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SUMMARY

This paper presents a novel integrated guidance and control strategy for docking of autonomous underwater
vehicles. The approach to the base, and hence the control design, is divided in two steps: (i) in the first, at
higher speed, the vehicle dynamics is assumed to be underactuated, and an appropriate control law is derived
to steer the vehicle towards the final docking path, achieving convergence to zero of the appropriate error
variables for almost all initial conditions; (ii) in the second stage, at low speed, the vehicle is assumed to
be fully actuated, and a robust control law is designed that achieves convergence to zero of the appropriate
error variables for all initial conditions, in the presence of parametric model uncertainty. Simulations are
presented illustrating the performance of the proposed controllers, including model uncertainty and sensor
noise. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The European Union project TRIDENT aims to develop an intervention autonomous underwater
vehicle (AUV) to perform several tasks such as seabed surveying or intervention operations, after
which the vehicle is expected to autonomously return and dock to its base station. This problem,
commonly referred to as docking, is one of the many challenges that the design of AUVs entails,
and it is one of the key enabling features of AUVs, providing the means to return to a base station to
perform vital activities such that recharging batteries, transferring data, changing the payload, and
downloading new mission parameters.

The initial approach to the base, usually denominated as homing, is not considered in this paper,
see [1, 2], and references therein for further details on that subject. During the homing stage, the
only purpose of the vehicle is to approach the vicinity of the base, without any particular attitude
or direction of arrival. In the docking approach, the vehicle approaches the base along a particular
path, with a particular direction of arrival. Previous work in the literature on the docking problem
can be found in [3], where a simple terminal guidance system is proposed based upon an optical
quadrant tracker that locks onto a visible light source, which requires good visibility conditions.
An alternative based on an electromagnetic homing system is presented in [4], whereas in [5], a
visual servo controller approach is proposed. More recently, in [6], the concept of optical terminal
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guidance is recovered, whereas in [7], a sliding mode control strategy is detailed to solve the homing
and docking problems.

The main contribution of this paper is the development of two integrated guidance and control
laws to solve the docking problem based upon ultra-short baseline (USBL) acoustic positioning
system measurements, which provides the positions of two transponders that are fixed to the base
station. With the proposed strategy, the problem is divided in two stages: (i) in the initial approach,
the vehicle dynamics are assumed to be underactuated, which poses its own challenges, and the
goal is to simply drive the vehicle towards an appropriate docking path, which is defined as a straight
line that passes through the middle point between the transponders and that is orthogonal to the
direction defined by these two transponders; and (ii) in the final approach, which is carried out at a
lower speed, the vehicle employs a more efficient thruster to generate transversal force, which allows
to consider fully actuated dynamics. In this case, and because the desired docking profile should
be followed with great accuracy, an adaptive control law is proposed that accounts for uncertainty
in the hydrodynamic parameters, which are often not known with enough accuracy, as opposed to
other parameters like the mass and the inertia of the vehicle. Finally, the problem is considered only
in the horizontal plane, as in this stage, the vehicle is usually vertically stabilized by an independent
controller resorting to a depth sensor. Note that the derivation of the integrated guidance and control
law could be extended to the 3D case, which would, however, result in a much more intricate conver-
gence analysis for the initial docking approach, with no significant differences in the final approach.
It is important to stress that there is no switching back and forth between the two control laws: once
the final docking controller is engaged, there is no switching back to the initial docking controller. In
addition, the final docking controller ensures convergence to zero of all appropriate error variables
for all initial conditions. As such, no further stability issues need to be addressed. Previous work
by the authors can be found in [8], where the proposed docking solution was first introduced. The
present work presents extended proofs and includes more detailed simulation results with sensor
noise in order to assess the performance in realistic environments.

The paper is organized as follows. Section 2 presents the problem at hand, while Section 3
details the control design and stability analysis for both stages of the docking approach. Simulation
results are presented in Section 4 to evaluate the performance of the proposed solutions, and some
concluding remarks are provided in Section 5.

2. PROBLEM STATEMENT

Consider an autonomous underwater vehicle moving in the horizontal plane. Let ¹I º be an inertial
reference frame and ¹Bº a reference frame attached to the vehicle, whose origin is located at the cen-
ter of mass of the vehicle, usually denominated in the literature as the body-fixed reference frame.
Let p.t/ 2 R2 denote the position of the origin of ¹Bº, described in ¹I º, v.t/ D Œu.t/ v.t/�T 2 R2

the linear velocity of the vehicle relative to ¹I º, expressed in body-fixed coordinates, where u.t/
and v.t/ are the surge and sway velocities, respectively, and !.t/ the angular velocity of the vehicle,
expressed in ¹Bº. The vehicle kinematics are given by

Pp.t/ D R.t/v.t/; (1)

where R.t/ denotes the rotation matrix from body-fixed to inertial coordinates, which satisfies
PR.t/ D R.t/SŒ!.t/�; where S.:/ is the skew-symmetric matrix

S.x/ D
�
0 �x
x 0

�
:

2.1. Initial docking approach

The idea during the initial docking approach is to employ the main propellers of the vehicle, at
a certain cruise speed, to drive the vehicle toward the final docking path. As such, the vehicle is

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1528–1547
DOI: 10.1002/rnc



1530 P. BATISTA, C. SILVESTRE AND P. OLIVEIRA

assumed to be underactuated during this stage. The dynamic equations of motion, in the horizontal
plane, of an underactuated autonomous underwater vehicle can be written as [9, 10]8̂̂<

ˆ̂:
Pu.t/ D �DuCduŒju.t/j�

Mu
u.t/C v.t/!.t/C 1

Mu
�u.t/

Pv.t/ D �DvCdvŒjv.t/j�
Mv

v.t/ � u.t/!.t/

P!.t/ D �D!Cd! Œj!.t/j�
J

!.t/C 1
J
�!.t/

; (2)

where Mu > 0 and Mv > 0 represent the mass of the vehicle, including added mass effects, J > 0
denotes the inertia of the vehicle,Du > 0,Dv > 0,D! > 0 are hydrodynamic damping parameters,
duŒju.t/j� W R

C
0 ! RC0 , dvŒjv.t/j� W R

C
0 ! RC0 , and d! Œj!.t/j� W R

C
0 ! RC0 are positive functions

that capture higher order hydrodynamic damping effects, �u.t/ 2 R is the control force along the
surge motion of the vehicle, and �!.t/ 2 R is the angular motion control torque.

Suppose that there exist two transponders fixed in the mission scenario, equally spaced from
the final docking position, as depicted in Figure 1. One of the transponders is designated as the
left transponder, whereas the other is the right transponder, whose inertial positions are denoted by
Itl 2 R2 and Itr 2 R2, respectively. The first problem considered here is to drive the underactuated
AUV toward the path that passes through the docking position and is orthogonal to the straight line
defined by the two transponders, shortening the distance to the docking position, as suggested in
Figure 1. The vehicle is assumed to be equipped with a navigation system, that provides its linear
and angular velocity, and an Ultra-short Baseline positioning system that gives the position of the
transponders with respect to the vehicle, expressed in body-fixed coordinates, as given by

tl.t/ D RT .t/
�
Itl � p.t/

�
and

tr.t/ D RT .t/
�
Itr � p.t/

�
;

see, for example, [1].

2.2. Final docking approach

In the final docking approach, the goal is similar to the one previously presented. However, it is
carried out at a much lower speed and the vehicle eventually reaches the docking position. In this
case, the full actuation capabilities of the vehicle are exploited, and robustness to model uncertainties
is essential so that the vehicle follows exactly a predefined straight line trajectory profile, avoiding
collisions with the docking station.

The dynamics of an AUV depend on several physical parameters, some of which are often only
known with large uncertainty. Whereas the added mass and inertia terms can be determined with
reasonable confidence, the hydrodynamic damping terms are usually difficult to identify or quantify.

Figure 1. Initial docking approach scenario.
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As such, an adaptive controller should be designed. Considering that the hydrodynamic coefficients
are constant, it is possible to rewrite the hydrodynamic damping terms in (2) as�

Du C duŒju.t/j�
Dv C dvŒjv.t/j�

�
D �Tv Œv.t/� v

and

D! C d! Œj!.t/j� D �
T
! Œ!.t/� ! ;

where �vŒv.t/� 2 Rnv�2 and �! Œ!.t/� 2 Rn! are known functions of v.t/ and !.t/, respectively,
and  v 2 Rnv and  ! 2 Rn! are the hydrodynamic damping coefficients, only known up to some
error, see, for example, [11]. Considering a fully actuated AUV moving in the horizontal plane, the
dynamic equations of motion can then be written, in compact form, as²

MPv.t/ D �SŒ!.t/�Mv.t/ � �Tv Œv.t/� v C �v.t/

J P!.t/ D ��! Œ!.t/�
T ! C �!.t/;

; (3)

where M D diag.Mu;Mv/ 2 R2�2 is the added-mass matrix and �v.t/ D Œ�u.t/ �v.t/�
T 2 R2 is

the full control force input.
Consider the final docking scenario as depicted in Figure 2, where lx.t/ 2 R denotes the distance

to the docking position along the final docking path, ly.t/ 2 R denotes the minimum distance from
the vehicle to docking path, and ˛1.t/ denotes the error of orientation of the vehicle with respect
to the docking path. Further consider a smooth desired distance profile along the docking path
lxd .t/ 2 R. The problem considered here is that of designing an adaptive control law so that lx.t/
converges to lxd .t/ and both ly.t/ and ˛1.t/ converge to zero, considering that the hydrodynamic
coefficients  v and  ! are unknown.

2.3. Alternative sensor suite

In the framework previously introduced, two transponders are required in the docking station. How-
ever, it is possible to redefine the docking problem considering a single transponder, whose inertial
position is denoted by Its 2 R2, and an inertial direction of arrival Id 2 R2 orthogonal to the line
defined by the two transponders, given by

Its D
Itl CI tr

2

Figure 2. Final docking approach scenario.
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and

Id D
S.1/

�
Itl �I tr

���S.1/
�
Itl �I tr

��� ;
respectively. In practical situations, the direction of arrival could be known a priori (fixed base) or
transmitted prior to the docking operation of the AUV. To these new inertial vectors correspond
body-fixed vectors

ts.t/ D
tl.t/C tr.t/

2

and

d.t/ D
S.1/Œtl.t/ � tr.t/�
kS.1/Œtl.t/ � tr.t/�k

;

respectively, as available to the AUV. Notice that the left and right transponder measurements can
be readily obtained, as given by

tl.t/ D ts.t/ �
Lt

2
S.1/d.t/

and

tr.t/ D ts.t/C
Lt

2
S.1/d.t/;

respectively. Notice that, from the theoretical point of view, the use of two transponders or one
transponder and one direction of arrival is equivalent.

3. CONTROLLER DESIGN AND STABILITY ANALYSIS

3.1. Initial docking approach

This section details the design and stability analysis of a control law for the initial docking approach
of an underactuated AUV towards a base station. Essentially, a desired velocity is first determined
such that if the vehicle followed this velocity, the control goal would be achieved. Then, the angular
speed of the vehicle is reworked so that the desired velocity is attained. In the end, the force along the
surge axis and the torque are determined so that the surge speed and the angular velocities converge
to the desired values, which in turn ensures that all errors converge to zero. The idea of setting a
desired velocity first and then using the angular speed to achieve this goal has been used before, see,
for example, [12], [1, 2], and [13]. The latter presents a path following algorithm for underactuated
marine surface vessels, including the dynamics of the vehicle and known constant ocean currents.

In order to derive the control law notice that, when the vehicle is moving along the final docking
path, the distance between the vehicle and each transponder is identical. That suggests the definition
of the error variable

´1.t/ WD ktl.t/k
2 � ktr.t/k

2 : (4)

Taking the time derivative of (4) gives

Ṕ1.t/ D �2Œtl.t/ � tr.t/�T v.t/:

Consider the desired vehicle velocity defined by

vd .t/ WD
Vd

Lt

q
1CK21´

2
1.t/

K1´1.t/Œtl.t/ � tr.t/� �
Vd

Lt

q
1CK21´

2
1.t/

S.1/Œtl.t/ � tr.t/�; (5)

where Vd > 0 is the desired speed of the AUV along the docking path, K1 > 0 is a constant control
gain, and Lt WD ktl.t/ � tr.t/k D

��Itl � Itr�� is the distance between the transponders. Clearly,
if the linear velocity of the vehicle coincides with vd .t/, then ´1.t/ converges to zero, as one gets
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Ṕ1.t/ D �
2LtVdK1q
1CK2

1
´2
1
.t/
´1.t/: In order to achieve this behavior, the first term of (5) would suffice.

However, if the second term of (5) is removed, the speed of the vehicle converges to zero as ´1.t/
converges to zero, although the goal is to drive the vehicle along the final docking path. The extra
term ensures the desired speed of the vehicle when it is moving along the docking path. Notice also
that, in this way, the norm of the desired velocity is constant, namely, kvd .t/k D Vd for all t . Long
but straightforward computations allow to show that the derivative of (5), which is required in the
ensuing, can be written as

Pvd .t/ D �
�
!.t/C

2K1Œtl.t/ � tr.t/�T v.t/

1CK21´
2
1.t/

�
S.1/vd .t/: (6)

In order to derive a control law that ensures that the linear velocity of the vehicle, v.t/, converges
to the desired linear velocity, vd .t/, consider the error variables

´2.t/ WD u.t/ � Vd (7)

and

z3.t/ WD vd .t/ �
�
Vd
0

�
: (8)

Looking into these definitions, one concludes that, in the absence of sway velocity and with positive
surge speed, vd .t/ D v.t/ if and only if u.t/ D Vd and vd .t/ D ŒVd 0�T or, equivalently, ´2.t/ D 0
and z3.t/ D 0. Even though the sway velocity is not constrained by these error variables, it will be
shown, in the ensuing, that with the control law based upon these two error variables, not only do
´2.t/ and z3.t/ converge to zero but the sway velocity also converges to zero, which implies that the
velocity of the vehicle converges to the desired velocity. The derivation of the control law follows,
considering standard Lyapunov and backstepping techniques.

The time derivative of (7) is given by Ṕ2.t/ D Pu.t/, which using (2) can be written as

Ṕ2.t/ D �
Du C duŒju.t/j�

Mu

u.t/C v.t/!.t/C
1

Mu

�u.t/:

Let

�u.t/ D .Du C duŒju.t/j�/u.t/ �Muv.t/w.t/ �MuK2´2.t/; (9)

whereK2 > 0 is a constant control gain. Then, the derivative of ´2.t/ becomes Ṕ2.t/ D �K2´2.t/,
which readily allows to conclude that ´2.t/ converges globally exponentially fast to zero.

The time derivative of (8) can be written, using (6), as

Pz3.t/ D �
�
!.t/C

2K1Œtl.t/ � tr.t/�T v.t/

1CK21´
2
1.t/

�
S.1/vd .t/: (10)

If the angular velocity is set equal to

!d .t/ WD �
2K1Œtl.t/ � tr.t/�T v.t/

1CK21´
2
1.t/

CK3Œ0 1�vd .t/; (11)

where K3 > 0 is a constant control gain, then ´3.t/ Ṕ3.t/ becomes negative semidefinite. However,
the angular velocity is not an actual control variable. As such, the standard backstepping technique
is employed to extend the control law to the dynamics of the vehicle. To that purpose, consider the
additional error variable

´4.t/ WD !.t/ � !d .t/ (12)

and define the Lyapunov candidate function

V1.t/ WD
1

2
kz3.t/k

2 C
1

2
´24.t/: (13)
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The time derivative of (13) is given by

PV1.t/ D zT3 .t/Pz3.t/C ´4.t/ Ṕ4.t/: (14)

Using (11) and (12) in (10) and taking the time derivative of (12), using (2) and (8) also, allows to
rewrite (14) as

PV1.t/ D �Œ´4.t/CK3 Œ0 1�vd .t/� z
T
3 .t/S.1/vd .t/

C ´4.t/

�
�
D! C d! Œj!.t/j�

J
!.t/C

1

J
�!.t/ � P!d .t/

�
D �Vd´4.t/Œ0 1�z3.t/ �K3Vd ŒŒ0 1�z3.t/�

2

C ´4.t/

�
�
D! C d! Œj!.t/j�

J
!.t/C

1

J
�!.t/ � P!d .t/

�
;

where

P!d D �
2K1Œtl.t/ � tr.t/�T SŒ!.t/�v.t/C 2K1Œtl.t/ � tr.t/�T Pv.t/

1CK21´
2
1.t/

�
8K31´1.t/.Œtl.t/ � tr.t/�T v.t//2�

1CK21´
2
1.t/

�2 CK3Œ0 1�Pvd .t/;

with

Pv.t/ D
�

�K2´2.t/

�DvCdvŒjv.t/j�
Mv

v.t/ � u.t/!.t/

�
:

Setting

�!.t/ D .D! C d! Œj!.t/j�/!.t/C J Œ P!d .t/C Vd Œ0 1�z3.t/ �K4´4.t/� (15)

yields

PV1.t/ D �K3Vd ŒŒ0 1�z3.t/�
2 �K4´

2
4.t/; (16)

which is negative semidefinite.
The following proposition establishes the convergence of the error variables ´2.t/, z3.t/, and

´4.t/ to zero.

Proposition 1
Consider an underactuated AUV moving in the horizontal plane in a mission scenario as described in
Section 2.1, with kinematics and dynamics given by (1) and (2), respectively. Then, with the control
law (9) and (15), ´2 D 0 is a globally exponentially stable equilibrium point and z3 D 0; ´4 D 0 is
an almost globally asymptotically stable equilibrium point.

Proof
The fact that ´2.t/ converges globally exponentially fast to zero is trivially concluded, as with the
control law (9), it follows that Ṕ2.t/ D �K2´2.t/, whereK2 is a positive constant. With the control
law (15), the dynamics of z3.t/ and ´4.t/ can be written as8<

:
Pz3.t/ D �K3Œ0 1�z3.t/S.1/z3.t/ � VdK3Œ0 1�z3.t/Œ01�

�´4.t/S.1/z3.t/ � Vd´4.t/Œ01�
Ṕ4.t/ D �K4´4.t/C Vd Œ0 1�z3.t/;

which is an autonomous system. The Lyapunov function V1.t/ is, by construction, continuous,
radially unbounded, and positive definite. With the control law (15), the derivative of V1.t/ can
be written as (16), which is negative semidefinite along the trajectories of the system. In fact, the
derivative of V1.t/ has two zeros, one coincident with the origin, .z3 D 0; ´4 D 0/, and another
that corresponds to .z3 D �

�
2Vd
0

�
; ´4 D 0/. Locally, the derivative of V1.t/ is negative definite
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near the origin, hence the origin corresponds to a stable equilibrium point. It remains to show that
the other equilibrium point corresponds to an unstable equilibrium point. To that purpose, consider
the function

Vi .t/ WD
1

2
kzi .t/k

2 �
1

2
´24.t/;

where zi .t/ WD z3.t/� Œ�2Vd0 �:With the control law (15), it is readily shown that the time derivative
of Vi .t/ can be written as

PVi .t/ D VdK3ŒŒ0 1�zi .t/�
2 CK4´

2
4.t/:

As in a neighborhood of .zi D 0; z4 D 0/, one has that (i) PVi .t/ is positive definite; (ii) Vi .t/ is not
negative definite or negative semidefinite; and (iii) Vi .t/ = 0 for zi D 0, z4 D 0, it follows, from the
Lyapunov’s first instability theorem, that .zi D 0; z4 D 0/ is an unstable equilibrium point, see, for
example, [14]. This concludes the proof. �

Next, it is shown that, with the proposed control law, the sway velocity also converges to zero. To
that purpose, consider Figure 3, where the angle ˛.t/ is the angle between the x-axis of the vehicle
and the desired linear velocity, vd .t/, the angle ˛1.t/ is, as previously defined in Section 2.1, the
angle between the x-axis of the vehicle and the desired final orientation, which is that of the vector
�S.1/Œtl.t/ � tr.t/�T , and finally ˛2.t/ is the angle between the desired final orientation and the
desired linear velocity, vd .t/, such that

˛.t/ D ˛1.t/C ˛2.t/ (17)

holds for all t .
In order to show that the sway velocity v.t/ converges to zero, the sway dynamics will be

considered together with that of ˛1.t/.
Before proceeding, notice that ´

cosŒ˛1.t/� D Œ0 1�
tl .t/�tr .t/

Lt

sinŒ˛1.t/� D �Œ1 0�
tl .t/�tr .t/

Lt

(18)

and, using (7), (8), and (18), it is possible to rewrite (11) as

!d .t/ D
2K1Lt

1CK21´
2
1.t/

sinŒ˛1.t/�Œ´2.t/CVd ��
2K1Lt

1CK21´
2
1.t/

cosŒ˛1.t/�v.t/CK3Œ0 1�z3.t/: (19)

Figure 3. Angles ˛.t/, ˛1.t/, and ˛2.t/.
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Substituting (7) and (12) in (2) allows to write the sway dynamics as

Pv.t/ D �
Dv C dvŒjv.t/j�

Mv

v.t/ � Œ´2.t/C Vd �Œ´4.t/C !d .t/�: (20)

Substituting (19) in (20) allows to write

Pv.t/ D a11.t/v.t/C a12.t/˛1.t/C uv.t/;

with

a11.t/ WD �
Dv C dvŒjv.t/j�

Mv

C
2K1Lt

1CK21´
2
1.t/

cosŒ˛1.t/�Œ´2.t/C Vd �;

a12.t/ WD �
2K1Lt

1CK21´
2
1.t/

Œ´2.t/C Vd �
2sincŒ˛1.t/�;

and

uv.t/ WD �Œ´2.t/C Vd �Œ´4.t/CK3Œ0 1�z3.t/�:

On the other hand, the derivative of ˛1.t/ is readily given by

P̨1.t/ D �!.t/: (21)

Substituting (12) in (21), and using (19), allows to write

P̨1.t/ D a21.t/v.t/C a22.t/˛1.t/C u˛1.t/;

with

a21.t/ WD
2K1Lt

1CK21´
2
1.t/

cosŒ˛1.t/�;

a22.t/ WD �
2K1Lt

1CK21´
2
1.t/

Œ´2.t/C Vd �sincŒ˛1.t/�;

and

u˛1.t/ WD �´4.t/ �K3Œ0 1�z3.t/:

Let

z5.t/ WD
�
v.t/

˛1.t/

�
:

In compact form, the dynamics of z5.t/ can be written, after straightforward computations, as

Pz5.t/ D A.t/z5.t/C u.t/; (22)

where

A.t/ WD
�
a11.t/ a12.t/

a21.t/ a22.t/

�

and

u.t/ WD
�
uv.t/ u˛1.t/

�T
;

Notice that, in the definitions of a12.t/ and a22.t/ for ˛1.t/ D 0, any finite value could have be
chosen as it is multiplying by zero. The present choice, however, gives continuous functions.

Before presenting the main results of the section, the following proposition is introduced.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:1528–1547
DOI: 10.1002/rnc



TWO-STEP AUV DOCKING CONTROL 1537

Proposition 2
Let the controller gain K1 be chosen such that

0 < K1 <

Dv
Mv
� �1

9LtVd
(23)

for some arbitrarily small positive constant �1 > 0. In the conditions of Proposition 1, if the error
variable z3.t/ converges to zero, given arbitrarily small positive constants �s > 0 and �v > 0, then
there exists ti > t0 such that 8̂̂<

ˆ̂:
2
�
� �s 6 sincŒ˛1.t/� 6 1
j´2.t/j 6 1

2
Vd

1
2
Vd 6 j´2.t/C Vd j 6 3

2
Vd

jv.t/j 6 3
4
Vd C �v

(24)

for all t > ti .

Proof
First, notice that, from the definition of ˛2.t/, it is easy to see that

cosŒ˛2.t/� D
1

Vd
vd .t/ �

�
�S.1/

tl .t/ � tr.t/
Lt

�
D

1q
1CK21´

2
1.t/

> 0;

which allows to conclude that

˛2.t/ 2 ���=2; �=2Œ : (25)

On the other hand, in the conditions of Proposition 1, it is possible to conclude that when z3.t/
converges to zero, so does ˛.t/. According to (17) and (25), this allows to conclude that, in the
conditions of the Proposition, given any arbitrarily small positive constant �˛1 > 0, it is possible to
choose t� > t0 such that j˛1.t/j 6 �=2C �˛1 for all t > t�. Therefore, given any arbitrarily small
positive constant �s > 0, it is possible to choose t1 > t0 such that the first inequality of (24) holds.
As in the conditions of the proposition, ´2.t/ converges to zero exponentially fast, it is possible to
choose t2 > t1 > t0 such that the second inequality of (24) holds for t > t2, which also immediately
entails the third. To show the last inequality, consider the Lyapunov-like function Vv.t/ WD 1

2
v2.t/.

The time derivative of Vv.t/ is given by

PVv.t/ D �
Dv C dvŒjv.t/j�

Mv

v2.t/C
2K1Lt

1CK21´
2
1.t/

cosŒ˛1.t/�Œ´2.t/C Vd �v
2.t/

C

�
�

2K1Lt

1CK21´
2
1.t/

Œ´2.t/C Vd �
2 sinŒ˛1.t/�C uv.t/

�
v.t/:

As dvŒjv.t/j� > 0, and using simple inequalities, it is possible to write

PVv.t/ 6 �
Dv

Mv

v2.t/C 2K1Lt j´2.t/C Vd jv
2.t/C

	
2K1Lt j´2.t/C Vd j

2 C juv.t/j


jv.t/j:

Now, for t > t2, it is further possible to write

PVv.t/ 6 �
Dv

Mv

v2.t/C 3K1LtVdv
2.t/C

�
9

2
K1LtV

2
d C juv.t/j

�
jv.t/j:

Now, assuming (23), one gets

PVv.t/ 6 �
2

3

Dv

Mv

v2.t/C
1

2

Dv

Mv

Vd jv.t/j C juv.t/jjv.t/j

for t > t2. In the conditions of the proposition, uv.t/ converges to zero. As such, given any
arbitrarily positive small constant �v > 0, there exists t3 > t2 � t0 such that

juv.t/j 6
2

3

Dv

Mv

�v
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for all t > t3 and as such it follows that

PVv.t/ 6 �
2

3

Dv

Mv

v2.t/C
Dv

Mv

�
1

2
Vd C

2

3
�v

�
jv.t/j

for all t > t3. But then notice that, for t > t3 and

jv.t/j >
3

4
Vd C �v;

it follows that PVv.t/ < 0. As such, there exists t4 > t3 such that

jv.t/j 6 3
4
Vd C �v:

This concludes the proof, as (24) holds for ti D t4. �
The following theorem is the main result of this section.

Theorem 1
Consider an underactuated AUV moving in the horizontal plane in a mission scenario as described
in Section 2.1, with kinematics and dynamics given by (1) and (2), respectively. Suppose that the
conditions of Proposition 1 hold. Further assume that (23) is true and, in addition, the controller
gain K1 is chosen such that

Dv

Mv

2K1Lt

1CK21Z
2
1

Vd

2

�
2

�
� �s

�
� .2K1Lt /

2

0
@�3

2
Vd

�2
C
1

4

"�
3

2
Vd

�2
C 1

#21A > �1 (26)

is true, where Z1 is a positive constant such that

K1Z1 >
3
p
7

(27)

and �1 is an arbitrarily sufficiently small positive constant. Then, in the conditions of Proposition 1,
if the error variable z3.t/ converges to zero, then the sway velocity v.t/ also converges to zero.
Moreover, the error ´1.t/ converges to zero, hence solving the initial docking approach problem
stated in Section 2.1 for almost all initial conditions.

Proof
The key idea of the proof is to show that, after some time, the nonlinear system (22) is input-to-state
stable with respect to the input u.t/, which allows to conclude that the sway velocity converges to
zero and, as all the other variables also converge to zero, it follows that so does ´1.t/ as it is input-
to-state stable with respect to the other variables. First, it is shown earlier that, after some time,
´1.t/ is necessarily bounded. Using Proposition 2, choose ti > t0 such that (24) holds for ti > t0
and consider the Lyapunov-like function

V0.t/ WD
1

2
´21.t/:

Using (5), (7), and (8) it is possible to write

PV0.t/ 6 �
2LtVdK1q
1CK21´

2
1.t/

´21.t/C 2Lt
���´2.t/

0

�
� z3.t/C

�
0
v.t/

��� j´1.t/j (28)

As in the conditions of the theorem, both ´2.t/ and z3.t/ converge to zero, and using(24), choosing
an arbitrarily small positive constant �V > 0, there exists tj > ti such that

���´2.t/
0

�
� z3.t/C

�
0
v.t/

��� 6 3
4
Vd C �V
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for all t > tj and as such, it is possible to bound (28) by

PV0 6 �
2LtVdK1q
1CK21´

2
1.t/

´21.t/C 2Lt

�
3

4
Vd C �V

�
j´1.t/j

for all t > tj . Now, notice that, choosing �V sufficiently small, and considering (27), if j´1.t/j > Z1,
then for t > tj , one has PV0.t/ < 0. But this implies that it is possible to chose tk > tj such that
j´1.t/j 6 Z1 for all t > tk .

Next, it is shown that, for t > tk , the nonlinear system (22) is input-to-state stable with respect to
the input u.t/. With that in mind, consider the Lyapunov-like function

V2.t/ D
1

2
kz5.t/k

2 ;

whose derivative is given by

PV2.t/ D zT5 .t/As.t/z5.t/C zT5 .t/u.t/;

with

As.t/ WD
1

2

�
A.t/C AT .t/

�
:

If �M ŒAS .t/� 6 LM < 0, where �M .X/ stands for the maximum eigenvalue of X, it is trivially
shown that the system is input-to-state with respect to u.t/, see, for example, [14]. The characteristic
polynomial of As.t/ is given by

sŒc.t/� D c2.t/C c1.t/c.t/C c0.t/;

with c1.t/ WD �a11.t/ � a22.t/ and c0.t/ WD a11.t/a22.t/ �
Œa12.t/Ca21.t/�

2

4
. If there exist �b > 0

and �a > 0 such that c1.t/ > �b and c0.t/ > �a, then it follows that the nonlinear system (22) is
input-to-state stable with respect to u.t/. Expanding c1.t/ and using simple inequalities, together
with (24), allows to conclude that

c1.t/ >
Dv

Mv

� 3K1LtVd ;

for all t > tk . But then, with (23), it immediately follows that

c1.t/ >
2

3

Dv

Mv

for all t > tk , which guarantees the existence of �b > 0 such that c1.t/ > �b for t � tk . Expanding
c0.t/ and using simple inequalities, coupled with (24), it is possible to conclude that

c0.t/ >
Dv

Mv

2K1Lt

1CK21Z
2
1

Vd

2

�
2

�
� �s

�
� .2K1Lt /

2

0
@�3

2
Vd

�2
C
1

4

"�
3

2
Vd

�2
C 1

#21A
for t > tk and ˛1.t/ ¤ 0, which is also trivially shown to hold for ˛1.t/ D 0. But then, if (26) is
true, it follows that there exists �a > 0 such that ca.t/ > �a for t � tk . This allows to conclude that
the nonlinear system (22) is input-to-state stable with respect to u.t/. As u.t/ converges to zero in
the conditions of the theorem, it follows that the sway velocity v.t/ converges to zero and, as the
dynamics of ´1.t/ are also tribally shown to be input-to-state stable with respect to v.t/, ´2.t/, and
z3.t/, it follows that ´1.t/ converges to zero, hence concluding the proof. �

Remark 1
At this point, it is important to remark that the conditions that are presented here are only sufficient.
In practice, larger values of K1 may still yield controllers that solve the initial docking problem as
stated in Section 2.1.
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Remark 2
The analysis of stability presented here has some similarities with that presented in [12]. However,
the desired velocity that is considered in the present paper is bounded, whereas in [12], it could be
arbitrarily large, depending on the initial error. As such, the stability analysis presented herein is
much more intricate, as previously detailed.

Remark 3
In spite of the rather cumbersome stability analysis, notice that the resulting control law is quite
simple, designed in body-fixed coordinates, and requiring few sensors. In particular, the control law
only requires the linear and angular velocities of the vehicle and the positions of the transponders
with respect to the vehicle, all expressed in body-fixed coordinates, as they are usually available
from the USBL sensor installed in the AUV.

Remark 4
The problem is set in this paper in the horizontal plane, as the docking maneuver is usually
performed at constant depth and independent depth controllers usually stabilize the AUV. Never-
theless, the control law could be extended to 3D, only the analysis results much more intricate.
Considering this control law, at constant depth, the heave velocity should be zero. If not, its effect
should be similar to that of the surge speed and could hence be accounted for during the design and
stability analysis in a similar way to that of the surge velocity.

3.2. Final docking approach

This section details the design and stability analysis of an adaptive control law for the final docking
approach of an AUV, as defined in Section 2.2. The goal here is to drive the lateral error, ly.t/, and
the orientation error, ˛1.t/, to zero, whereas the longitudinal distance lx.t/ follows a predefined
profile.

The longitudinal distance is defined as

lx.t/ WD �

�
tl.t/C tr.t/

2

�T �
S.1/

tl.t/ � tr.t/
Lt

�
D

1

Lt
tTl .t/S.1/tr.t/:

The lateral error is defined as

ly.t/ WD

�
tl.t/C tr.t/

2

�T tl.t/ � tr.t/
Lt

D
ktl.t/k

2 � ktr.t/k
2

2Lt
:

The orientation error ˛1.t/ is as defined in Section 2.1, whose derivative is P̨1.t/ D �!.t/. After
some rather straightforward computations, it is possible to write the derivatives of lx.t/ and ly.t/,
in compact form, as �

Plx.t/
Ply.t/

�
D �R˛1.t/v.t/;

where R˛1.t/ is the rotation matrix

R˛1.t/ D
�

cosŒ˛1.t/� sinŒ˛1.t/�
� sinŒ˛1.t/� cosŒ˛1.t/�

�
:

Let l.t/ WD Œlx.t/ ly.t/�T and define the error variable

z6.t/ WD l.t/ � ld .t/;

with ld .t/ WD Œlxd .t/ 0�. Define also the error variable

´7.t/ WD ˛1.t/

and consider the Lyapunov candidate function

V3.t/ WD
1

2
kz6.t/k

2 C
1

2
´27.t/:
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The time derivative of V3.t/ is given by

PV3.t/ D �zT6 .t/
h
R˛1.t/v.t/C Pld .t/

i
� ´7.t/!.t/:

Setting v.t/ and !.t/ equal to

vd2.t/ WD �RT˛1.t/
h
Pld .t/ �K5z6.t/

i
and

!d2.t/ WD K6´7.t/;

respectively, where K5 and K6 are positive constant control gains, results in a negative definite
derivative of V3.t/. As v.t/ and !.t/ are not actual control variables, and following the standard
backstepping technique, consider the error variables

z8.t/ WD v.t/ � vd2.t/;

´9.t/ WD !.t/ � !d2.t/;

and define the augmented Lyapunov function

V4.t/ WD V3.t/C
1

2
kz8.t/k

2 C
1

2
´29.t/:

Setting

�v.t/ D SŒ!.t/�Mv.t/C �Tv Œv.t/� O v.t/CMŒPvd2.t/C RT˛1.t/z6.t/ �K7z8.t/� (29)

and

�!.t/ D �! Œ!.t/�
T O !.t/C J Œ P!d2.t/C ´7.t/ �K8´9.t/�; (30)

where K7 and K8 are positive constant control gains and O v.t/ and O !.t/ are estimates of  v and
 ! , respectively, allows to write

PV4.t/ D �K5 kz6k
2 �K6´

2
7.t/ �K7 kz8.t/k

2 �K8´
2
9.t/

� zT8 .t/M
�1�Tv Œv.t/�Œ v � O v� �

1

J
´9.t/�! Œ!.t/�

T Œ ! � O ! �:

In order to design an adaptive control law, let Q v.t/ WD  v� O v.t/ and Q !.t/ WD  !� O !.t/ denote
the estimation errors of O v.t/ and O !.t/, respectively, and consider the augmented Lyapunov
candidate function

V5.t/ WD V4.t/C
1

2

�� Q v.t/
��2 C 1

2

�� Q !.t/��2 :
With the estimation laws

PO v.t/ D ��vŒv.t/�M
�1z8.t/ (31)

and

PO !.t/ D �
1

J
´9.t/�! Œ!.t/� (32)

the derivative of V5.t/ results in

PV5.t/ D �K5 kz6k
2 �K6´

2
7.t/ �K7 kz8.t/k

2 �K8´
2
9.t/; (33)

which is negative semidefinite. The following theorem is the main result of this section.
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Theorem 2
Consider a fully actuated AUV moving in the horizontal plane in a mission scenario as described
in Section 2.2, with kinematics and dynamics given by (1) and (3), respectively. Then, with the
adaptive control law (29), (30), (31), and (32), where K5, K6, K7, and K8 are positive constant
control gains, the error variables z6.t/, ´7.t/, z8.t/ and ´9.t/ converge to zero, hence solving the
problem of final docking approach stated in Section 2.2.

Proof
First, notice that V5.t/ is positive definite and radially unbounded. Moreover, under the conditions
of the theorem, the derivative of V5.t/, given by (33), is negative semidefinite, which allows to
conclude that V5.t/ approaches its own limit and V5.t/ 6 V5.t0/ for all t > t0 which, in turn, allows
to conclude that all error variables z6.t/, ´7.t/, z8.t/ and ´9.t/, Q v.t/, and Q !.t/ are bounded.
Computing the second derivative of V5.t/, and using the fact that all error variables are bounded,
immediately allows to conclude that RV5.t/ is also bounded, which implies that PV5.t/ is uniformly
continuous. But then, as V5.t/ has a finite limit and PV5.t/ is uniformly continuous, it follows from
the Barbalat’s Lemma that PV5.t/ converges to zero, thus concluding the proof. �

Remark 5
Similarly to the initial docking step, the control law proposed in the final docking control approach
could be extended to 3D. The stability analysis remains unchanged.

Remark 6
It is important to stress that Theorem 2 ensures that the appropriate error variables converge to
zero, but it does not provide converge speeds. Hence, in order to ensure appropriate docking behav-
ior and avoid collision with the docking station, simulations must be carried out to tune the controller
gains so that the resulting trajectories are adequate. This is a common solution in nonlinear
control problems.

4. SIMULATION RESULTS

To illustrate the performance of the proposed integrated guidance and control law, computer simula-
tions are presented in this section. In the simulations a simplified model of the SIRENE vehicle was
employed, assuming that the vehicle is directly actuated in force and torque; see [15]. The param-
eters of the vehicle are detailed in Table I, with duŒju.t/j� D Dujujju.t/j, dvŒjv.t/j� D Dvjvjjv.t/j
and d! Œj!.t/j� D D!j!jj!.t/j.

The initial position of the vehicle is p0 D Œ�100 10�T (m), its initial yaw is 150°, its initial linear
velocity is v0 D Œ1 0�Tm/s, and its initial angular velocity is !0 D 0 °/s. The positions of the left
and right transponders, in the inertial frame, are Itl D Œ1 0�T and Itr D Œ�1 0�T , respectively. The
controller parameters were tuned in order to achieve an interesting trajectory, and were thus set to
K1 D 0:01, K2 D 0:2, K3 D 0:1, K4 D 2, K5 D 0:025, K6 D 0:5, K7 D 2, and K8 D 0:5.
The controller switches to the second stage when the distance between the vehicle and the docking
position reaches 25 m, and it stops when this distance reaches 0.5 m. For the second control law,
the initial estimates of the hydrodynamic parameters were set with offsets of around 10% of the
nominal value. Finally, control saturation was also considered in order to see that effect in the overall
performance of the proposed strategy. The maximum allowed force is 500 N along the surge axis,
100 N along the sway axis, and the maximum allowed torque was set to 1500 Nm.

Table I. Vehicle parameters.

Parameter Value Parameter Value Parameter Value

Mu .Kg/ 2234:5 Du .Kg=s/ 0 Dujuj .Kg=m/ 35:4090
Mv .Kg/ 2234:5 Dv .Kg=s/ 346 Dvjvj .Kg=m/ 667:5552

J .Kg m2/ 2000 D! .Kg m2=s/ 1427:2 D!j!j .Kg m2/ 26036
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The evolution of the trajectory described by the vehicle is depicted in Figure 4, where the positions
of the transponders are marked with red crosses, whereas the evolution of the linear and angular
velocity is shown in Figure 5. The control inputs are plotted in Figure 6. while the evolution of the
error variables is depicted in Figure 7.

As it is possible to observe, the vehicle describes a smooth trajectory and the desired behavior is
achieved. The controller switches to the final docking scenario at t D 62:37s. The speed profile is
as desired and the error variables converge to zero.

In order to evaluate the performance of the proposed strategy in the presence of sensor noise,
the previous simulation was modified and sensor noise was included for all sensors. In particular,
the USBL measurements are assumed to be corrupted by additive zero-mean white Gaussian noise,
with standard deviation of 1 m, whereas the linear and angular velocity measurements are assumed
to be corrupted by additive zero-mean white Gaussian noise, with standard deviation of 0:1 m/s
and 0:5°/s, respectively. An additional first order, low-pass filter was included in the actuation of
the vehicle for the second stage in order to minimize the effect of sensor noise, with unit gain and
cut-off frequency of 1 rad/s. The evolution of the trajectory described by the vehicle is depicted in
Figure 8, where the positions of the transponders are marked with red crosses, while the evolution
of the linear and angular velocity is shown in Figure 9. The control inputs are plotted in Figure 10.
whereas the evolution of the error variables is depicted in Figure 11.
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Figure 4. Trajectory described by the vehicle.
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Figure 5. Evolution of the velocity of the vehicle.
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Figure 7. Evolution of the error variables.
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Figure 8. Trajectory described by the vehicle in the presence of sensor noise.
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Figure 9. Evolution of the velocity of the vehicle in the presence of sensor noise.
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Figure 10. Evolution of the control inputs in the presence of sensor noise.
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Figure 11. Evolution of the error variables in the presence of sensor noise.
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The most distinct difference between these plots and those obtained without sensor noise is the
effect of the sensor noise in the actuation. However, the trajectory and speed profiles are very similar.
Naturally, the error variables are now noisy. Overall, the controller solves the problem, with
good performance, under the presence of both sensor noise and uncertainty in the hydrodynamic
damping parameters.

5. CONCLUSIONS

This paper presented a novel integrated guidance and control law to solve the docking problem of
an autonomous underwater vehicle. The control approach was divided into two steps, one farther
away from the base and another in the close proximity in order to better explore the configuration
of the AUV. In the first case, convergence to zero of the appropriate error variables was shown for
almost all initial conditions, whereas in the second case, this is shown for all initial conditions.
In addition, uncertainty in the hydrodynamic parameters was considered and explicitly addressed,
with an adaptive control law, in the final approach to the base. Simulation results evidence good
performance of the controller in the presence of both sensor noise, uncertainty in the hydrodynamic
damping parameters and control saturation.

Although the docking maneuver should be done in the best possible conditions, preferably with-
out ocean currents, it is possible to explicitly take this into account in the controller design. As a
result, the heading of the vehicle in the first step is adjusted as to counteract the ocean currents,
while in the second step direct actuation is used on each axis. In practice, the best approach would
still be to seek docking in the opposite direction of the currents, which would only result in a higher
control demand along the surge axis.
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