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D-ADMM Based Distributed MPC with input-output models*
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Abstract—This article presents a distributed model pre-
dictive controller (MPC) based on linear models that use
input/output plant data and D-ADMM optimization. The use
of input/output models has the advantage of not requiring
a Kalman filter to estimate the plant state. The D-ADMM
algorithm solves the optimization problem associated to a cost
function that is the sum of the control agents private costs,
being a modification of the Alternating Direction of Multipliers
(ADMM) algorithm that requires no central node and implies
a significant reduction in the communication among adjacent
nodes. The distributed MPC is obtained for the special case of
a linear graph. An application to distributed control of a water
delivery canal is presented to illustrate the algorithm.

I. INTRODUCTION
A. Motivation and review

The development of distributed versions of model predic-
tive control (D-MPC) is currently the subject of considerable
interest. A recent collection of existing algorithms [1] listed
35 different approaches. In addition, recent works on the
topic include as significant examples [2], [3], [4], [10], [13],
[5], [7], [8]. While many applications can be considered, such
as the control of power networks [6] or electrical vehicle
charging control [9], this article concentrates its attention
on the control of water delivery canals. Besides its socio-
economic impact, this problem raises interesting control
problems that have been addressed by distributed predictive
control [14], [15], [11], as well as with other approaches.

Water delivery canals are made of a sequence of reaches,
delimited by gates that control the water flow. Some of these
structures extend over wide areas, sometimes over different
countries or different administrative regions. This large spa-
tial scale motivates the use of distributed control, where local
controllers, associated to gates, exchange information about
their decisions via a communication network. In the situation
considered in this article, it is assumed that each local control
agent is only able to negotiate the value of its manipulated
variable with its direct neighbors.

A recent approach to obtain distributed controllers that is
suitable for water delivery canals is based on Game theory
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[10], [8], [11], [12]. Although it leads to algorithms that
are easy to implement, leading to good results, if proper
actions are not taken, these methods have the drawback of
converging to a Nash equilibrium, or to a modification of
a Nash equilibrium, that may be far away from the global
minimum that would be obtained if a centralized controller
is used.

In order to avoid the above problem, one may resort to
methods based on convex optimization and duality [16].
Accordingly, in the so-called decomposition phase, the whole
system is first decomposed in subsystems, each one provided
with a replica of all the manipulated variables. Then, in the
coordination phase, a sequence of optimization problems is
solved in which, in addition to the operational constraints,
there is a coordination constraint that imposes that the repli-
cas of the manipulated variables obtained by local control
agents are consistent among them. However, solving these
problems using straight lagrangian optimization leads to
algorithms that require strong assumptions to converge that
limit the class of problems to which they can be useful. The
Alternating Direction Method of Multipliers (ADMM) is a
family of algorithms that uses a lagrangian function aug-
mented with a quadratic term, and perform optimization in
alternation along each of the Lagrange multipliers. Although
the origin of the method is old [17], it is receiving increasing
attention for a variety of applications [19]. However, some
forms of the ADMM algorithm, such as described in [19],
actually assume a central node, a fact that prevents its use in
pure distributed optimization algorithms. In [20], [21] forms
of ADMM that do not require this central node (the first
with the dual variables associated to nodes, and the second to
edges) are presented. These algorithms are named D-ADMM
to stress the fact that they do not require a central node,
being therefore adequate to solve distributed optimization
problems. In [21], the D-ADMM algorithm is optimized such
as to reduce the communication required among network
nodes.

The use of decomposition-coordination algorithms, to-
gether with an augmented lagrangian, has been already used
in relation to optimal/predictive control of water delivery
canal systems [18], [15]. In this paper, instead, the D-ADMM
algorithm presented in [21] is used to obtain a distributed
MPC for distributed plants with a linear graph.

B. Contributions and organization

The contribution of this paper consists of a distributed
model predictive controller (MPC) based on linear models
based on input/output plant data and D-ADMM optimization,
and its application to the distributed control of a water
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Fig. 1. A schematic view of the canal with the distributed controller.

delivery canal. The paper is organized as follows: After this
introductory section, in which the problem is motivated, the
most relevant literature is reviewed and paper contributions
and organization are stated, the problem is formulated in
section II. Predictive models based on input/output data for
the class of distributed plant considered are described in
section III. Centralized MPC based on input/output models
are obtained in section IV and section V describes the
proposed distributed MPC algorithm. The application to a
water delivery canal is presented throughout sections II until
V. Finally, section VI draws conclusions.

II. PROBLEM FORMULATION

Consider a distributed plant made of local plants such
that each one interacts only with its neighbors. This plant
can be represented by a linear graph in which the nodes
are numbered sequentially from 1 to Np and represent the
different local plants with local models denoted 34, ..., Xp,
and the edges are associated to the interactions among
neighbor local plants. Each plant 3; has a local manipulated
variable denoted wu; and a local output y;. Both u; and y;, for
i =1,..., Np are not available centrally, but it is assumed
that there is a communication system with a structure that
parallels the plant graph, and that allows the local control
agents of neighbor plants to exchange information. Further-
more, it is assumed that the local plants interact only through
their inputs, meaning that the output of X; is influenced by
u;—1, U; and u; 41 (whenever these variables exist).

Associated to each local plant 3J; there is a local quadratic
cost .J; defined by

T
Ji =Y Mk + ) = rilk+ 5P + piui (k+ 5 — 1), (1)
j=1
where £ € N is the current time, r; is the reference to be
tracked by y;, and p; is a weight in the manipulated variable.
The overall cost is given by

Np
J=Y "1
=1

To each local plant 3J; a local control agent K; is associ-
ated. The objective consists in the cooperation of the local
control agents, with the communication limitation expressed

2
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above, in order to find the values of the local manipulated
variables such that the minimum of the global cost J is
tightly approximated, while satisfying at all times k the
constraints given by

u" < (k) < uer 3)
Yyt < wi(k) < yo, C
and _
SE™ <wi(k) —ui(k—1) < SE*, 5)
where uf"i", AT yminymaz | Gmin and SMAT are param-

eters that define the acceptable operating regime envelope.

Furthermore, the cost minimization is to be made in
a receding horizon sense. Each local control agent has a
replica of the manipulated variables of its neighbors. At the
beginning of each sampling interval, neighbor local control
agents exchange information such as to reach a consensus
on the values of the manipulated variables.

III. PREDICTIVE MODELS

To define the notation, we start by reviewing standard
results for predictive models for an isolated local plant. For
simplicity, the index of the local system is omitted. The result
is then generalized to obtain predictors to the overall plant.

A. Isolated systems

Consider an isolated system described by the deterministic
autoregressive model

A" (g My(k +1) = B* (g~ u(k), (6)
where ¢! is the backward shift operator,
A*(q_j) =l4az '+ - Fapz™" 7
and
B (q77)=by+ bzt + by ™, (8)

Define the polynomials Ff, of order j — 1, and G}, of
order n — 1 to be a solution of the diophantine equation

A g =1-q77G;. )
Multiplying (6) by F}" and using (9), yields
y(k+j) = Giy(k) + B*(q*j)F;u(k +j5—1). (10)

Observe now that

B*(¢7)F} =
=bo+biz" 4+ bz ™) (14 frzT 4+ (1D
+ fjo1z70t) =
= bo 4 (bofr+b1) 27" + (bofo+bifr +b2) 272+
~ —-—
w1 wa w3

ot (bofir+bifi o+ +b 1)z T4

wj
+ (bofj 4 b))z 4 (bofm + o+ bm) 2
—_— ———
Tl'j 7Tj
n+1 n+m
(12)
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Fig. 2.

Step response of the multivariable canal model considered.

and define the lower triangular Toeplitz matrix

w1 0 . 0
wWo w1 e 0
W = (13)
wr wr—1 ... w1
and the matrix
RIS S
Im=: : : (14)
Al

The pencil of predictive models that allow to predict future
outputs at time k is then written

y(k)
k+2 u(k +1 k—n
TTT =w | T e Z(k—l)
y(k+T) u(k +m)
u(k—m—+1)

15)

B. Serially connected systems

The predictors for serially connected systems are obtained
by concatenating the local predictors and considering the
influence of the neighbor inputs. The step response of the
multivariable canal model used in shown in figure 2. For
Np = 3 the predictive model becomes

Wi, Wi 0 II;, 0 O
Y=|Woy Wy We| U+ |0 Il 0]s. (16)
0 Wiy W3 0 0 I3

with
(y)piy (un)
Y= (i1 |, U= @)™ 1, an
(ya)pil (ug)g ™"

and the state

(18)

In the above, the notation fo 2 [2(ky) ... 2(k12)]T is used.

IV. CENTRALIZED MPC

The centralized MPC algorithm is obtained by minimizing
J with respect to all the local manipulated variables and
assuming that the minimizing algorithm has access to all the
input/output variables. By using the predictive model (16),
the cost function becomes

Wi Wis 0 II;, O 0
Jcent:H War Wo Wo|U+ |0 IIp 0| s—
0 Wiy Wy 0 0 IIg
Ri(k)| |12
— |Ra(k) | || + QU (19)
R3(k)

in which €2 is a block diagonal matrix of p; Irx7,i =1, 2, 3,
with p; a weight. This cost function is to be minimized in
a receding horizon sense, meaning that, at each instant k,
the cost J..n: is minimized with respect to U, taking into
account the constraints (e. g., by using the package cvx).
Then, only the components of U that correspond to the
present time k are actually applied to the plant, the whole
procedure being repeated at the next time step.

The interest in the centralized solution consists in the fact
that it provides an optimal performance bound to which
decentralized solutions may be compared. Figure 3 shows
the average tracking error for different values of the horizon
T, and for the 3 local costs. For values of T above 75 the
closed loop system is not stable. This behavior is common
to many plants controlled by MPC, being due to the fact
that predictors loose their accuracy for large horizons as
a consequence of modeling errors. Figure 4 shows the
dependency of the cost on the weights of the manipulated
variables.

V. DISTRIBUTED MPC

Associate to each node the cost functions
2

Ji = ‘ WUy + Wy oUs + sy — Ry|| + pi||UL]1* (20)

2

Jo = ‘ WUy + Wa 1Uy + W 3Us + Ilzs3 — Ra|| +

p2||Us|?, 21

2

J3 = ’ W3Us + W3 2Us + Il3s3 — Rs|| + p3||Us|. (22)

Each agent involved in the minimization has an internal
replica of all the control variables of the other agents. The
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notation U? stands for the replica of U, in agent b. With this
notation, the new control variables are

o= ut o] 23)
0y =[o2" v v 24)
Oy =[o¢" v vy'] (3)

In terms of the replicated manipulated variables the local
cost functions are written as

Ji = (WU, + Yi0))T WUy + Yio) + UL 5101, (26)
Jo = (Wals + Yao) T (Wols 4 Yao) + UL 52Uz, (27)
J3z = (WgUg + Ygo)T(Wgﬁg + Ygo) + Ugﬁgﬁg, (28)

with

W= [Wy Wiy 0], (29)
Wy =[War Wp Wag (30)
Ws=1[0 Wiy Ws] (31)
Yi0 =1I1s51 — Ry, (32)
Yoo = Ilps0 — Ry, (33)
Y30 = II383 — R3, (34)
and
I 0 0 0 0 O
pr=p1 |0 0 O], p2=p2|0 I Of,
0 0 O 0 0 O
0O 0 O
p3=p3 |0 0 O]. (35)
0 0 I

The minimization of Ji, Jo and Js by the local control
agents is made under the coordination constraints U, =0,
and U, = Us. The D-ADMM algorithm is implemented in
this paper with the dual variables associated to the edges.
In association to this algorithm, the two dual variables A
and 7 and the cost weight variable p,q are considered. As
required by D-ADMM, the augmented lagrangian functions
associated to the local cost functions are given by

_ 1 _ _
Ly =J1—)\TU1+§,0ad||U1—U2||27 (36)
L2 = J2 + ()\ — n)TUQ + pad(HUQ — U1H2+
U — Us|?), 37)
_ 1 _ _
=k+ﬂ%+ymw—wﬁ (38)
or
pad
Ul(W1 W1 +p1 + o5 )U1
+2W{ Y10 — A — paalU2) U + e, (39)
Lo = UQ(WQTWQ + p2 + padI)UQT—F
+(2W3 Yag + (A = 1) — paa(U1 + U3))US + €2,  (40)
Ly = Us(WEWs + ps + @ 0o+
+(2W4 Y30 4+ 1) — paalUs2)U3 + €3. (41)

The terms in each cost function that do not depend on the
minimizing variable are represented by ¢; and are not shown
since they do not affect the optimal value of the argument.
Therefore, for simplification purposes

Ly = U MU +&,U7, (42)
= Us MyU] + ®,U7 (43)
Lz = Us MUY + @307 (44)



with definitions for M; and ®; that can be readily recovered
from (42). This leads to

0L _

—— = 22U M, + P4, 45
8U1T 1My + Py (45)
0Ly _

—— = 2U5 M5 + Po, 46
8U2T oMo + Po (46)
0Ls _

—— = 2U3M3 + P3, 47
ouT 3Ms + @3 47

and the minimum for the control variables is

_ 1

U = —§Mf1<1>17 (48)

_ 1

Uy = —§M51<1>2, (49)

F 7k 1 -1

U;s = —§M3 2% (50)

Thus, upon comparison with [21], the algorithm for comput-
ing the solution using D-ADMM is as follows:

Algorithm 1 Distributed MPC with dual variables associated
to the edges

DualVariablesInitialization : A = 0;17 =0

ControlV ariablesInitialization U, = 0.0, =
0;U;=0
repeat

(I)l = 2W1TY10 — A= padUQ

Uy =—3M;'®y )

B3 = 2W4 Ys0 + 1) — paala

Us = -1 M3 ' ®s o

By = 2W Yoo + (A = 1) — paa(Ur + Us)

Uy = —1M; ',

A=A— pad({fl - gz)

n="n— paa(Uz — Us)
until pre-defined maximum D-ADMM iterations or stop-
ping criterion is met.

The D-ADMM algorithm is provably convergent when
the network is bipartite or when the local cost functions
are strongly convex (Corollary 1, [21]). Incidentally, both
conditions hold in our problem: a linear graph is always
bipartite, and the local cost functions (20)-(22) are strongly
convex. This means that, after the execution of Algorithm
1, all agents will know the minimizer of (19). Furthermore,
given that the functions in (20)-(22) are differentiable and
their gradients are Lipschitz continuous, it can be shown
that the primal and dual variables in Algorithm 1 converge
linearly to their optimal values [22].

Applying algorithm 1, using p,q = 100, n;; = 20 (number
of iterations) and p; = 200, p; = 600, p3s = 200, T =
45, the simulation results shown in figures 6, 7, and 8§ are
obtained. As seen in figure 5, the choice made for p,q and
n;¢ 1S the one that corresponds to the smallest computational
load.

VI. CONCLUSIONS

The use of predictive models based on input/output data
dispenses the use of a state estimator.
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Fig. 6. Distributed control of the three pools, using D-ADMM with p,q =
100, n;¢ = 20, and p1 = 200, p2 = 600, p3 = 200 and T" = 45. Results
for pool 1.

There are different types of D-ADMM algorithms that
optimize different aspects. In the situation considered in
this paper, a D-ADMM algorithm with the dual variables
associated to the edges has been considered. This formulation
is less intuitive, but the resulting algorithm optimizes the
number of messages exchanged among neighbor nodes.

The configuration of the distributed MPC algorithm com-
prises two parts: The configuration of the local controllers
and the selection of the parameters for the D-ADMM opti-
mizer. In what concerns the first part one has to select the
horizons and the control weights. The guidelines known for
centralized problems apply here, and the paper provides plots
that show the influence of these parameters on the cost. A
more specific remark that applies to the distributed control
situation faced is that it is advantageous to use different
weights in different local MPC controllers.

The parameters of the D-ADMM optimizer are the p,q
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weight and the stopping criteria. In the paper, the main stop-
ping criteria was the number of iterations performed, n;;. As
shown in figure 5, the approximation of the optimum depends
on an interplay between p,4 and n;;, being possible to select
these parameters such as to optimize the computational load.

The final algorithm performs the optimization using closed
form expressions. This is possible because the paper con-
siders linear models together with a quadratic cost and no
inequality constraints directly embedded in the optimization.
Constraints are taken into consideration by a priori selecting
the penalty weights of the manipulated variables in the
cost functions. It is possible to modify the algorithm to
incorporate constraints explicitly, but in this case one must
resort to a numerical optimization algorithm, that implies a
higher computational load.
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