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Abstract—We consider distributed optimization in random net-
works where nodes cooperatively minimize the sum
of their individual convex costs. Existing literature proposes
distributed gradient-like methods that are computationally cheap
and resilient to link failures, but have slow convergence rates. In
this paper, we propose accelerated distributed gradient methods
that 1) are resilient to link failures; 2) computationally cheap;
and 3) improve convergence rates over other gradient methods.
We model the network by a sequence of independent, identically
distributed random matrices drawn from the set of
symmetric, stochastic matrices with positive diagonals. The net-
work is connected on average and the cost functions are convex,
differentiable, with Lipschitz continuous and bounded gradients.
We design two distributed Nesterov-like gradient methods that
modify the D–NG and D–NC methods that we proposed for
static networks. We prove their convergence rates in terms of
the expected optimality gap at the cost function. Let and
be the number of per-node gradient evaluations and per-node
communications, respectively. Then the modified D–NG achieves
rates and , and the modified D–NC rates

and , where is arbitrarily small. For
comparison, the standard distributed gradient method cannot
do better than and , on the same class of
cost functions (even for static networks). Simulation examples
illustrate our analytical findings.

Index Terms—Consensus, convergence rate, distributed opti-
mization, Nesterov gradient, random networks.

I. INTRODUCTION
A. Motivation

W ITH many distributed signal processing applications, a
common research challenge is to develop distributed al-

gorithms whereby all nodes in a generic, connected network re-
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cover a global vector parameter of common interest, while
each node possesses only a partial, local knowledge on the un-
known vector and interacts only locally, with immediate
neighbors in the network. For example, such situation arises
with (distance-measurement based) acoustic source localization
in wireless sensor networks (WSNs). Node measures the re-
ceived signal energy that contains information only about its
distance to the acoustic source, and hence node in isolation
cannot recover the unknown source location; but, it can recover
the source location by collaborating with other nodes in the net-
work (see Example 3 below for details). In many applications,
like with WSNs, the inter-node communications are prone to
random communication failures (e.g., random packet dropouts
in WSNs); an important challenge in developing distributed al-
gorithms to recover is to make them provably resilient to
random communication failures.
Similarly to, e.g., [1]–[3], we address the above problem in

the framework of distributed (smooth) optimization. Each node
in a generic, connected network has a differentiable, convex
cost function known only by node , parameterized
by node ’s local data , with the global optimization
variable common to all nodes. Each node in the network wants
to find a parameter that minimizes the sum of the
nodes’ local costs :

(1)

where we assume that each has Lipschitz continuous and
bounded gradients. In this paper, our goals are: 1) to develop
distributed, iterative, gradient-based methods that solve (1),
whereby nodes over iterations exchange messages only with
their immediate neighbors; and 2) to provide convergence rate
guarantees of the methods (on the assumed functions class) in
the presence of random communication failures.
We now motivate setup (1) with three application examples

from the literature, namely 1) distributed learning of a linear
classifier, 2) distributed robust estimation, and 3) distributed
source localization. Each of the three example problems
obeys the Assumptions that we make on the ’s (see ahead
Assumptions 3, 4, and 5 for details.) Besides those, existing
literature provides many other application examples, including
distributed estimation, e.g., [4]–[6], distributed detection, e.g.,
[7], [8], target localization and intruder detection in biological
networks, e.g., [9], and spectrum sensing for cognitive radio
networks, e.g., [10].
1) Example 1: Distributed Learning of a Linear Classifier:

Consider a distributed learning scenario where training data is
distributed across nodes in the network; each node has data
samples, , where is a feature vector and
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is the class label of the vector , e.g., [11]. For
the purpose of future feature vector classifications, each node
wants to learn the linear classifier , i.e.,
to determine a vector and a scalar , based on
all nodes’ data samples, that yields the best classification in a
certain sense. Specifically, we seek and that
solve:

(2)

where is the logistic loss. Problem
(2) fits (1), with , and

.
2) Example 2: Distributed Robust Estimation in Sensor Net-

works: Consider a sensor network deployed, e.g., to measure a
pollution level in a certain area [12]. Each sensor makes
scalar measurements (of the level of pollution), . As-
sume a signal+noise measurement model, where ,
with the “signal” (real pollution level), and a zero-mean
noise, independent across all indices . Further, suppose that
there are two groups of sensors, and . Sensors op-
erate correctly, and their measurements have a small variance

, , ; sensors
are damaged, and their measurements have a large variance

, , . To combat the outlier
measurements from damaged sensors in , [12] estimates the
parameter through the Huber loss, i.e., it obtains an estimate
as a solution to the following problem:

(3)

where is the Huber loss: , if
, and , otherwise.

3) Example 3: Acoustic Source Localization in Sensor
Networks: Suppose that an acoustic source is positioned at an
unknown location in the field [12], [13]. Each node
(sensor) measures the received signal energy from the source:

Here is node ’s location (known to node ), and
are constants known to all nodes, and is zero-mean

additive noise. The goal is for each node to estimate the source’s
position . Reference [13] proposes to obtain an estimate of
by solving:

(4)

where is the disk

and is the distance from to the set
. It can be shown that ,

which is convex but nonsmooth. To adapt the latter function
to our setting, we take standard smooth approximations of the
involved nonsmooth functions. Namely, we approximate

with and

with , where
is a large scalar and is a small scalar. The re-

sulting optimization problem takes the form of (1) with
.

B. Contributions

We now state our main contributions by placing them in the
context of existing work. For problem (1), [3], see also [14],
[15], presents two distributed Nesterov-like gradient algorithms
for static (non-random) networks, referred to as D–NG (Dis-
tributed Nesterov Gradient algorithm) and D–NC (Distributed
Nesterov gradient with Consensus iterations).
In this paper, we propose the mD–NG and mD–NC algo-

rithms, which modify the D–NG and D–NC algorithms, and,
beyond proving their convergence, we solve the much harder
problem of establishing their convergence rate guarantees
on random networks. We model the network by a sequence
of random independent, identically distributed (i.i.d.) weight
matrices drawn from a set of symmetric, stochastic ma-
trices with positive diagonals, and we assume that the network
is connected on average (the graph supporting is
connected). We establish the convergence rates of the expected
optimality gap in the cost function (at any node ) of mD-NG
and mD-NC, in terms of the number of per node gradient
evaluations and the number of per-node communications
, when the functions are convex and differentiable, with

Lipschitz continuous and bounded gradients. We show that
the modified methods achieve in expectation the same rates
that the methods in [3] achieve on static networks, namely:
mD–NG converges at rates and ,
while mD–NC has rates and , where
is an arbitrarily small positive number. We explicitly give the
convergence rate constants in terms of the number of nodes
and the network statistics, more precisely, in terms of the

quantity (See ahead paragraph
with heading Notation.)
We contrast D–NG and D–NC in [3] with their modified

variants, mD–NG and mD–NC, respectively. Simulations in
Section VI show that D–NG may diverge when links fail, while
mD–NG converges, possibly at a slightly lower rate on static
networks and requires an additional ( -dimensional) vector
communication per iteration . Hence, mD–NG compromises
slightly speed of convergence for robustness to link failures.
Algorithm mD–NC has one inner consensus with -dimen-

sional variables per outer iteration , while D–NC has two con-
sensus algorithms with -dimensional variables. Both D–NC
variants converge in our simulations when links fail, showing
similar performance.
The analysis here differs from [3], since the dynamics of dis-

agreements are different from the dynamics in [3]. This requires
novel bounds on certain products of time-varying matrices. By
disagreement, we mean how different the solution estimates of
distinct nodes are, say and for nodes and .
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C. Brief Comment on the Literature

There is increased interest in distributed optimization and
learning. Broadly, the literature considers two types of methods,
namely, batch processing, e.g., [1], [10], [16]–[19], and online
adaptive processing, e.g., [4], [9], [20], [21]. With batch pro-
cessing, data is acquired beforehand, and hence the ’s are
known before the algorithm runs. In contrast, with adaptive on-
line processing, nodes acquire new data at each iteration of the
distributed algorithm. In general, adaptive and batch processing
show inherent tradeoffs.We comment on certain advantages and
disadvantages of the two methods. When the unknown param-
eter is time-varying, and the time constant of the
dynamics of is comparable with the time needed to per-
form one distributed algorithm’s iteration, adaptive processing
is the right choice. When the dynamics of are slow com-
pared to the time needed to iterate the distributed algorithm until
convergence, or when does not vary with time (the case
we consider here), both batch and adaptive processing can be
applied. To our best knowledge, existing literature does not ad-
dress comparisons of distributed adaptive and distributed batch
optimization algorithms. A systematic comparison among the
two types of distributed methods is a nontrivial task and is out-
side of our paper’s scope. In the centralized setting, [22] ad-
dresses a similar problem in machine learning, by comparing
the standard gradient method (batch processing) and the sto-
chastic gradient method (adaptive/online processing). Their re-
sults roughly show that, when the number of data samples is
small enough and the allowed computational cost to perform
optimization is large enough, it is advantageous to use batch
processing (standard gradient method); on the other hand, if the
number of data samples is large enough and the allowed compu-
tational cost is small enough, it is advantageous to use adaptive
processing (online gradient method). We consider in this paper
batch processing.
Distributed gradient methods are, e.g., in [1], [2], [12],

[16]–[18], [23]–[27]. References [1], [16], [24] proved conver-
gence of their algorithms under deterministically time varying
or random networks. Typically, ’s are convex, non-differ-
entiable, and with bounded gradients over the constraint set.

Reference [2] establishes convergence rate
(with high probability) of a version of the distributed dual
averaging method. We assume a more restricted class of cost
functions– ’s that are convex and have Lipschitz continuous
and bounded gradients, but, in contradistinction, we establish
strictly faster convergence rates–at least that are
not achievable by standard distributed gradient methods [1]
on the same class . Indeed, [3] shows that the method in
[1] cannot achieve a worst-case rate better than
on the same class , even for static networks. Reference [28]
proposes an accelerated distributed proximal gradient method,
which resembles our D–NC method for deterministically time
varying networks; in contrast, we deal here with randomly
varying networks. For a detailed comparison of D–NC with
[28], we refer to [3].
In addition to distributed gradient-like methods, a different

type of methods – distributed (augmented) Lagrangian and dis-
tributed alternating direction of multipliers methods (ADMM)
have been studied, e.g., in [10], [29]–[35]. They have in general
more complex iterations than gradient methods, but may have a

lower total communication cost, e.g., [30]. [34] shows conver-
gence of an asynchronous ADMM algorithm while [35] shows
an rate (in expectation) of an asynchronous ADMM
method studied therein.
In summary, our paper differs from the existing literature by

simultaneously considering the following three problem dimen-
sions. Namely, we consider (1) distributed, (2) Nesterov-like
(accelerated) gradient methods that operate on (3) random net-
works. To our best knowledge, neither of the exiting works con-
siders these three dimensions simultaneously.

D. Paper Organization

The next paragraph sets notation. Section II introduces
the network and optimization models, reviews D–NG and
D–NC in [3], and gives certain preliminary results. Section III
presents mD–NG, states its convergence rate, and proves the
rate. Section IV presents mD–NC and its convergence rate
with proofs. Section V discusses extensions to our results.
Section VI illustrates mD–NG and mD–NC on a Huber loss
example. We conclude in Section VII. The remaining proofs
are in the Appendix.

Notation

Denote by: the -dimensional real space: or
the entry of ; the transpose of ; the se-
lection of the -th, -th, , -th entries of vector ; ,
0, , and , respectively, the identity matrix, the zero matrix,
the column vector with unit entries, and the -th column of ;

denotes the ideal consensus matrix;
the Kronecker product of matrices; the vector (matrix)
-norm of its argument; the Euclidean (spectral)
norm of its vector (matrix) argument ( also denotes the mod-
ulus of a scalar); the -th smallest in modulus eigenvalue;

a positive definite Hermitian matrix ; the smallest
integer greater than or equal to a real scalar ; the gra-
dient at of a differentiable function , ;

and the probability and expectation, respectively. For
two positive sequences and , we have: if

; if ;
and if , and .

II. MODEL AND PRELIMINARIES

Section II-A introduces the network and optimizationmodels,
Section II-B reviews the D–NG and D–NC distributed methods
proposed in [3], and Section II-C gives preliminary results of
certain products of time varying matrices.

A. Problem Model

1) Random Network Model: The network is random, due to
link failures or communication protocol used (e.g., gossip, [36],
[37].) It is defined by a sequence of random
weight matrices.
Assumption 1 (Random Network): We have:
(a) The sequence is i.i.d.
(b) Almost surely (a.s.), are symmetric, stochastic,

with strictly positive diagonal entries.
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(c) There exists such that, for all , a.s.
.

By Assumptions 1 (b) and (c), a.s., ; also,
, , may be zero, but if (nodes and

communicate) it is non-negligible (at least ). Assumption
1 (c) is mild and standard in the analysis of consensus and
distributed gradient methods, e.g., [1], [23]. It says that a node
always gives a non-negligible weight to itself.
Let , the supergraph , the set

of nodes, and – collects
all realizable links, all pairs for which with
positive probability.
2) Link Failure Model is covered by Assumption 1. This

model is suitable, e.g., for a practical WSN, where random
packet dropouts are adequately modeled by random link fail-
ures. Here, each link at time is Bernoulli: when
it is one, is online (communication), and when it is zero,
the link fails (no communication). The Bernoulli links are
independent over time, but may be correlated in space. Possible
weights are: 1) , : , when

is online, and , else; 2) , :
; and 3) . While the

weights , here are binary random variables
(taking values either or 0), the diagonal weights
have a more complex probability distribution.
As noted, our network model covers intermittent link failures

but does not cover node failures, which may occur due to, e.g.,
energy depletion of a node. Modeling node failures is an inter-
esting topic for future work.
We further make the following Assumption.
Assumption 2 (Network Connectedness): is connected.
Denote by , by

(5)

and by . One can show that

is the square root of the second
largest eigenvalue of and that, under Assumptions
1 and 2, . Lemma 1 (proof in Appendix A) shows that
characterizes the geometric decay of the first and second

moments of .
Lemma 1: Let Assumptions 1 and 2 hold. Then:

(6)

(7)

(8)

for all for all
The bounds in (6)–(8) may be loose, but are enough to prove

the results below and simplify the presentation.
3) Optimization Model: We now introduce the optimization

model. The nodes solve the unconstrained problem (1). The
function is known only to node . We impose
the following three Assumptions.
Assumption 3 (Solvability): There exists a solution

such that .

Assumption 4 (Lipschitz Continuous Gradient): For all ,
is convex, differentiable, and has Lipschitz continuous gradient
with constant :

Assumption 5 (Bounded Gradients): There exists a constant
such that, , ,

Assumptions 3 and 4 are standard in gradient methods; in par-
ticular, Assumption 4 is precisely the Assumption required by
the centralized Nesterov gradient method [38]. Assumption 5
is not required in centralized Nesterov. Reference [3] demon-
strates that (even on) static networks and a constant ,
the convergence rates of D–NG or of the standard distributed
gradient method in [1] become arbitrarily slow if Assumption 5
is relaxed. See examples 1–3 in the introduction for the ’s that
obey Assumptions 3–5.

Algorithms D–NG and D–NC for Static Networks

We briefly review the D–NG and D–NC methods proposed
in [3] for static networks. For this purpose, current subsection
assumes a static, deterministic, connected network, with an
associated symmetric, stochastic, deterministic weight matrix

, with . With D–NG, the matrix
is positive definite, while with D–NC this requirement is

not needed.
Algorithm D–NG: Node maintains its solution estimate
and an auxiliary variable , It uses arbi-

trary initialization and, for ,
performs the updates

(9)

(10)

In (9)–(10), is the neigh-
borhood of node (including node ). For the
step-size is:

(11)

and is the sequence from the centralized Nesterov gradient
method, [38]:

(12)

The D–NG algorithm works as follows. At iteration , node
receives the variables from its neighbors ,
and updates and via (9) and (10).
Algorithm D–NC operates in two time scales. In the outer

(slow time scale) iterations , each node updates its solu-
tion estimate , and updates an auxiliary variable (as
with the D–NG). In the inner iterations , nodes perform two
rounds of consensus with the number of inner iterations
and , given by:

The D–NC algorithm is presented in Algorithm 1.



872 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 4, FEBRUARY 15, 2014

Algorithm 1: Algorithm D–NC

1: Initialization: Node sets: .
2: Node calculates:
3: (First consensus) Nodes run average consensus initialized
by :

and set .
4: Node calculates

.
5: (Second consensus) Nodes run average consensus
initialized by :

and set .
6: Set and go to step 2.

B. Scalar Sums and Products of Time-Varying Matrices

In the convergence rate analysis of mD–NG and mD–NC, we
make use of certain scalar sum bounds and bounds on the prod-
ucts of 2 2 time varying matrices. We state these preliminary
results here and prove them in Appendix B.
Lemma 2 (Scalar Sums): Let . Then, for all

(13)

(14)

For , let be:

(15)

with in (12). Further, let and:

(16)

We have the following important result, proved in Appendix B.
Lemma 3: Consider in (16). Then, for all

, for all

(17)

Algorithm mD–NG

We now present our mD–NG algorithm for random networks.
Section III-A describes the algorithm, Section III-B sates our
results on its convergence rate, and Section III-C proves these
results.

C. The Algorithm

We modify D–NG in (9)–(10) to handle random networks.
Node maintains its solution estimate and auxiliary vari-
able , It uses arbitrary initialization

and, for , performs the updates

(18)

(19)

In (18)–(19), is the
(random) neighborhood of node (including node ) at time .
For the step-size is in (11), and the sequence
is in (12). We assume nodes know (Section V relaxes this.)
The mD–NG algorithm (18)–(19) differs from D–NG in

(9)–(10) in step (19). With D–NG, nodes communicate only
the ’s; with mD–NG, they also communicate the

’s (see the sum term in (19)). This modification
allows for the robustness to link failures. (See Theorems 4 and
5 and the simulations in Section VI.) Further, mD–NG does not
require the weight matrix to be positive definite, while D–NG
does.
1) Vector Form: Let ,

, and ,
. Then, for

, with , the Kro-
necker product of with the identity , mD–NG in
vector form is:

(20)

(21)

2) Initialization: For notation simplicity, without loss of
generality (wlog), we assume, with all proposed methods,
that nodes initialize their estimates to the same values, i.e.,

, for all ; for example,
.

3) Communication and Computational Costs, Per Node and
Iteration : We show the communication and computational
costs of mD–NG per iteration and compare it with the costs
of the standard distributed gradient method in [1]. Consider,
for simplicity, a regular, static network, with degree (number
of neighbors of each node) . Further, suppose that the com-
putational cost of computing the gradient of each is sim-
ilar, . mD–NG requires, per , mul-
tiplications, additions, and one gradient evaluation
( ), while [1] requires multiplications,

additions, and one gradient evaluation. The cost of the
gradient evaluation depends on the ’s and is usually dominant
over other terms. Regarding communications per , mD–NG
requires communicated scalars per node, while [1] requires
communicated scalars per node. Hence, compared with [1],

mD–NG has about twice larger communication cost and (less
than) twice larger computational cost per . As we show further
ahead in Theorem 5, mD–NG has rate , while [1] is
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(in a worst-case sense) no faster than , [3]. Given these
rates and the fact that one iteration of mD–NG costs (roughly)
as two iterations of [1], it is clear that mD–NG has a faster rate
than [1] in terms of the overall cost.

D. Convergence Rate of mD–NG

We state our convergence rate result for mD–NG. Proofs
are in Section III-C. We estimate the expected optimality gap
in the cost at each node normalized by , e.g., [2], [27]:

, where is node ’s solution at a certain
stage of the algorithm. We study how node ’s optimality gap
decreases with: 1) the number of iterations, or of per-node
gradient evaluations; and 2) the total number of -di-
mensional vector communications per node. With mD–NG,

–at each , there is one and only one per-node -dimen-
sional communication and one per-node gradient evaluation.
Not so with mD–NC, as we will see. We establish for both
methods convergence rates on the mean square disagreements
of different node estimates in terms of and , showing that
it converges to zero.
Let: the global averages of the nodes’ estimates be

and ;
the disagreements: and

, and analogously for and

; and . We have the fol-
lowing Theorem on and . Note

, and so and
. (Equivalent inequalities hold for

.) Recall also in Lemma 1.
Theorem 4: Consider mD–NG (18)–(19) under Assumptions

1–5. Then, for all

(22)

(23)

Theorem 5 establishes the convergence rate of mD–NG as
(and ).

Theorem 5: Consider mD–NG (18)–(19) under Assumptions
1–5. Let , . Then, at any node ,
the expected normalized optimality gap is

; more precisely:

(24)

We now examine how the expected optimality gap with
mD–NG depends on the number of nodes and the network
connectivity, measured by . (The smaller is, the better
the connectivity.) We also compare mD–NG with D–NG. We
consider separately random and static networks.
1) Network Dependence – Random Networks: First,

note that the right hand side in (24) is upper bounded by
, where the constant

captures the effect of

and . Ignoring the effect of constants and :
Assuming that nodes

know , we can further set the optimized step-size
, and obtain: We now

estimate how the quantity depends on for several stan-
dard models (chain, ring, geometric network, and expanders)
under link failures. Recall the definition of the supergraph

. We adopt a spatio-temporally independent link
failure model, where each link fails with equal probability .
We assume that does not depend on . Whenever a link is
online, we set its weight to a constant , specified further
ahead. Let be the (deterministic) symmetric graph
Laplacian matrix associated with , defined by: 1) ,

; , , , and
. From ([39], (18) and (21)), it can be shown that:

Denote by
the -th smallest eigenvalue of . Setting , it can

be shown that:
Ignoring logarithmic factors, and applying standard results (see,
e.g., [2]) on the quantity (chain/ring);

(geometric); and (expander), we obtain
the following estimates on the constant with the mD–NG al-
gorithm: (chain/ring); (geometric);
and (expander). On random networks, D–NG may
diverge (see Section VI.)
2) Network Dependence – Static Networks: We consider the

static network case when the link failure probability .
It can be shown that, in this case, the bound on improves to:

Setting the optimized step

size , we obtain: which gives

(chain/ring); (geometric); and
(expander). The static network scaling of mD–NG is

worse than D–NG, which achieves in the same setting at least
with arbitrarily small. Therefore,

compared with D–NG, mD–NG slightly compromises the
convergence constant but enjoys resilience to link failures.

Proofs of Theorems 4 and 5

In this subsection, we prove Theorems 4 and 5.
Proof of Theorem 4: Through this proof and the rest of the

paper, we establish certain equalities and inequalities on random
quantities of interest. These equalities and inequalities further
ahead hold either: 1) almost surely, or: 2) in expectation. From
the notation, it is clear which of the two cases is in force. For
notational simplicity, we perform the proof of Theorem 4 for
the case , but the proof extends for generic The
proof has three steps. In Step 1, we derive the dynamic equation
for the disagreement . In Step 2, we
unwind the dynamic equation, expressing in terms of the
products in (5) and in (16). Finally, in Step 3, we
apply the already established bounds on the norms of the latter
products.

Step 1. Disagreement: Note that
, because is symmetric stochastic.

Also, . From the last
two equalities,
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. Using the latter, multiplying (20)–(21) from the
left by , obtain (recall in (15)):

(25)

for and , where

(26)
Step 2. Unwinding Recursion (25): Recall in (5),

and in (16). Then, unwinding (25), and using the Kro-
necker product property ,
we obtain for all

(27)

Step 3. Finalizing the Proof: Consider in (26). By
Assumption 5, we have . Using this, the
step-size , and , get

, for any random realization of . With this,
, Lemma 3, and the sub-multiplicative and sub-

additive properties of norms, obtain from (27):

(28)

Taking expectation, and using Lemma 1:

Finally, applying Lemma 2 to the last equation with , the
result in (22) follows.
Now prove (23). Consider From (27):

where the last equality again uses the property
. Further, obtain:

(29)

The last inequality uses Lemma 3 and

Taking expectation and applying
Lemma 1, obtain:

The last inequality applies Lemma 2. Thus, the bound in (23).
The proof of Theorem 4 is complete.

Proof of Theorem 5: The proof parallels that of Theorem
5 (a) in [3]. We outline it and refer to ([3], Lemma 2, Lemma
3, Theorem 5 (a), and their proofs.) It is based on the evolu-
tion of the global averages , and

. Let:

(30)

Then, it is easy to show that evolve as:

(31)

(32)

with . As shown in [3],

is a inexact oracle, i.e., it holds that for all points
:

(33)

From (30), and are functions of .
Inequalities (33) hold for any random realization of
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and any . We apply now Lemma 2 in [3], with as
in (30). Get:

(34)

where .
Dividing (34) by and unwinding the resulting inequality, get:

(35)

Next, using Assumption 5, obtain, :

(36)

The proof is completed after combining (35) and (36), taking
expectation, and using in Theorem 4 the bounds

and .

Algorithm mD–NC

We present mD–NC. Section IV-A defines additional random
matrices needed for representation of mD–NC and presents
mD–NC. Section IV-B states our results on its convergence
rate, while Section IV-C proves the results.

E. Model and Algorithm

We consider a sequence of i.i.d. random matrices that obey
Assumptions 1 and 2. We index these matrices with two-indices
since mD–NC operates in two time scales–an inner loop, in-
dexed by with iterations, and an outer loop indexed by ,
where:

(37)

For static networks, the term can be dropped. At each
inner iteration, nodes utilize one communication round–each
node broadcasts a vector to all its neighbors. We denote
by the random weight matrix that corresponds to the
communication round at the -th inner iteration and -th outer
iteration. The matrices are ordered lexicographically as

This sequence obeys Assumptions 1 and 2.
It will be useful to define the products of the weight matrices

over each outer iteration :

(38)

The matrices are independent but not iden-
tically distributed. Define and, for

:

(39)

The Lemma below is proved in Appendix A.
Lemma 6: Let Assumptions 1 and 2 hold. Then, for all

, for all :

(40)

(41)

(42)

(43)

1) The mD–NC Algorithm: mD–NC, in Algorithm 2, uses
constant step-size . Each node maintains over
(outer iterations) the solution estimate and an auxiliary
variable . Recall in Lemma 1.

Algorithm 2: mD–NC

1: Initialization: Node sets ; and .
2: Node calculates .
3: (Consensus) Nodes run average consensus on ,

initialized by :

with in (37), and set and
. (Here is a

selection of entries of vector .)
4: Node calculates

.
5: Set and go to step 2.

Step 3 has communication rounds at outer iteration .
Nodes know , , and . Section V relaxes this.
2) mD–NC in Vector Form: Consider the matrices in

(38). Use the compact notation as in mD–NG for , ,
and recall . Then for

(44)

(45)

with
3) Communication and Computational Costs Per Node of

Each Inner and Outer Iteration: Assume, for simplicity, a
regular static network with degree . Each inner iteration
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requires: multiplications and additions (com-
putational cost) and scalar communications. Each outer
iteration requires multiplications, additions, and one
gradient evaluation (computational cost), and requires no com-
munications. Hence, compared with [1], one inner iteration of
mD–NC costs (roughly) as two iterations of [1]. Comparing
the rate with mD–NC and with [1], it
is clear that mD–NC has a faster rate than [1] in terms of the
overall cost.

F. Convergence Rate of mD–NC

Define, like for mD–NG, the disagreements , ,
, and

Theorem 7: Consider mD–NC in Algorithm 2 under As-
sumptions 1–5. Then, for all

(46)

Theorem 8: Consider mD–NC in Algorithm 2 under As-
sumptions 1–5. Let , . Then, after
communication rounds (after outer iterations)

i.e., , we have, at any node ,

We now examine how the optimality gap depends on the
number of nodes and the network connectivity ( ). We
consider both mD–NC and D–NC, on both random and static
networks.
1) Network Dependence – Random Networks: We

first consider mD–NC (Theorem 8) and express the op-
timality gap in terms of . Fix a small positive number
. Using , and

, obtain:

and therefore, letting :

Substituting this in Theorem 8, and replacing with
( is arbitrary), we obtain that, after
communication rounds,

is upper bounded by , where the constant

captures the effect of and . Ignoring ,
we obtain the network dependence for mD–NG:

Further, setting

the optimized step size :
We specialize the above for the standard random net-
works (chain, ring, geometric, expander) that we set-up in
Section III-B. We obtain that (chain/ring);

(geometric); and (expander). For
D–NC, convergence rate under the random network model
studied in this paper has not been established.
2) Network Dependence – Static Networks: For mD–NC, the

network dependence on static networks slightly improves over
that of random networks – the small constant can be set
to zero. Algorithm D–NC has the same network dependence as
mD–NC (on static networks).

Proofs of Theorems 7 and 8

We now prove the convergence rate results for mD–NC.
Proof of Theorem 7: For simplicity, we prove for ,

but the proof extends to generic . Similarly to Theorem
4, we proceed in three steps. In Step 1, we derive the dynamics
for the disagreement . In Step 2, we un-
wind the disagreement equation and express in terms of the

’s in (39) and in (16). Step 3 finalizes the proof
using bounds previously established on the norms of and

Step 1. Disagreement Dynamics: We write the dynamic
equation for . Recall in (15). Multiplying (44)–(45)
from the left by , and using ,
obtain for

(47)

and , where

(48)

Step 2: Unwinding the Recursion (47): Recall in
(16). Unwinding (47) and using

, obtain for

(49)
The quantities and in (49) are random, while the

’s are deterministic.
Step 3: Finalizing the Proof: Consider in (48). ByAs-

sumption 5, . From this, obtain
, for any random realization of .We prove the right

inequality in (46). Consider Get from (49):

where the last equality uses
. By the sub-additive and sub-multiplicative properties,

, and , :
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where the last inequality uses
, Lemma 3 and Taking expectation and
applying Lemma 6, we obtain:

Thus, the right inequality in (46). The left inequality follows by:
Theorem 7 is proved.

Proof Outline of Theorem 8: We outline the proof since
similar to Theorem 8 in [3] (arxiv version v2). Consider the
global averages and as in mD–NG. Then, and

follow (31)–(32), with and as in (30).
Inequalities (33) hold with and
as in (30). Applying Lemma 2 in [3] gives:

(Compare the last equation with (35).) The remainder of the
proof proceeds analogously to that of Theorem 5.

III. DISCUSSION AND EXTENSIONS

We discuss extensions and corollaries: 1) relax the prior
knowledge on , and for both mD–NG and mD–NC; 2)
establish rates in the convergence in probability of mD–NG
and mD–NC; 3) show almost sure convergence with mD–NC;
and 4) establish a convergence rate in the second moment with
both methods.

A. Relaxing Knowledge of , and

Algorithm mD–NG requires only knowledge of to set the
step-size , . We show that the rate

(with a deteriorated constant) still holds if nodes
use arbitrary . Initialize all nodes to ,
suppose that , and let . Applying Lemma
2 in [3], as in the proof of Theorem 5 (b) in [3], for all ,
a.s.:

(50)

Further, from the proof of Theorem 5 (b) in [3], a.s.:

(51)

Finally, Theorem 4 holds unchanged for
. Likewise, one can show

. Thus,

. Multiplying (50)
by , taking expectation on the resulting inequality,
and applying Theorem 4, obtain the desired rate.
Algorithm mD–NC uses the constant step-size

and in (37). To avoid the use of , and , we set in
mD-NC: 1) a diminishing step-size , ;
and 2) (as proposed in [28]). We show the adapted
mD–NC achieves rate . Let . Then,
by Lemma 2 in [3], , a.s.:

(52)

Further, (51) holds here as well (a.s.) with Modify
the argument on the sum in (52). By Lemma 1 and ,

we have: . From this,

: . Next, consider

for arbitrary , and arbitrary .

Clearly, and hence:

Now, from step 3 of the proof of Theorem 7, the above implies:
, for all , where

is independent of . Hence, we obtain the desired bound
on the sum: Using this,
(51), multiplying (52) by , and taking expectation in
(52), obtains the rate .

B. Convergence in Probability and Almost Sure Convergence

Through the Markov inequality, Theorems 5 and 8 imply, for
any , when :

where is arbitrarily small. Furthermore, by the arguments
in, e.g., ([40], Section IV-A), with mD–NC, we have that, ,

, almost surely.
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C. Convergence Rates in the Second Moment

Consider the following special case of the random network
model in Assumptions 1 and 2. Let be the random
graph that supports a random instantiation of :

, with . We
assume is connected with positive probability. This holds
with spatio-temporally independent link failures, but not with
pairwise gossip. We establish the bounds on the second moment
of the optimality gaps:

(53)

(54)

where (54) holds for mD–NC with a modified value of (see
Appendix C.) We interpret (53), while (54) is similar. Result
(53) shows that, not only the mean of the optimality gap decays
as (by Theorem 5), but also its standard deviation
is .

IV. SIMULATION EXAMPLE

We compare mD–NG and mD–NC, D–NG and D–NC
in [3], and the methods in [1]. We initialize all to

, . We generate one sample path (simulation
run), and estimate the average normalized optimality gap

versus the total number of scalar
transmissions, across all nodes. We count both the successful
and failed transmissions. All our plots are in
scales.

A. Setup

Consider a connected geometric supergraph
generated by placing 10 nodes at random on a unit 2D square
and connecting the nodes whose distance is less than a pre-
scribed radius (26 links). We consider random and static net-
works. With the random graph, nodes fail with probability
For online links , the weights

and , . The
static network has the same supergraph , and, , we
set . With D–NG and mD–NG, the step-size
is , while with D–NC andmD–NC, and
with [1], we use . With random networks, for both
variants of D–NC, we set as in (37); with static networks, we
use . (As indicated in Section IV, the term
is not needed with static networks.)
We use Huber loss cost functions , if

, and , else, . (See
example 2 in Section I-A.)

B. Results: Link Failures

Fig. 1 (top) shows that the convergence rates (slopes) of
mD-NG, mD-NC, and D-NC, are better than that of the method
in [1]. All methods converge, even with severe link failures,
while D-NG diverges, see Fig. 1 (second from top plot).

C. Results: Static Network

Fig. 1 (second from bottom) shows mD-NG, mD-NC,
D-NG, D-NC, and the method in [1] on a static network. As
expected with a static network, D-NG performs slightly better

Fig. 1. (Three top plots) Average normalized optimality gap vs. total
number of scalar transmissions, across all nodes ( scale), for

-node network. Two top plots: link failures; Second from bottom plot:
Static network. Bottom plot: Compare mD–NG method with different weight
assignments on an -node network; Red, solid line: optimized weights
according to [39]; black, dotted line: , .
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than mD-NG, and both converge faster than [1]. D-NC and
mD-NC perform similarly on both static and random networks.
We also compared mD-NG and D-NG when mD-NG is run
with Metropolis weights , [41], while D-NG, because it
requires positive definite weights, is run with positive definite

. We report that D-NG performs margin-
ally better than mD-NG (Figure omitted for brevity.)

D. Weight Optimization

Fig. 1 shows versus for uniform weights and
the optimized weights in [39] on a 20-node, 91-edge geometric
graph (radius ). Links fail independently in time and

space with probabilities . Here is the dis-
tance between and . The losses are Huber :
for nodes and for . The ’s are

as before. The two plots have the same rates (slopes). The op-
timized weights lead to better convergence constant (agreeing
with Theorem 5), reducing the communication cost for the same
accuracy.

V. CONCLUSION

We considered distributed optimization over random net-
works where nodes minimize the sum of their
individual convex costs. We model the random network by
a sequence of independent, identically distributed
random matrices that take values in the set of symmetric,
stochastic matrices with positive diagonals. The ’s are convex
and have Lipschitz continuous and bounded gradients. We
present mD–NG and mD–NC that are resilient to link failures.
We establish their convergence in terms of the expected op-
timality gap of the cost function at arbitrary node : mD–NG
achieves rates and , where is the
number of per-node gradient evaluations and is the number
of per-node communications; and mD–NC has rates
and , with arbitrarily small. Simulation
examples with link failures and Huber loss functions illustrate
our findings.

APPENDIX

Proofs of Lemmas 1 and 6:
Proof of Lemma 1: We prove (7). For ,

and (7) holds. Fix , . For matrix :
. Applying this for , taking

expectation:

(55)

Next, following proofs in ([36], Section II-B):

Plugging this in (55), (7) follows. Next, (6) follows from (7) and
Jensen’s inequality. To prove (8), consider
( by symmetry). By the independence of the ’s, the

sub-multiplicative property of norms, and taking expectation,
obtain:

(56)

We applied (6) and (7) to get (56); thus, (8) for
. If , , and the

result reduces to (7). The case , is symmetric.
Finally, if , the result is trivial. The proof
is complete.

Proof of Lemma 6: We prove (40). By (39), is the
product of i.i.d. matrices that obey Assumptions 1 and
2. Hence, by (7), obtain (40):

We prove (42). Let .
For square matrices :

. Applying it times, obtain:

Using independence, taking expectation, and applying (40), ob-
tain (42). By Jensen’s inequality, (41) follows from (42); rela-
tion (43) is proved similarly.

Proofs of Lemmas 2 and 3:
Proof of Lemma 2: Let be the derivative of .

Then (13) follows from:

To obtain (14), use (13) and :

Proof of Lemma 3: We prove Lemma 3 by first establishing
two auxiliary results (Lemmas 9 and 10). Once these are estab-
lished, we finish by proving Lemma 3.

Lemma 9 (Products ): Let , in (16),
, , and:

(57)
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Then, for , with and as
below:

(58)

(59)

(60)

Proof: The proof is by mathematical induction on
. Using , ,

and , it is easy to verify that the claim for
holds, i.e.,

Now, suppose the claim holds for some fixed ,
. Using the inductive hypothesis and the definition of
:

(61)

(62)

Equality (61) uses , , , and
the fact that . (This is trivial to
show by mathematical induction on .) Next, recognize from
(59)–(60) that ,
and . Thus, the claim
for and the proof is complete.
We establish bounds on the sums and .
Lemma 10: Let and in (59)–(60),

, Then:

(63)

Proof: We prove each of the four inequalities above.
Proof of the Right Inequality on : By induction on

. The claim holds for , since
, . Let it be true for some .

For , write as:

(64)

Using (64) and the induction hypothesis:

Thus, the right inequality on .
Proof of the Left Inequality on : Again, by induc-

tion on . The claim holds for , since:

Let the claim be true for some , i.e.,:

(65)

We show that Using (64):

where the last equality follows after algebraicmanipulations. By
induction, the last inequality completes the proof of the lower
bound on .

Proof of Bounds on : The lower bound is trivial.
The upper bound follows by induction. For :

Let the claim hold for some , i.e.,:
From (59): Thus, by

the induction hypothesis:
completing the proof of the upper bound on .

Proof of Lemma 3: We upper bound . Fix
some , , and consider in Lemma
9. Note that . Thus,

(66)

By Lemma 10, the term:
Using in (66) this equation, (by Lemma 10),

, and , get:

(67)
for all , . Next, from (67), for

, , get:

We used and proved (17) for
, for . To complete the proof, we show that (17)

holds also for: 1) , ; 2) , . Consider
first case 1 and , .
We have , and so (17) holds
for , Next, consider case 2 and ,
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. We have that , and so (17) also
holds for , This proves the Lemma.

Proof of (53) – (54): Recall the random graph . We
assume that, for a certain connected graph with the Lapla-
cian matrix , with probability . This,

with Assumption 1, implies :

by ([42], Lemma 11), can be taken as:
Consider (35). Let

. Squaring (35), taking expectation, and by
the Cauchi-Schwarz inequality:

(68)

The first term in (68) is ; by Theorem 4, the second
is . Recall (29), let . Fix ,

. Let , and
, for , and . From

(28) and , one can show
(details omitted):

, and:

and so the third term in (68) is . Thus,

. Further, one can show

. Taking
expectation and applying Theorem 4, the result (53) follows.
For mD–NC, prove (54) like (53) by letting .
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