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Abstract

We generalize to 3D shaped mosaics the Genera-
tive Video representation of video sequences intro-
duced by Jasinschi and Moura. Using a parametric
representation of the 3D shape, we recover the 3D
shape and 3D motions from the 2D motions in the
video sequence. In this paper we consider piecewise
planar object shapes under orthography and demon-
strate our approach with a real life video clip.

1 Introduction

Generative Video (GV), introduced by Jasinschi
and Moura, e.g., [1], reduces video sequences to world
images and ancillary data. The world images repre-
sent the background and any moving objects, while
the ancillary data describes for example the motions
(camera and objects). In the original formulation of
GV, the world images are modeled as sirnple planar
scenarios. This representation fails when the relative
depth of the scene structure is not negligible. In this
paper we recover 3D world image representations for
the video sequence. Within our framework, the major
task is to recover the 3D structure (3D shape and 3D
motion) from a 2D video sequence.
Previous related work Consider the case of a sin-
gle rigid body object, moving relative to the cam-
era, at a large distance when compared to the object
depth. In this scenario, to recover the 3D shape by
estimating the absolute depth is inaccurate. Tomasi
and Kanade, e.g., [2], introduced a method to recover
structure from motion without computing the abso-
lute depth as an intermediate step. In the approach
of Tomasi and Kanade, the object shape is represented
by the 3D position of a set of feature points. The 2D
projection of each feature point is tracked along the
image sequence. The 3D shape and moticn are then
estimated by factorizing a measurement matrix whose
entries are the set of trajectories of the feature point
projections.
Proposed approach We represent parametrically
the 3D shape of the rigid body object and apply Maz-
imum Likelihood (ML) estimation. The observations
are the orthographic projection of the object texture
plus noise. The problem is now to estimate from the
given sequence of images all the unknowns involved
(3D shape parameters, 3D motion parameters, and
object texture). We obtain a feasible approximation
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to the ML estimator by showing that the parametric
representation of the 3D rigid body shape induces a
parametric model for the optical flow in the 2D image
plane. We estimate the optical flow parameters using
known techniques and apply Least Squares (LS) to re-
solve the 3D shape and motion parameters from the
optical flow parameter estimates. Our technique was
introduced in reference [3] where we considered that
the world is 2D and the images are 1D projections of
the world.

Our method relates to that of Tomasi and

Kanade [2] in two very fundamental ways: we estimate
directly the 3D shape, instead of computing depth as
an intermediate step; and our algorithm leads to the
factorization of a measurement matrix. Aside from
this, our approach is different. We do not rely on the
tracking of feature points. Instead, we use a para-
metric description of the 3D shape and recover the 3D
structure from the parameterization induced in the op-
tical flow. The advantage of our approach is two-fold.
First, the tracking of feature points may be unreli-
able when processing noisy video sequences. The work
in reference [2] assumes a very short interval between
frames for easy feature tracking. We make no such as-
sumption because large displacements are taken care
of by a multiresolution approach to the estimation of
the optical flow parameters. Second, we estimate 3D
shape and motion from a sequence of few flow parame-
ters instead of needing to process a large set of feature
trajectories.
Paper overview Section 2 formulates the problem,
derives the ML-based cost function, and solves for the
texture estimate. Section 3 describes our approach to
the recovery of the 3D shape and 3D motion for piece-
wise planar shapes. We demonstrate our approach by
analyzing a real life video clip in section 4. Section
concludes the paper.

2 Problem Formulation

Observation model The frame I; captured at
time f, is modeled as a noisy observation of the or-
thogonal projection P of the rigid object O (assumed
segmented)

I; =P(O0,m;)+W; )
m; defines the position and orientation of the rigid

object relative to the camera coordinate system. For
simplicity, the noise W is white, Gaussian.



The object @ is described by its 3D shape § and
texture 7. We model the shape § by a parametric
description S{a) of the surface of the object, where a
is an unknown vector. The texture 7 represents the
light received by the camera after reflecting on the
object surface. Texture depends on the object surface
photometric properties, as well as on the environment
illumination conditions. We assume the texture at a
given surface point does not change with time. The
operator P returns a real valued function defined over
the image plane. P is a nonlinear mapping of 7 that
depends on the object shape & and the object posi-
tion m;. The intensity level of the projection of the
object at pixel w on the image plane in terms of 7 is

P(O,my) (u) =T (s4(5,my;u)) 2)

where s7 (S, my;u) is the nonlinear mapping that lifts
the point u on image I; to the corresponding point
on the 3D object surface. This mapping s;(S,my;u)
is determined by the object shape S(a), and the po-
sition mj;. To simplify the notation, we will write
explicitly only the dependence on f, i.e., sf(u). Let
uy(s) be the inverse map of s;(u). The point s on the
surface of the object projects onto us(s) on the image.
The mapping us(s), seen as a function of the frame
index f, for a particular surface point s, is the trajec-
tory of the projection of that point in the image, i.e.,
the motion induced in the image, usually referred to as
optical flow. In the sequel, we refer to the map uy(s)
as the optical flow map. The observation model (1) is
rewritten by using (2) as
I; =T (s;(u))+W; ()

ML estimate Given the observation model (3), the
3D shape and the 3D motion of the object O are re-
covered from the video sequence {If,1< f < F} by
estimating all the unknown parameters: the 3D shape
parameter a; the texture 7; and the set of 3D posi-
tions of the object {m;,1 < f < F'} with respect to
the camera.

With the noise W; zero mean, white Gaussian,
the ML estimate minimizes the cost function Cymr, de-
fined as

F
Cunla T me)) =3 [ Uy (@) =T (s, (@) du
f=1

(4)
Texture estimate We show in [4] that the ML esti-
mate 7 (s) that minimizes Cmy, is

Y1 L (s (8)) ()
Zf:l ‘]f (S)

where the function J;(s) is the Jacobian of the map-
ping u;(s), J;(s) = |Vuy(s)|. Expression (5) states
that the estimate of the texture of the object at the
surface point s is a weighted average of the measures of
the intensity level corresponding to that surface point.

T(s) = %)
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By inserting the texture estimate 7 in (4), we
express Cyp, In terms of the optical flow map-
pings {us(s)}. After manipulations, see [4], Cmr is
written as

Fof-1 :
J(s)Jq(s)
o =YY [ Uturto) = Loustenf L g
2 ; 2}1:1 Jh(S)

_ )
Eliminating the dependence on the texture, we are
left with a cost function that depends on the structure
(3D shape S(a) and 3D motion {m;}) only through
the motion induced in the image plane, i.e., through
the optical flow mappings {uf(s)%. Recall that uy
depends on the shape § and the motion m;.
Summary of the approach To recover the 3D shape
and the 3D motion of the object O from the image se-
quence, we do not attempt the direct minimization
of Cmi, over the parameters @ and {m;}. Rather,
we exploit the constraints induced on the optical flow
by the orthogonality of the projection P, the rigid-
ity of the motions (rigid object), and the parameter-
ization of the surface shape of the object. The con-
straints induced on the optical flow enable us to pa-
rameterize the optical flow mapping u;(s) in terms
of a parameter vector a; as u(af;.s%,l < f<F.
The parameter vector «y is directly related to the 3D
shape parameter a and the 3D position my, as will
be shown in section 3, i.e., ay = a{a,m;). The steps
of our approach to recover tfle 3D structure, i.e., the
3D shape parameter a and the set of 3D positions
{my;}, are summarized as: i) Given the image se-
quence {I;,1 < f < F'}, estimate the set of time vary-
ing optical flow vectors {ay,1 < f < F'} parameteriz-
ing the optical flow mappings {u(ay;s)}. ii) From
the sequence of estimates {a;,1 < f < F}, solve for
the shape parameter vector a and the object posi-
tions {m;,1 < f < F}.

3 Piecewise Planar Surface

Attach a coordinate system to the object given by
the axes labeled by , y, and z. We consider objects
whose shape is given by a piecewise planar surface with
K patches. The shape parameter vector a collects the
coefficients a = {aky, a%;,ak;, 1 <k < K} where

1<k<K; (7

z= a’SO + alfox + a’ély
describes the shape of the patch k.

To capture the 3D motion of the rigid object,
we attach a coordinate system to the camera given
by the axes u, v, and w, see figure 1. We ex-
press the object position at time instant f in terms
of (tuf,t,,f,twf,éf,qﬁf,i/)f) where (tuf,tuf,twf) are
the coordinates of the origin of the object coordinate
system with respect to the camera coordinate system
(3D translation), and (6;, ¢y, ;) determine the orien-
tation of the object coordinate system relative to the
camera coordinate system (3D rotation).

The point (z, y, z) projects at time instant f on the
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Figure 1: Object and camera coordinate systems.

image coordinates u; = [uy, vs]T given by
tuf

J[§}+[%f

where the matrix that multiplies [z, y, z]T is a subma-
trix of the well known 3D rotation matrix, determined

by the angles (8¢, ¢, ¢¢):

iy, e
Jug Jyp Jag

i
Uf = 2

| ®

ipf = cosbyfcosgy 9)
iyf = singy (10)
i,5 = —sinfycosdy (11)
Jey = sinfpsingy — cosbysings cosyy (12)
jyf = cos¢jfcos Py (13)
j:; = sinfssing;costpy +cosbysingy (14)

Expression (8) shows that the orthogonal projec-
tion is insensitive to the translation along the w axis.
This reflects the fact that under orthography the abso-
lute depth can not be estimated. Only the set of po-
sitions {mf = {tuf,tvf,Of,qﬁf,a/)f} 1< <L F} can
be estimated from the image sequence.

3.1 Optical flow

We show that the optical flow mappings {us(s)}
are described parametrically. Choose the coordinate
s = [5,7]T of the texture function to coincide with
the coordinates [z,y] of the object coordinate sys-
tem. Also, the object coordinate system and the
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camera coordinate system coincide in the first frame.
A point with coordinate s = [s,7]7 in the object sur-
face projects on u = [z,y]7 = [s,7]T = s in the first
frame, so u1(s) = s. At time f, that point projects
according to (8). For a point s that falls in patch k of
the object surface, we have

oy iyf Uzg
u =1 . ; .
f(s) [ Jeg Jyyp Jzg

tuj
+[tvf }

Define the set of parameters a"}

s
} -
a](ﬁo + a’fos -+ a’élr

(15)

{auk avk }
fmn>y Y fmn
as the coefficients of the powers of s and » above,

6o =tog +Jsgage  (16)
a}IISO =Jeg + jzfallco (17)
afe, = Jyy+ jepag;  (18)

a%o =ty + ;‘z,a’go,
a“f‘fo =idgs + izf“’fo:
a%l = iyj + iZ,fagl;
The optical flow between frames I; and Iy in the im-

age of the surface patch & is written in terms of the
optical flow parameter vector a’f“ as

uk uk uk

k. Qoo+ Qg8 T a7

up(s) =u(af;s,r)y=| 130 00 I
Qroo T Xp108 T Xpor”

The optical flow parametrization above is usu-
ally referred to as affine motion model. The ML

estimation of {aj’i} leads to the minimization of

Cwmr given by (6) with respect to the set of vectors
{a’},l <f<L<F1<k< K} parameterizing the map-

pings {u; (s}(: u(ay;s)}. In practice, this is a highly
complex task. A more feasible and practical solution
decouples the estimation of each vector ay from the
estimation of the remaining vectors ay, ¢ # f, by sim-
plifying the cost function (6). Instead of using all
possible pairs of frames, compare all frames with re-
spect to the first frame I;. Also, neglect the weighting

term —Z{:’—g%ﬂii%, and obtain the usual expression for
h
h=1
the optical flow estimation:

{;7;} = arg {min i

aj}io
We compute the optical flow parameter vector esti-

|15 (utai o) - 1i(@)] s
R

mates {&7}}, by using known techniques, see refer-
ences [5] and [6].
3.2 3D Structure from 2D Optical Flow
The set of equations (16-18) defines an overcon-
strained system with respect to the 3D shape param-
eters {ak;,ak;,afy, 1 <k < K} and to the 3D po-
sitions {tus,tus,0r,¢7,%7, 1,< f,< F}. The esti-
mate {ak,,} of the object shape and the estimate



{uf tup, 05,05, ¢f}
Least Squares (LS) solution of the system. We first
solve for the translation, leading to a closed-form solu-
tion. Then, replace the translation estimate and solve
for the remaining motion parameters and shape pa-
rameters by using a two-step iterative method.

Translation estimation The translation compo-
nents along the camera plane at instant f, 2,7 and ¢, ¢

of the object positions are the

only affect, respectively, the set of parameters a%“o

and { fOO} If the parameters {af,} and {6;,4,7%,}
are known, the LS estimate of {tuf, uf} is given by

fu , K

I Zk 10‘f(})co‘“’»6f Dbt ago 2

i Ek 1af00_]Zka 1 00 99
o= ; (22

Without loss of generality, we choose the object coor-

dinate system in such a way that Ek _, aby = 0 (the
first frame only restricts the rotation and the compo-
nent of the translation parallel to the image plane, so
we have freedom to move the coordinate system along
the axis orthogonal to the image plane). With this
choice, we obtain the estimates

K
1
~uk ~y
tuy = Za}‘oo’ toy = = 476 (23)
k=1

Optical flow parameters matrix Replace the set
of translation estimates {fy;,fv;} given by (23) in
the equation set (16-18). Define a set of parameters

{,B}*k ;k} related to {afOO)ajOO} by
k k
Bf* = afa - = Zafow =oj0~ I Z @00

(24)
Collect the parameters {ﬁ“k, a‘f”n“m, B8k, afmn} in the

matrix R, which we call the optical flow parameters
matrix,

[ pul %l ul ukK uK uK 7
B ®¥110 Q101 " 1}\ CY111<3 011(}1
1 ul ul [79:¢ u uK
2 Q210 Q201 2 Q210 Q201
ul ul ul u K u K uK
R= F Op10 QFo01 ﬂFI OIF}? Q’F(I)l
- vl vl vl v K v v K
1 Q110 X301 B 0’1110 O‘IOII
vl vl vl v K v K v K
2 ®210 X201 2 Q210 Q201
vl vl vl v K vJK v K
L PF %F10 %po1 " Br ¥rFi0  ®Fo1 J

and the motion and shape parameters in matrices M

and S, as follows

ia:]. ir? "’Z‘F j-’”l j-TQ JxF
M= 1y, iy typ  Jyr Juz Jyp
iz lz2 tzFp  Jz1 J22 Jzp
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0 1 o0 0 1 0
sST=1 0o o 1 0o 0 1 (27)
aéo a%o anln e ab’:) aﬁy aér‘i

These enable us to factorize the optical flow matrix
according to (16-18) and (24)
R=MS" (28)
Matrix R is 2F x 3K. In a noiseless situation, R is
rank deficient (rank 3) due to the redundancy of the
observations imposed by the 3D rigid structure of the
object. With noisy observations, R may be full rank
but the 3 largest eigenvalues should contain most of
the energy.
Factorization To estimate the shape and motion pa-
rameters we use a two-step iterative method. The
steps are: 1) solve for shape with known positions, and
1i) solve for positions with known shape. We will see
that step 1) leads to a linear LS problem and step i),
although nonlinear, decouples the estimation of the
positions at different instants. The initialization is
done by computing the Singular Value Decomposition
(SVD) of the matrix R and selecting the 3 largest
eigenvalues. We get R ~ UXVT where U is 2F x 3,
3 is diagonal 3 x 3, and V7 is 3 x 3K. We initial-
ize M = US%A and ST = A1 33V7T where A is
a non-singular 3 x 3 matrix determined by the con-
straints imposed by the structure of the matrix M
(expressions (9-14) and (26)). This step is similar to
the procedure in reference (2], see [4] for the details.
Shape estimate for known motion The shape is

described by the third row of the matrix ST which

we denote by sZ. Given the matrix M, we denote

by R a matrix equal to R at all entries except for

the set {a“;’fo,a%l,a}’{o,a?ﬁl} which is replaced by
{7}‘{90)%01»7;10)7,‘10} defined as

—iy, (29)
—dy; (30)

According to expressions (25-30), we have

ko uk
7f10 O‘flo iog, 7}‘01—'&}01

_ E o wk
7f10 = O‘flo — Jeg, Y01 = %01

T
R = mgs;3

(1)

where s is the third column of the matrix M. The

estimation of s3 from R and mg, according to expres-
sion (31), is a linear problem. The LS solution is

-1 ~

mIR
ng M3

T
m3

33 = (mims) (32)

ms3

Motion estimate for known shape From (25-27),
note that the object position at instant f only affects
the rows f and f + F of matrix R. Given the ob-
ject shape S, the LS estimate of the object rotation



{,0¢,%;} for each frame f is given by

-1

{6195 9s} = arg min ] (0,6,9)e1(0,6,4) (34)

5] iz v
S{ Jj»

i

iy .
Jz ]

Jy

Ty
Ti+F

c(0,0,9) = [

To solve the non-linear minimization (34), we a Gauss-
Newton method. Starting from an initial point
{Pa, b0, %0}, the increments {6g,84,6,} are found by
minimizing (34) after truncating the Taylor series of
cs(fo + 65, b0 + 84,90 + by ). Neglecting second and
higher order terms, we have

cr(fo+ 0p, b0+ g, Yo + by) = ¢; (b0, do, %o) (35)
1)

+Vc,(90,¢oy1/)o)[ ‘SZ ]
by

where V is the gradient operator. Equating to zero the
partial derivates of the cost function ¢;(6y + 8¢, o +

5¢,’(/)0 -+ 611)).7’8;(60 + 69,¢0 -+ 6¢,I/)0 -+ (51(,) Wlth re-
spect to the increments g, 84,8y, we obtain linear es-

timates &5, 8¢, 8,1, from the solution of
8
by
by
~ V&, (60, 60, %0)ct (60, $o, o)

(36)

vgj (60) ¢)0) "/)D)VCf(gﬂz ¢03 Qf)o)

When computing éf, q@;, 1;f we start the iterative pro-
cess with the initial guess o = f;_1,¢0 = ¢5_1,%0 =
1/3;-1. Initially, we have 6 = ¢1 = ¥1 = 0 by defint-
tion. See [4] for the details.

4 Experiment

We used a real life video showing a static corner
taped by a moving camera. Figure 2 shows two con-
secutive frames from the sequence of 10 images.

Figure 2: Image sequence.

Figure 3 shows a perspective view of the recon-
structed 3D shape. It contains 3 planar patches: the
floor and two walls. The angle between the walls is
clearly seen. The angle of the walls with the floor can
also be perceived.
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Figure 3: Reconstructed 3D shape and texture.

5 Conclusions

We recover 3D structure from 2D video. The results
obtained so far show that our method can be used in
content-based video analysis tasks.
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