k
l , although we will see later that no node needs to know

each λpj,k
l individually. For the other colors, the analysis is similar,

but with one difference: in the definition of ηpj,k
l , we have x

(j),k+1
l

Algorithm 1 Algorithm for a connected variable

Initialization: for all p ∈ V , l ∈ Sp, set γ
(p),1
l

= x
(p),1
l

= 0; k = 1
1: repeat

2: for c = 1, . . . , C do

3: for all p ∈ Cc [in parallel] do

4: for all l ∈ Sp do

v
(p),k
l

= γ
(p),k
l

− ρ
∑

j∈Np∩Vl

C(j)<c

x
(j),k+1
l

− ρ
∑

j∈Np∩Vl

C(j)>c

x
(j),k
l

5: end for

6: Set x
(p),k+1
Sp

as the solution of

argmin
x
(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

)+
∑

l∈Sp

v
(p),k
l

⊤
x
(p)
l

+
ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

7: For each component l ∈ Sp, send x
(p),k+1
l

to Np ∩ Vl
8: end for

9: end for

10: for all p ∈ V and l ∈ Sp [in parallel] do

γ
(p),k+1
l

= γ
(p),k
l

+ ρ
∑

j∈Np∩Vl
(x

(p),k+1
l

− x
(j),k+1
l

)

11: end for

12: k ← k + 1
13: until some stopping criterion is met

(resp. x
(j),k
l) if the color of node j is smaller (resp. larger) than the

color of node p.

The resulting algorithm is shown in Algorithm 1, whose structure

matches equations (6)-(8): steps 2-9 correspond to (6)-(7), and the

loop in step 10 corresponds to (8). In steps 2-9, nodes work according

to their colors, with the same colored nodes working in parallel. Each

node computes the vector v in step 4, solves the optimization problem

in step 6, and then sends the new estimates of xl to the neighbors

that also depend on xl, for l ∈ Sp. We introduced new notation

in step 4: C(p) is the color of node p. The optimization problem

in step 6 involves the private function of node p, fp, to which a

linear and a quadratic term is added. Finally, note that the update of

the dual variables in step 10 is different from (9). In particular, all

the λ’s at node p were condensed into a single dual variable γ(p),

since the optimization problem (12) does not depend on the individual

λpj
l ’s, but only on γ

(p),k
l :=

∑

j∈Np∩Vl
sg(j−p)λpj,k

l . If we replace

λij,k+1
l = λij,k

l + ρ sg(j − i)
(

x
(i),k+1
l − x

(j),k+1
l

)

in the definition

of γ
(p),k
l , we obtain the update of step 10. The extra “sign” in the

previous expression (w.r.t. (9)) is necessary to take into account the

extension of the definition of the dual variable λij
l for i > j (see the

proof of Lemma 4.6 in [5]).

Convergence. Algorithm 1 results from the application of E-

ADMM to problem (4). Consequently, the conclusions of Theorem 1

apply if we prove that (4) satisfies the conditions of that theorem.

Lemma 1. Each matrix Āc in (4) has full column rank.

Proof: Let c be any color. Since Āc = diag(Āc
1, Ā

c
2, . . . , Ā

c
n),

we have to prove that each Āc
l has full column rank. Fix c and l. If

we prove that (Āc
l)

⊤Āc
l has full rank, then Āc

l has full column rank.

Since Āl =
[

Āc
1 Āc

2 · · · Āc
n

]

, (Āc
l)

⊤Āc
l corresponds to the lth

block in the diagonal of A⊤
l Al, the Laplacian of the subgraph Gl. By

assumption, Gl is connected, implying that each node in Gl has at least

one neighbor also in Gl; hence, each entry in the diagonal of A⊤
l Al

is greater than zero. The same happens to the entries in the diagonal

of (Āc
l)

⊤Āc
l , which is a diagonal matrix. This is because (Āc

l)
⊤Āc

l

corresponds to the Laplacian entries of nodes that have the same

color, which are never neighbors. Thus, (Āc
l)

⊤Āc
l has full rank.

The following result is a consequence of Theorem 1 and Lemma 1.

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

4

Algorithm 2 Preprocessing step for a non-connected variable

1: Set S′
p = ∅ for all p ∈ V , and V ′

l
= Vl for all l = {1, . . . , n}

2: for all l ∈ {1, . . . , n} such that xl is non-connected do

3: Compute a Steiner tree (Tl,Fl) with Vl as required nodes

4: Set V ′
l
= Tl and Sl := Tl\Vl (Steiner nodes)

5: For all p ∈ Sl, S
′
p = S′

p ∪ {xl}
6: end for

Corollary 1. Let Assumptions 1 and 2 hold and let the variable be

connected. Let also one of the following conditions hold:

1) the network is bipartite, i.e., C = 2, or

2) each
∑

p∈Cc
fp(xSp) is strongly convex, c = 1, . . . , C.

Then, the sequence {x(p),k
Sp

}∞k=1 at node p, produced by Algo-

rithm 1, converges to x⋆
Sp

, where x⋆ solves (2). Furthermore, if

each
∑

p∈Cc
fp(xSp) is strongly convex, differentiable, and has a

Lipschitz-continuous gradient, then linear convergence holds in case

1); and it holds in case 2) whenever ρ in step 10 of Algorithm 1 is

replaced by a small constant.

As stated before, it is believed that E-ADMM converges for C > 2
even when none of the gc’s are strongly convex, just closed and

convex; additionally, each Ec should have full column rank. This

translates into the belief that Algorithm 1 converges for any network,

provided each fp is closed and convex, and each matrix Āc has full

column rank. The last condition is the content of Lemma 1.

Algorithm 1 is a generalization of D-ADMM [7], which assumes

a global variable. Indeed, making Sp = {1, . . . , n} for all p,

Algorithm 1 becomes exactly D-ADMM. Note that, on the other

hand, Algorithm 1 cannot be obtained from D-ADMM. Each it-

eration of Algorithm 1 (resp. D-ADMM) involves communicating
∑P

p=1 |Sp| (resp. nP) numbers. When the variable is not global,
∑P

p=1 |Sp| < nP , and thus there is a clear per-iteration gain in

solving (2) with Algorithm 1.

IV. NON-CONNECTED CASE

When the variable is non-connected, problems (2) and (3) are

no longer equivalent and, therefore, the previous derivations do not

apply. We propose a small trick to make these problems equivalent.

Let xl be a component whose induced subgraph Gl = (Vl, El)

is non-connected. Then, the constraint x
(i)
l = x

(j)
l , (i, j) ∈ El,

in (3) fails to enforce equality on all the copies of xl. We propose

replacing Gl with a connected subgraph G′
l ⊃ Gl, obtained by adding

nodes and edges to Gl. Since we seek to minimize communications,

we want to add a minimal number of edges. This is exactly the

optimal Steiner tree problem. Let G = (V, E) and let R ⊆ V be a

set of required nodes. A Steiner tree is any tree (T ,F) ⊆ G that

contains the required nodes: R ⊆ T . The set of nodes in the tree

that are not required, S := T \R, are called Steiner nodes. In our

case, the set of required nodes is R = Vl and an optimal Steiner tree

has a minimal number of edges. Although computing optimal Steiner

trees is NP-hard, many approximation algorithms are available [19],

[20], even distributed ones [21]. Note that the solution returned by

our algorithm is independent of the optimality of the Steiner tree.

We propose computing a (not necessarily optimal) Steiner tree for

each induced subgraph Gl that is non-connected, as in Algorithm 2.

The Steiner tree for component xl is given by (Tl,Fl), where

Vl ⊆ Tl are the required nodes. The algorithm also computes a set S′
p

containing the variables for which node p is Steiner. If node p is not

Steiner for any variable, then S′
p = ∅. By defining new induced

subgraphs as G′
l = (V ′

l , E
′
l), with V ′

l := Tl and E ′
l := El ∪ Fl, we

create copies of xl in all nodes in V ′
l and replace E in the constraints

of (3) with E ′. The resulting problem is equivalent to (2). Algorithm 1

can then be applied with minor modifications: replace every instance

of Gl = (Vl, El) with G′
l = (V ′

l , E
′
l), and every instance of Sp

with Sp ∪ S′
p (see [5, §4.3.2] for more details). Algorithm 2 can be

centralized or distributed (using, for example, [21] to compute Steiner

trees) and is meant to be executed once, before solving the problem

(or a batch). It requires knowledge of the communication network G
and the sets Sp, but not necessarily of the specific functions fp. This

preprocessing step can also be applied to the algorithm in [9].

V. APPLICATIONS

We now describe how distributed model predictive control (D-

MPC) and network flows can be written as (2) and thus solved with

Algorithm 1.

D-MPC. In model predictive control (MPC), a system is described

at each time instant t by its state-space x[t] ∈ R
n. This state evolves

as x[t + 1] = Θt(x[t], u[t]), where u[t] ∈ R
m is a control input

and Θt : R
n × R

m −→ R
n is a linear function that models the

system dynamics at time t. Given a time-horizon T , MPC consists

of measuring the state at time t = 0, computing optimal states and

inputs for the next T time steps, applying u[0], setting t = 0, and

repeating the process. The step of computing optimal states and inputs

typically requires solving

minimize
x̄,ū

Φ(x[T]) +
∑T−1

t=0 Ψt(x[t], u[t])

subject to x[t+ 1] = Θt(x[t], u[t]) , t = 0, . . . , T − 1
x[0] = x0 ,

(13)

where (x̄, ū) := ({x[t]}Tt=0, {u[t]}
T−1
t=0). While Φ : R

n −→ R ∪
{+∞} penalizes deviations of the final state x[T] from our goal,

Ψt : R
n × R

m −→ R ∪ {+∞} measures energy consumption at

time t. Since the functions Φ and Ψt can be +∞, we can constrain,

through indicator functions, the state and control input at any time

instant to lie in a closed convex set. The first constraint of (13)

enforces the system dynamics, and the second one encodes the initial

measurement x0.

We solve (13) in a distributed scenario: there is a (communi-

cation) network G = (V, E) of P = |V| systems, where each

system has a state xp[t] ∈ R
np and a local input up[t] ∈ R

mp ,

with n1 + · · · + nP = n and m1 + · · · + mP = m. The state

of system p evolves as xp[t + 1] = Θt
p

(

{xj [t], uj [t]}j∈Ωp

)

, where

Ωp ⊆ V is the set of nodes whose state and/or input influences xp

(we assume {p} ⊆ Ωp for all p). We assume Ωp is not necessarily

a subset of the neighbors of node p. In other words, two systems

that influence each other may be unable to communicate directly.

This is illustrated in Fig. 2(b) where, for example, the state/input

of node 3 influences the state evolution of node 1 (dotted arrow),

but there is no communication link (solid line) between them.

Finally, we assume functions Φ and Ψt in (13) can be decom-

posed, respectively, as Φ(x[T]) =
∑P

p=1 Φp({xj [T]}j∈Ωp) and

Ψt(x[t], u[t]) =
∑P

p=1 Ψ
t
p({xj [t], uj [t]}j∈Ωp), where Φp and Ψt

p

are both associated to node p. In sum, we solve

min
x̄,ū

∑P

p=1

[

Φp({xj [T]}j∈Ωp) +
∑T−1

t=0 Ψt
p({xj [t], uj [t]}j∈Ωp)

]

s.t. xp[t+ 1] = Θt
p

(

{xj [t], uj [t]}j∈Ωp

)

, t = 0, . . . , T − 1
xp[0] = x0

p

p = 1, . . . , P ,
(14)

where x0
p is the initial measurement at node p. The variable

in (14) is (x̄, ū) :=
(

{x̄p}
P
p=1, {ūp}

P
p=1

)

, where x̄p := {xp[t]}
T
t=0

and ūp := {up[t]}
T−1
t=0 . Problem (14) can be written as (2) by

making fp({x̄j , ūj}j∈Ωp) = Φp({xj [T]}j∈Ωp) + ixp[0]=x0
p
(x̄p) +

∑T−1
t=0

(

Ψt
p({xj [t], uj [t]}j∈Ωp)+ iΓt

p
({x̄j , ūj}j∈Ωp)

)

, where iΓt
p
(·)

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

5

1

2

3
4

5

6

(a) Connected star-shaped variable

1

2

3
4

5

6

(b) Non-connected variable

Figure 2. Two D-MPC scenarios. Solid lines are links in the communication
network, and dotted arrows represent system interactions. (a) Connected
variable where each induced subgraph is a star. (b) Non-connected variable.

1

2
3

4

5

6
φ12(x12)

φ23(x23) φ34(x34)

φ35(x35)

φ46(x46)

φ15(x15)
φ56(x56)

Figure 3. A network flow problem: each edge has a variable xij representing
the flow from node i to node j and also has a cost function φij(xij).

is the indicator function of the set Γt
p, and Γt

p := {{x̄j , ūj}j∈Ωp :
xp[t+ 1] = Θt

p

(

{xj [t], uj [t]}j∈Ωp

)

}.

We illustrate in Fig. 2(a) the case where Ωp ⊆ Np ∪ {p},

i.e., the state of node p is influenced by its own state/input and

by the states/inputs of the systems it communicates directly with.

This corresponds star-shaped variable where the center of the star

is node p, whose state is xp. Particular cases of this model have

been considered, for example, in [1], whose solutions are heuristics,

and in [13], whose solutions are optimization-based. The model

we propose is more general, since it can handle scenarios where

interacting nodes do not need to communicate directly, or even

scenarios with a non-connected variable. Both cases are shown in

Fig. 2(b). For example, the subgraph induced by (x̄3, ū3) contains

nodes {1, 2, 3, 4} and is connected. (Connectivity refers always to the

communication network, which is represented by solid lines in the

plots.) Nodes 1 and 3, however, do not communicate directly. This

is an example of an induced subgraph that is not a star. On the other

hand, the subgraph induced by (x̄2, ū2) contains nodes {1, 2, 3, 5}
and is not connected, implying a non-connected variable.

Network flows. A network flow problem is typically formulated

on a network with arcs (directed edges), where an arc from node i
to node j indicates a flow in that direction [4]. In the example given

in Fig. 3, there can be a flow from node 1 to node 5, but not

the opposite. Every arc (i, j) ∈ A has associated a non-negative

variable xij representing the amount of flow in that arc (from i to j),

and a cost function φij(xij) that depends only on xij . The goal is

to minimize the sum of all costs, while satisfying conservation of

flow. External flow can be injected or extracted from a node, making

that node a source or a sink, respectively. We represent the network

of flows with the node-arc incidence matrix B, where the column

associated to an arc from node i to node j has a −1 in the ith entry,

a 1 in the jth entry, and zeros elsewhere. We assume the components

of the variable x and the columns of B are in lexicographic order:

e.g., the variable in Fig. 3 is x = (x12, x15, x23, x34, x35, x46, x56).
Conservation of flow is expressed as Bx = d, where d ∈ R

P is the

vector of external inputs/outputs. The entries of d sum up to zero

and dp < 0 (resp. dp > 0) if node p is a source (resp. sink). When

Communication steps

Relative error

10
0

10
−1

10
−2

10
−3

10
−4

0 200 400 600 800 1000

Alg. 1

[8], [9]

[22]

Figure 4. Results for the network flow problem (15).

node p is neither a source nor a sink, dp = 0. We solve

minimize
x

∑

(i,j)∈A φij(xij)

subject to Bx = d , x ≥ 0 ,
(15)

which is written as (2) with fp
(

{xpj}(p,j)∈A, {xjp}(j,p)∈A

)

=
1
2

∑

(p,j)∈A φpj(xpj) + 1
2

∑

(j,p)∈A φjp(xjp) +

ib⊤p x=dp
({xpj}(p,j)∈A, {xjp}(j,p)∈A), where b⊤p is the pth

row of B. In words, fp consists of the sum of the functions

associated to all arcs involving node p, plus the indicator function

of the set {x : b⊤p x = dp}. This indicator function enforces

the conservation of flow at node p and it only involves the

variables {xpj}(p,j)∈A and {xjp}(j,p)∈A.

We assume the communication network G = (V, E) consists of

the underlying undirected network. This means nodes i and j can

exchange messages directly, i.e., (i, j) ∈ E for i < j, if either (i, j) ∈
A or (j, i) ∈ A. Therefore, in contrast with the flows, messages do

not necessarily need to be exchanged satisfying the direction of the

arcs. In fact, messages and flows might represent different physical

quantities, e.g., electricity and water. In problem (15), the subgraph

induced by xij contains only nodes i and j and an edge connecting

them. This makes the variable in (15) star-shaped.

VI. EXPERIMENTAL RESULTS

Using the applications from the previous section, we now show

some illustrative experimental results for a connected variable. A

thorough description of the experimental setup and more results

(including for non-connected variables), can be found in [5, §4.4]. All

experiments simulate a distributed environment in a single computer.1

Network flows. In network flows we considered (15)

with φij(xij) = xij/(cij − xij) + ixij≤cij (xij), where cij is

the capacity of the arc (i, j) ∈ A, and used a randomly generated

Barabasi network with 2000 nodes and 3996 edges. The results are

in Fig. 4, which shows the relative error ‖xk−x⋆‖∞/‖x⋆‖∞ versus

the number of communication steps. Here, xk is the concatenation of

the estimates at all nodes, and x⋆ is the optimal solution, computed

in a centralized way. One communication step (CS) consists of all

nodes communicating their current estimates to their neighbors;

the total number of CSs is thus proportional to the total number

of communications. We compared the proposed algorithm (Alg. 1)

with [8] and [9], whose algorithms coincide for this problem, and

Nesterov’s fast gradient algorithm [22]. In fact, when the variable

is star-shaped, any gradient algorithm can be applied and becomes

distributed (since the center of the star can act as a central node for

that component). Fig. 4 shows that our proposed algorithm requires

1Code that reproduces these experiments can be found in http://www.ee.
ucl.ac.uk/~jmota/_static/DADMMp_reproducible.zip.

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

0018-9286 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAC.2014.2365686, IEEE Transactions on Automatic Control

6

Communication steps

Relative error

10
0

10
−1

10
−2

10
−3

10
−4

0 200 400 600 800 1000

Alg. 1

[8]

[9]

[22]

(a) Scenario 1

Communication steps

Relative error

10
0

10
−1

10
−2

10
−3

10
−4

0 50 100 150 200 250

Alg. 1
[9]

(b) Scenario 2

Figure 5. Results for D-MPC. In (a), the network has 4941 nodes and 6594 edges, and all the components induce star-shaped subgraphs. In (b), the network
has 100 nodes and 196 edges, and the variable is connected (but not star-shaped). All the systems in (a) are stable, and in (b) they are not necessarily stable.

the least number of CSs to achieve any relative error between 10−1

and 10−4.

D-MPC. The results for D-MPC are shown in Fig. 2, where we

used two different scenarios: 1) the network has 4941 nodes and 6594
edges (topology of the Western States Power Grid [23]), the variable

is star-shaped, and all subsystems are stable; 2) the network has 100
nodes and 196 edges (randomly generated Barabasi network), the

variable is connected but not star-shaped, and most subsystems are

unstable. See [5, §4.4] for a description on how we generated the sys-

tem interactions in scenario 2). In both scenarios, we considered (14)

with linear, time-invariant Θt
p’s (system interactions) and quadratic

Φp’s and Ψt
p’s. The size of the state (resp. input) at each node was

always np = 3 (resp. mp = 1), and the time-horizon was T = 5.

This means the optimization variable in (14) had dimensions 24705
in scenario 1) and dimensions 500 in scenario 2). Fig. 5(a) shows the

results for scenario 1) and Fig. 5(b) shows the results for scenario 2).
Note that the only prior distributed algorithm that can solve problems

for generic connected variables is [9], which is why only Alg. 1

and [9] appear in Fig. 5(b). For a star-shaped variable (Fig. 5(a)),

both [8] and gradient-based methods [22] yield distributed algorithms.

In both scenarios, the proposed algorithm (Alg. 1) was the algorithm

that performed the best, requiring uniformly less CSs to achieve any

relative error between 10−1 and 10−4.

VII. CONCLUSIONS

We designed algorithms for distributed optimization problems

where the function at each node depends on arbitrary components of

the variable, rather than on all of them. We classify an optimization

variable as connected or non-connected, and propose an algorithm

for each. Our algorithms require a network coloring scheme, and

their convergence is guaranteed only when the network is bipartite

or when the objectives are strongly convex. In practice, however,

the algorithms converge even when none of these conditions is met.

Moreover, experimental results show that our algorithms require less

communications than prior algorithms to solve D-MPC or network

flow problems to arbitrary levels of accuracy.

REFERENCES

[1] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Syst. Mag., vol. 22, no. 1, 2002.

[2] I. Necoara, V. Nedelcu, and I. Dumitrache, “Parallel and distributed
optimization methods for estimation and control on networks,” J. Proc.

Control, vol. 21, 2011.

[3] R. Scattolini, “Architectures for distributed and hierarchical model
predictive control - a review,” J. Proc. Control, vol. 19, 2009.

[4] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms,

and Applications, Prentice Hall, 1993.
[5] J. Mota, Communication-Efficient Algorithms For Distributed Opti-

mization, Ph.D. thesis, Carnegie Mellon University, PA, and Technical
University of Lisbon, Portugal, 2013.

[6] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel
decoding,” IEEE Trans. Sig. Proc., vol. 57, no. 10, 2009.

[7] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM: A
communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Trans. Sig. Proc., vol. 61, no. 10, 2013.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating method of mul-
tipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, 2011.

[9] V. Kekatos and G. Giannakis, “Distributed robust power system state
estimation,” IEEE Trans. Power Sys., vol. 28, no. 2, 2012.

[10] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed ADMM for
model predictive control and congestion control,” in 51st IEEE Conf.

Dec. Control, 2012, pp. 5110–5115.
[11] I. Necoara and D. Clipici, “Distributed random coordinate descent

methods for composite minimization,” Tech. Rep., University Politehnica
Bucharest, 2013.

[12] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accelerated
dual descent for network optimization,” arXiv: 1104.1157, 2012.

[13] C. Conte, T. Summers, M. Zeilinger, M. Morari, and C. Jones, “Compu-
tational aspects of distributed optimization in model predictive control,”
in IEEE Conf. Dec. Contr., 2012.

[14] D. Han and X. Yuan, “A note on the alternating direction method of
multipliers,” J. Optim. Theory Appl., 2012.

[15] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “A proof of convergence
for the alternating direction method of multipliers applied to polyhedral-
constrained functions,” arXiv: 1112.2295, 2011.

[16] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” Tech. Rep.,
Dept. Computational and Applied Mathematics, Rice University, 2012.

[17] M. Hong and Z. Luo, “On the linear convergence of the alternating
direction method of multipliers,” arXiv: 1208.3922, 2012.

[18] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM
for multi-block convex minimization problems is not necessarily conver-
gent,” http://www.optimization-online.org/DB_FILE/2013/09/4059.pdf,
2013.

[19] D. Williamson, “The primal-dual method for approximating algorithms,”
Math. Program., vol. 91, no. B, pp. 447–478, 2002.

[20] G. Robins and A Zelikovsky, “Improved Steiner tree approximation in
graphs,” in 11th anual ACM-SIAM symp. Discrete Algs., 2000.

[21] P. Chalermsook and J. Fakcharoenphol, “Simple distributed algorithms
for approximating minimum Steiner trees,” in Computing and Combi-

natorics, 2005.
[22] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course, Kluwer Academic Publishers, 2003.
[23] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’

networks,” Nature, vol. 393, no. 6684, 1998.

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: October 26, 2014 16:19:13 PST

