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ABSTRACT

Satellite attitude determination methods usu-
ally fall in one of two classes: point-by-point and
recursive estimation algorithms. Point-by-point
attitude determination is based on the measure-
ments of two or more sensors in a single point in
time, while recursive estimation uses information
from successive time points, as well as knowledge
about the spacecraft dynamics and/or kinemat-
ics models. In small satellites, a single attitude
sensor is often available, due to cost and space
constraints, thus leading to the exploration of re-
cursive estimation based solutions, such as the
Kalman filter. In this paper, the results of us-
ing a point-by-point Singular Value Decomposition
(SVD) algorithm are compared to those obtained
by an Extended Kalman Filter (EKF), when ap-
plied to a simulation of the small satellite PoSAT-
1, which includes on board magnetometers and
a Sun sensor. Questions of both theoretical and
practical nature are discussed and analysed.

Keywords: Attitude estimation, Quaternions,
Small Satellites, Extended Kalman Filter, Wahba
Problem.

INTRODUCTION

The determination of the three-axis spacecraft
attitude has a major role in guidance, navigation
and control of an aerospace vehicle, specially for
autonomous systems which are less fault tolerant
for environment anomalies than ground-based sys-
tems. Currently, supporting the control and nav-
igation in ground stations, specially for small in-
expensive spacecrafts, is not feasible. Therefore,
algorithms must be found to carry out the task
of determining the attitude from a sequence of
noisy vector observations typically obtained from

*Master Student, Department of Electrical and Comput-
ers Engineering, Instituto Superior Técnico (IST), Lisbon,
Portugal

fFinal year student, Imperial College, London, UK

tAssistant Professor, Department of Electrical and
Computers Engineering, Instituto Superior Técnico (IST),
Lisbon, Portugal

OCopyright 2000 © the American Institute of Aeronau-

tics, Inc. All rights reserved.

inboard sensors, such as star sensors, Sun sensors,
Earth sensors, Global Position System (GPS) or
magnetometers. Since small satellites are typically
in Low Earth Orbit (LEO) and their size plus tar-
get cost prevent the use of more powerful actua-
tors, such as inertia wheels, the preferred attitude
actuators are those which generate a magnetic mo-
mentum that interacts with the Earth’s geomag-
netic field. These actuators are cheap to build and
have long service life since no fuel is used except
for electric power which is obtained from the solar
panels. Also gas jets are becoming an option for
this class of satellites.

This work is part of a Portuguese funded project
named ConSat! aiming at the study of the dynam-
ics of bodies under the influence of gravitational,
aerodynamic and control torques in particular the
case of small satellites. The work carried out is
included in a project task whose goal is the devel-
opment of new approaches to the attitude control
problem, where attitude determination is essential.

The small satellite PoOSAT-1 [25] was used as a
case study for the ConSat simulator SimSat, de-
veloped within the project and described in [20].
Written under Matlab/Simulink, SimSat includes
a realistic simulation of PoSAT-1 sensors and ac-
tuators as well as of the earth geomagnetic field.

The work presented in this article analyses dif-
ferent approaches to attitude determination and
its intrinsic problems. Two distinct methods,
a recursive Extended Kalman Filter (EKF) and
a point-by-point Singular Value Decomposition
(SVD) algorithm are applied to determine PoSAT-
1’s attitude from magnetometer and Sun sensor
readings, using SimSat. Moreover, a sensor fu-
sion approach is addressed by combining those two
sensor readings to improve the EKF’s efficiency.
In the next section, a historical perspective of the
main approaches to the small spacecraft attitude
determination problem is presented. Simulation
Setup Section describes the attitude determination
methods tested in this work. Finally, the simula-
tion results of both the EKF and SVD methods
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are compared and conclusions are drawn.

HISTORICAL PERSPECTIVE

The main goal of the attitude determination is
to compute the attitude of a body fixed coordinate
system (CS) relative to a reference CS, as well as
the angular velocity, based in noisy vector mea-
surements taken in both systems. In this work the
CS fixed to the body is defined as the Control CS:
a right orthogonal coordinate system whose ori-
gin coincides with the mass center of the satellite
and coincident with its moment of inertia direc-
tions. The reference CS is the Orbital CS: a right
orthogonal coordinate system whose origin coin-
cides with the mass center of the satellite, with
the z axis pointing at the zenith, and the x axis
tangent to the orbit plane.

There are two widely applied methodologies to
the attitude determination problem: the Kalman
Filter and the point-by-point methods. Although
both emerged in the sixties, only recently point-
by-point methods have been subject to intensive
research. In contrast, the Kalman filter has been
applied successfully to many different estimation
problems since it is well-suited to estimate state
vectors of multi-input/output systems based in
multi-sensor information.

ITERATIVE METHODS

Kalman filter’s adequacy for real-time estima-
tion is due to its recursive processing of noisy sen-
sor measurements to determine the successive min-
imum variance state estimates. Assuming statis-
tics of the system and measurements noise as
known, and taking advantage of the system model,
the filter propagates the estimated state from one
time point to the next. Nevertheless, there are
several problems associated with the application
of the Kalman filter to small satellites. The at-
titude representation is a problematic issue ad-
dressed by many authors and reviewed by Shuster
[22]. Quaternion representation is the most com-
monly used satellite attitude estimation because it
is not singular for any rotation. However it is sub-
jected to the constraint ¢g” = 1 in order to main-
tain orthogonality in the estimated attitude. This
constraint as to be taken into account during the
implementation of the EKF, otherwise the covari-
ance matrix becomes singular. Leffers et al. [10]
described three different approaches to circumvent
the covariance matrix singularity caused by the
quaternion attitude representation. However the
angular velocities are obtained from gyroscopes,
which are often not used in small spacecrafts be-
cause not only they are generally expensive but
also they tend to fail. Also to overcome the quater-
nion problem, Bar-Itzhack et al. [2] showed that
normalization improves filter convergence and ac-
curacy. Applying the covariance modifications de-

scribed by Lefferts et al. [10], Psiaki and Martel
[16], using only magnetometer data, estimated the
disturbance torques and also the attitude, angu-
lar velocity and the vector part of the quaternion,
q= [ Q1 g2 Q3 ] The scalar part of the quater-
nion ¢y is obtained from the estimated vector part
using the quaternion constraint. However, it only
offers coarse attitude information due to the low
accuracy of the observations and the inaccuracy
of the knowledge of the Earth’s magnetic field, as
stressed by the author.

Having a non-linear system and nonlinear mea-
surements, the application of the Kalman filter is
only possible after linearization. This may lead to
divergence problems in the error covariance ma-
trix. Some solutions were presented by Brown and
Hwang [8] in order to handle this problem. Also
Bak [1] modelled some of the discrepancies be-
tween the process model and the actual behaviour
of the spacecraft and gathered them in the covari-
ance error matrix in an EKF using magnetic field
measurements. Moreover, Vathsal [23] expanded
the process and measurement models to second
order. However, this approach increases the com-
plexity of the filter and it is a computational bur-
den. Usually, it is only worthwhile to go for second
or higher order techniques in case of extreme sys-
tem nonlinearities.

The process and measurement noise are as-
sumed to be modelled by a zero-mean Gaussian
stochastic process with known covariance, but the
covariance matrices must be manually tuned, not
necessarily to achieve optimal filter designs but
sometimes to increase closed loop attitude con-
trol performance. Mook and Junkins [17] devel-
oped a new approach, designated as the Minimum
Model Error Estimation (MME) method, where
the model error is determined during the estima-
tion process. Crassidis and Markley [4] used this
approach to estimate the attitude of a real space-
craft without the utilization of gyro measurements.
However, the MME filter is a batch estimator. In-
spired in his paper, and also based on a predictive
tracking scheme introduced by Lu [12], Crassidis
and Markley [5] have proposed a predictive filter
where the model error is estimated as part of the
solution. The filter may take any form, even non-
linear, so the filter is free from covariance propaga-
tion, decreasing the computational burden associ-
ated with it. Moreover, it can be implemented
on-line to filter noisy measurements, estimating
quaternion attitude representation and rate tra-
jectories.

The Kalman filter implemented in the Sim-
Sat simulator is based in the approach of Psi-
aki and Martel [16] but uses Sun sensors to im-
prove filter accuracy. To avoid the covariance
singularity the filter estimates the vector part of



the quaternion reducing the rank of the covari-
ance error matrix. The filter covariance matrices
for the process and measurement noises are ob-
tained using genetic algorithm based search [3].
POINT-BY-POINT METHODS

A different approach to the attitude estima-
tion problem consists on determining the attitude
based on a sequence of noisy vector measurements.
Given a set of n > 2 vector measurements by . by,
in the body system, and a set of reference vectors
T1,...,Tn in the orbit system, there is an orthogonal
matrix A (the attitude matrix or direction-cosine
matrix) that transforms rotational vectors from
the orbital to the body coordinates. The prob-
lem of finding the best estimate of the A matrix
was posed by Grace Wahba [24] who was the first
to choose a least square criterion to define the best
estimate, i.e., to find the orthogonal matrix A with
determinant 1 that minimizes the loss function

L(A) = Zwi|bi_ATi|2 (1)

N =

where w; is a set of positive weights assigned to
each measurement and |.| denotes the Euclidean
norm. It was proved that the loss function can be
rewritten as,

L(A) = \g — tr(AB)" (2)

with

Ao :i: w; and B zi: wibir} (3)
i=1 i=1

The loss function will be minimum when the
trace of the matrix product ABT is maximum, un-
der the orthonormality constraint on A.

The ¢ method, introduced by Davenport [6],
provides a quaternion-based solution for the
Wahba problem, where the attitude quaternion ¢
which minimizes the loss function is the eigenvec-
tor of a matrix K, corresponding to K’s largest
eigenvalue, A\pax. Shuster [18] presented an imple-
mentation of the ¢ method, the QUartenion ES-
Timator (QUEST) where the purpose is to deter-
mine Apax and the corresponding ¢ from the vector
observations, which avoids solving the eigenvalue
problem explicitly. The main disadvantage of this
method is that the measurements are combined to
provide an attitude estimate but the combination
is not optimal in any statistical sense.

The Singular Value Decomposition (SVD)
method, which computes the attitude matrix di-
rectly, is very simple and one of the most robust
estimators minimizing Wahba’s loss function to-
gether with ¢ method. However, the ¢ method
is faster than the SVD when three or more mea-
surements are available [14]. The Fast Optimal

Attitude Matrix (FOAM), introduced by Markely
[15], is a variation of the ¢ method which avoids
the need to compute the eigenvectors and is faster
than the ¢ method, though equally robust.

Shuster also derived a simple expression for
the covariance matrix of the Three Axis Atti-
tude Determination (TRIAD) algorithm deduced
by Lerner [11] in which, despite the simplicity of
the attitude determination, the calculation of the
covariance matrix was rather complicated because
of the need to compute numerous partial deriva-
tives as differences. In spite of the popularity of
the TRIAD algorithm? it only can be solved for
two observations. This represents a big disadvan-
tage when more measurements are available, since
some accuracy is lost. Actually, it is possible to
combine the attitude solutions of the various ob-
servation pairs. However, this solution tends to be
too costly.

On the other hand the deterministic methods
that use the vector measurements to obtain the
attitude at a given time point require at least two
vectors (except the TRIAD) to determine the at-
titude and it requires weighting of the entire vec-
tor measurement. So, all deterministic methods
fail when only one set of vector measurements is
available (e.g. magnetometer data only), which
happens when a solar eclipse occurs. Moreover, it
is a single time point batch algorithm, where all
measurements that are taken at a previous time
are ignored. Bar-Itzack [9] presented a recursive
routine derived from the QUEST which takes into
account all the past measurements and because of
that even one measurement is enough to update
the attitude. In order to do so, the REQUEST
algorithm uses the kinematic equation® to propa-
gate the quaternion obtained from the past mea-
surements till the time ¢;4; and uses it together
with the new measurements of the time ¢;. In spite
of this, it requires exact knowledge of the angular
velocity, relying in gyros measurements.

In general, all the deterministic methods or
point-by-point methods compute the attitude ma-
trix efficiently and with much less computational
load than the EKF, because they do not use infor-
mation from the dynamic and kinematic models
avoiding the modeling errors that arise in EKF.
Therefore, they are very attractive to implement
in small satellites with short computational re-
sources. Nevertheless, they all require two vector
measurements in order to estimate the attitude.
Some researchers have used gyroscopes to obtain
the angular velocity, but so far gyros are seldom
used in small satellites because they are usually ex-

2TRIAD was implemented in many missions, for in-
stance the Small Astronomy Satellite (SAS) or the Atmo-
spheric Explorer Missions (AEM).

3see the kinematics equation section.



pensive and are often prone to failures, as referred
before.

In this work the SVD algorithm was chosen
among all point-by-point methods because, to-
gether with the ¢ method, it is the most robust
method. Also, since only two attitude sensors are
used (Sun sensors and magnetometers) the algo-
rithm is as fast as the ¢ method but simpler to
implement.

SIMULATION SETUP

A set of simulation tests were set up to com-
pare the attitude determination performance of
an EKF and of the SVD point-by-point method.
The two algorithms are compared both concern-
ing the computational cost and the attitude de-
termination accuracy. Under the EKF approach,
the attitude vector is estimated by minimizing the
state estimate error covariance, based on statisti-
cal assumptions concerning the uncertainties, to-
gether with a set of noisy sensor measurements.
In contrast, the SVD algorithm computes the at-
titude matrix based only in noisy measurements
and without making use of the system models, ex-
cept when the Sun sensor measurements are not
available, a situation where the attitude dynamics
equation is used to propagate the last attitude es-
timates before the loss of the Sun sensor readings.

The computation time of the SVD algorithm is
very small when compared with the EKF.

The sensors used in the algorithms are among
those onboard PoSAT-1. Even though PoSAT-
1 has onboard Sun sensors, magnetometers, an
Earth horizon sensor (EHS) and a star sensor, only
the Sun sensors and the magnetometers are used in
the algorithms. The EHS is very sensitive to atti-
tude variations and perturbations greater than 5°
will saturate the filter [?]. Moreover, variations in
weather conditions change the measurements as
well. Finally, PoOSAT-1’s star sensor is currently
not working.

The simulation setup used for both algorithms
is presented in this section, as well as a detailed
explanation of how problems where solved in the
implementation of the algorithms. We start by
recalling the attitude motion equations and the
quaternion-based attitude representation used in
the algorithms.

SPACECRAFT MODELS

In this section a brief review of the equations
of motion, also known as Euler’s equations, for
a rotational motion of a rigid body in a plane is
presented, as well as the attitude parameterization
used.

Attitude representation Quaternions
were introduced by Hamilton in 1843, and are
the most common attitude parameterization used
in a satellite attitude determination system due

to their inherent non-singularity for any rotation.
Nevertheless, one should keep in mind that, under
the quaternion representation, four parameters q; ,
Q2 , q3 , and g4 are required to represent a three di-
mensional attitude vector. This leads to the con-
straint ¢® + g3 + ¢3 + q¢3 = 1. Many researchers
dedicated a part of their work to quaternion ap-
plication to spacecraft (e.g., Hughes [7] and Wertz
[26)).

Considering ¢ a quaternion, it can be repre-
sented, by a scalar part and a vector part ,

q1
q2 q
= . 4
1 a3 [ q4 } “
qa

Quaternion multiplication must be carefully
handled, so that the result is another quaternion
[26]:

q4 q3 —q2 q1

—q3 Q4 q1 q2
® = 5
ped q2 —q1 44 g3 P ()

—q1 —Qq2 —Qq3 Q4
Ps  —P3 P2 P1
_ _pS D4 —P1 P2 q (6)
P2 D1 bs D3
—p1 —P2 —P3 P4

The attitude matrix that expresses orientation
between Orbital CS and Control CS, can be ex-
pressed in terms of a quaternion [26],

-3 —a3+4i

Alg) = | 2(¢;92—9394)

2(q,93+4294)
2(q143—q2qa)
2(‘12Q3+Q1Q4)
—1—G+a3+4as

= (a3 — llalI*) 1323 + 299" — 2q4[qx]

2((11Q2+Q3Q4)
-G +a3—+ad
2(q593—4q1q4)

(7)

where [qx] is a skew symmetric matrix that im-

plements algebraically the cross product between
two vectors, a x b = [ax]b,

0 —a; ay
[ax]=| a, 0 —ax (8)
—a, ag 0

Dynamic Equations For an earth orbit satel-
lite whose principal directions, corresponding to
the three principal moments of inertia, are aligned
with the control CS (causing the products of iner-
tia to be zero), the dynamic equation of motion is
well known and can be found in text books such
as Hughes [7] or Wertz [26]:




de
I% Wei= —chixl chi—f—cNgg—i-ch—Fcth (9)

where

e “w,; is the angular velocity of the control CS
w.r.t. inertial CS, expressed in the control

CS.

o [ = diag[ Inw Ly 1. } is the diagonal in-
ertia matrix whose moments of inertia are the
principal moments of inertia. PoSAT-1 was
simulated in SimSat using the following iner-
tia matrix (see the discussion concerning the
inertia matrix in Kalman Filter Section):

119.1440.05  40.0005
I= +0.0005  119.06 =+ 0.05
+0.0005 +0.0005 o
+0.0005 &
+0.0005
0.78 + 0.05
(10)

e Ny is the disturbance moment written in
control CS due to aerodynamic drag and solar
pressure, eccentricity of the orbit and other
effects neglected at the PoSAT-1 altitude*.

e °N,, = 32 (°K, x I°K,) is the gravity mo-
ment written in control CS. The orbital an-
gular velocity of PoOSAT-1 is wo = 0.0010385
rad/s. °K, is the unit vector along z-axis of
Orbit CS.

e °N. =° mf(t) x°¢ B(t) is the control moment
(expressed in the control CS) and is generated
by the cross coupling between the magnetic
moment and the geomagnetic field. Earths’s
magnetic field was simulated using a spherical
harmonic IGRF model, Wertz [26]. Results
obtained from the simulator by comparison
between the real data and simulated can be
found in [21].

It would not be reasonable to implement, in
the state propagation stage of the EKF, the com-
plete set of equations of motion considering the
products of inertia. This would be translated
in large onboard computer memory consumption
with no equivalent improvement of the state es-
timation. Due to this and to PoSAT-1’s axi-
symmetrical geometry, the EKF implementation
uses a diagonal inertia matrix with the following
values, I, = I, = 119.1 kg.m? and I,, = 0.784

4Wertz [26].

kg.m?. The small discrepancies in the inertia ma-
trix values adds realistic errors to the EKF imple-
mentation

For similar reasons, the controller and estimator
algorithms use a 4"order IGRF model for the geo-
magnetic field, while the simulation of the satellite
attitude dynamics is based on a 10*" order geo-
magnetic fields model.

Kinematic Equation The kinematic equation
of the satellite, relating its angular velocity to the
changes of the attitude matrix over the time, is
given by

d 1
— = Q¢ 11
1) = 190(wer)g (1)
where,
Q(‘weo) = (12)
0 Wz/co —Wy/co Wz/co
— —Wz/co 0 Wz /co Wy /co
Wy/co —Wz/co 0 Wz/co
—Wz/co TWy/co TWz/co 0

The angular rates components used are orbital
referenced, because the kinematic equations de-
scribe the rotation between the orbital axes and
the satellite axes. As such, one must relate the
orbital and the inertial references:

c _c c _c c \c _
Wei = Weo + Woi = Weo + A(OQ) Woi =

= Weo + wW0%i, (13)
where “A(%q) = [ “lo %Jo ko ] is the unit
vector along z-axis of Orbit CS.

Since PoSAT-1 has an orbital inclination of 98°
and with an eccentricity of 0.001, the angular ve-
locity of the control CS w.r.t. the Inertial CS is
approximately given by the following expression,
as described by Tavares et. al. [21].

Wei = [ wo 0 0 }T

KALMAN FILTER

The Kalman filter guarantees minimum variance
state estimation when applied to linear dynamic
systems. Nevertheless, the Kalman filter can be
used in non-linear problems by linearization of the
equations that describe the system®. However, this
is an approximation that is going to introduce er-
rors in the estimate calculation. Also, another ap-
proximation is to assume Gaussian noise system
for observations and process with known variance
which is not an accurate description of the esti-
mation errors. In addition to this, the products
of inertia are all zero because principal directions

5The equations implemented are described in the Ap-
pendix A.



are assumed to be aligned with control CS due to
the spacecraft geometry [26]. Also there is some
uncertainty in the calibration of the principal mo-
ments of inertia. In practice these are system-
atic errors that cannot be modelled using Gaus-
sian white noise, deviating the estimate from its
true parameters. To avoid these problems, the
error and process covariance error are manually
tuned with the filter in the attitude closed control
loop, to compensate the resulting errors. Initially,
the covariance error matrix was obtained in open
loop comparing the system state and output of a
10*" order and 4" geomagnetic field model. The
obtained estimation pointing accuracy was of ap-
proximately 5°. Then, instead of manual tuning,
which is very time consuming and prone to sub-
jective error, a genetic algorithm was used to tune
both the process covariance matrix the error co-
variance matrix , with the EKF inside the closed
control loop, and evaluating performance by mea-
suring the accuracy of the resulting attitude con-
trol loop [20]. By exploring the simmetries of the
covariance error matrix and of the PoSAT-1 ge-
ometry, a reduced group of parameters had to be
tuned. Since the measurement errors in PoSAT-
1 are only due to geomagnetic field changes, the
covariance error is a diagonal matrix with the 0.1
value in the diagonal.

The system modeling of a spacecraft is a com-
plex issue because the dynamic equations of mo-
tion take into account the external torques (due
to solar pressure, solar heating, aerodynamic drag,
eccentricity of the orbit and several other effects).
These are non-linear effects and vary along the or-
bit and altitude, which strongly influence the ac-
curacy of the attitude determination. In practice
they are disregarded due to its modelling complex-
ity. This turns out to be a trade-off improvement
and computational burden in considering the dis-
turbance moment.

Based in one of the three approaches done by
Lefferts et. al. [10] to avoid the matrix singu-
larity, the scalar part of the quaternion g4 is not
estimated reducing the rank in one of the ma-
trix involved in the algorithm, the transition ma-
trix ®, the error covariance matrix P and the co-
variance of the process @, the Kalman gain K
as well as the F' matrix that contains the equa-
tions of motion and the H matrix that relates
sensor measurements with the state. To recon-
struct the full quaternion the fourth element of the
quaternion is obtained from the estimated vector
part and using the constraint ||g||* = 1 leading to
@u=1-ad—a—d.

When propagating the state and covariance ma-
trices and also to propagate the attitude quater-
nion, the full quaternion must be handled care-
fully to obtain a proper rotation. Therefore, in

these steps of the algorithm, the quaternions have
to be handled separately from the angular veloc-
ity. Instead of using Lzy1 = [ f(2(2), u(t), t)dt+
xﬁ, as for the angular velocity, the quaternion
must be propagated through the transition matrix

P = ef 7@ without approximation, resulting
in gty = (cos (822) + Lsin (S4) @ (uf)) 4
[26]. When updating the state, where the es-
timated state is Z = [ &7 q” | the weighted
peturbation error, AZyy; = [ ADpi1 AQrat ]
estimated by the filter is computed, AZpy; =
K11 (Ymeas,k+1 — A(Qk)Yorp, k) and in case of the
angular velocity added to the full state, @,Ll =
Wy 41 ALy 1. However to preserve physical sense
to the quaternion update, the quaternion is up-
dated using quaternion multiplication,

AGk+1

1— [AGria]? } ®‘/fk_+1 (14)

When the sun sensor measurements are avail-
able the measurement covariance matrix is ex-
Rmag 03><3
O3x3 Rss
and the H matrix is expanded in order to incor-
porate also the Sun sensor measurement, ysgs

~
g1 =

panded to a 6 X6 matrix, Ry, =

8A(g)
H+ 03><3 S @ ::1‘1 Yorb 15
k-+1 5A(q) (15)
O3x3 ~Yss
x b1 qi=q,
SA(q) SA(g)
6154(1(2 )qz 7;1\2 Yorb 52(1(3 )(13 :;1\3 Yorb
q q
302 go—> Yss 54 quSyss

The remaining steps of the algorithm are not mod-
ified.
DETERMINISTIC METHODS

One well known approach that disregards the
equations of motion, to determine the attitude
matrix only from a set of noisy vector measure-
ments, are the deterministic methods or point-by-
point methods. The covariance matrix of the pro-
cess and measurement noises are not used avoiding
the problems described previously and the time
consumed to calculate and tune the covariances.
Moreover a different setting will cause less accu-
rate state estimates in the EFK and the covariance
matrix must be retuned.

The deterministic methods take advantage of
the sensor measurements only, disregarding the
information from the model of the system and
not propagating the state estimate. One may
think that some useful information from the sys-
tem model is lost but since the system model is
non-linear and has to be linearized it is better to
ignore it than to introduce misleading information
to the filter. The SVD was chosen because, for two
available attitude measurements, it is the most ro-
bust (together with the ¢ method) and the fastest




point-by-point algorithm [14]. Since the SVD algo-
rithm was implemented in five Matlab code lines,
the time taken to estimate the attitude matrix and
the covariance of the error is very small compared
to the EKF algorithm. The only problem with
the SVD algorithm is to obtain the quaternion es-
timate from attitude matrix. This can be done
from Eq. 7.
One of the four solutions is

qy = +0.5\/1+ Ay + Az + Asg
q} = 025(A23 — Agz)/q}l
q% = 025(A31 — A13)/q411
q% = 025(1412 — A21)/q411

However numerical inaccuracies may arise when
q4 is very small. One way to overcome this is to
compute
the maximum of q421 = :t05\/1 + A11 — A22 — 14337
qf = +05v1—A; + Ay — Azs, and qf =
+0.5v/1 — Ay; — Ags + Azzand based on this, shift
among solutions, as suggested by Sidi [19]. The
three other solutions are,

qf = +£0.5\/1+ Ay — Ags — Ags
g5 = 0.25(A1a + Ao1)/a}
a3 = 0.25(A13 + A13)/qi
qi = 025(A23 — Agg)/q%

q3 = £0.5y/1— Ay + Agy — Asg
g = 0.25(A12 + A1) /93
g3 = 0.25(As1 — Ass)/q3

q3 = £0.5v1 — Ay — Ay + Asg
qi = 0.25(A13 + Az1)/q3
qfll = 025(A12 — Agl)/qg

SIMULATION RESULTS

To compare the performance of both EKF and
SVD algorithms one test consisting of a batch of
ten simulations, each one orbit long and with dif-
ferent starting condition was setup as follows:

Test: Each simulation is started at a pitch
angle= 60° and a yaw angle= 0°. The roll angle is
different for each simulation. The initial angular
velocity is [ 0.001037 0 0.02 |rad/s. PoSAT-
1 rotates about its longitudinal axis with a spin
w, = 0.02 rad/s.

This intends to simulate a situation where the
satellite is disturbed by a large initial w.r.t. the
local vertical.

v(degrees) | Spin Rate Error %
mean 0.566 0.167
o? 0.595 0.199
worst 1.876 0.696

Table 1: Results for EKF

quartenion q1 quartenion g2 quartenion g3

0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
0 0.5 1 0 0.5 1 0 0.5 1
x10° WX x10° Wy x10* erorwz
1.5 10
1
1 8
0.5 09
: 6
0
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Figure 1: Actual (solid) and EKF estimate (dot) of
PoSAT-1 attitude quaternion and angular velocity
along one orbit.

Table 1 shows the accuracy of the EKF estima-
tor, determined from the tests. The v is the angle
between the local vertical and the boom axis.

In order to have no influence from a controller
the tests are done in open loop with the estima-
tor estimating the full quaternion and the angular
velocity.

When the Sun sensor is not available, the state
vector is propagated by the dynamics equation,
using as initial condition the angular velocity esti-
mate obtained from the inverse kinematics equa-
tion, by estimating ¢ as the difference between the
last two estimated quaternion values before the
Sun sensor became available, divided by the sam-
pling time.

As soon as the two sensors (Sun and magne-
tometer) are available again, the SVD algorithm
corrects the quaternion estimate based only on
patch orbital location readings. The results for
the SVD algorithm are shown in Table 2. As ex-
pected, due to the propagation of the quaternion
and the angular velocity, the accuracy is not so
good as for the EKF, except for the angular veloc-
ity. This is evident from the plot in Figure 2, about
0.65 orbits after propagation the state, when the
sun sensor was not available. When the two sen-
sor measurements were available again, the SVD
estimated the quaternion accurately.

Better results, shown in Figure 1, have been
obtained for the EKF by tuning the covariance
matrices for a specific orbit (which would result
in pointing errors as low as 0.1°), but these would
not work in the general case.

The SVD method does not have similar prob-
lem since its estimates are obtained from the sen-
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Figure 2: Actual (solid) and SVD estimate (dot) of
PoSAT-1 attitude quaternion and angular velocity
along one orbit. The plots include a signal which
is high when the Sun sensor is available and low
otherwise.

sor measurements. Another point is that the SVD
does not need initial values of the quaternion as
the EKF does. This is a sensitive issue for the
EKF because if the initial covariance of the error
is too high the filter diverges. Moreover, the com-
putational burden is reduced to half when the SVD
algorithm is used.

v(degrees) | Spin Rate Error %
mean 0.566 0.167
o? 0.595 0.199
worst 1.876 0.696

Table 2: Results for SVD

CONCLUSIONS AND FUTURE WORK

In this paper a point-by-point (SVD) and recur-
sive estimation (EKF) methods for attitude deter-
mination were tested on a realistic simulation of
the small satellite POSAT-1, in order to analyse the
trade-off between attitude determination accu-
racy and computational cost. The EKF produces,
as expected, the most accurate results, at the cost
of increased use of computational resources, due
to the computation of the linearized dynamics at
each orbital location. The SVD requires the per-
manent availability of two sensors, but only on
magnetometer and one Sun sensor are available on-
board PoSAT-1, thus leading to the requirement of
propagating the attitude dynamics and kinematics
while the Sun sensor is unavailable. This produces
poorer results than if SVD had two sensors avail-
able along the whole orbit. Future work includes
the use of measurements from another sensor al-
ways available in space for small satellites (GPS),

combined with the magnetometer measurements,
to obtain a more fair comparison of the two meth-
ods.

Other work will consist of further validating
both methods with real data from PoSAT-1, and
to include the estimators in the attitude closed
control loop. Some work has already been done
towards this direction [21].

APPENDIX A
EXTENDED KALMAN FILTER
DETERMINATION ALGORITHM

Between measurements

1 Propagation of the state Vector =z =
[ Cw.r/ci cwy/ci sz/ci SQ1 qu gq3 gq4
dwi=[fw ),t)dt+w; and ¢, | =

1A £ i (522 0
the AT is the time between two measure-
ments.

2 Covariance error matrix P, = ®, P &, +
Qr where the transition matrix is & ~ I +
F(t)AT

Across measurements Y1

1 Update H matrix
H+ — 03 3 8A(g) ~ Yorb
kt+1 x dar qy=q; 7"
3A(q) 3A(q)
g2 QQ_:J\ZyOTb bas QS::J\SyOTb :|
2 Compute Kalman Gain

Ki1 = Pk+1Hk:+1[Hk+1Pk+1H k+1 +Rpt1]” !

3 Update estimate
AC/C\k:Jrl = Kk:+1 (ymeas,kJrl - A((/]\k)yorl),k)
&}I—c:l =Wy + Ak
A
~ +1 —
Qi1 = ® U]

V1= |AG1]?

4 Update H matrix H;" rr1and compute Pk
[1 - Kk+1Hk ]Pk+1[1 -
Kips1Re Ky

1=
Ko H )T +

Where F(t) are the linearized equations of mo-
tion, F'(t) = W __and used to propa-
- =T

gate the error covariance matrix

I ([0 x] —
21503

[Deix]I) 6w2I1F,,
_[acox]
(16)

F(t) =



99 = —0y (A13A23)

where o, =

where

0z (A13A23)
Oy (A§3 - A%s)
0, (A23As3)

Oz (433 - 1‘133)

0. (A13As3)

—0, (As3Ai3)
oy (A33A23)
0z ( 23 — A13)
2, — ) y = (I%m —Ifz) and
)

zz

= (I — Iz

APPENDIX B
SVD ATTITUDE
DETERMINATION ALGORITHM

1 Given the measurements

Yr+1 compute

n
T
B =3 wilYk+1,iYorb,i
i=1

2 Compute the singular value decomposition

[U, S, V] =svd(B);

3 Compute the Attitude matrix A, = U

diag[ 1 1 det(U) det(V) | VT

4 Compute the covariance error matrix,

P =U diag
([ (S2+0)7?

(0+S11)7Y (S11+ So2) 7!

where o = det(U) det(V)Ss3
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