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o,Av. Rovis
o Pais, 1049-001 Lisboa, Portugal,Fax: +351-218418291, E-mail: fsjoerd,moreira,palg�isr.ist.utl.ptAbstra
t. This paper deals with the the subje
t of learning and planning forreal mobile robots, using Sutton's Dyna algorithm. The Dyna algorithm integratesreinfor
ement learning, planning and rea
tive exe
ution. In this paper we presentan extension of the Dyna algorithm whi
h in
ludes symmetri
 and 
ooperativelearning with multiple robots. We applied the extended version of the algorithm to apopulation of two real robots. Pra
ti
al problems asso
iated with the implementationof the algorithm on a real setup are solved. Results obtained from simulations andreal experiments are presented and dis
ussed.Key words: Reinfor
ement Learning, Cooperative Roboti
s, Visual Tra
king, Dyna.1 INTRODUCTIONThe 
ontrol of a roboti
 system, espe
ially theplanning of tasks to be performed by the robotto a
hieve a goal, is in most 
ases a very 
om-plex problem. Several methods have been devel-oped to address this problem, one of whi
h is rein-for
ement learning [5℄. This method reveals greatsimpli
ity, addressing large and 
omplex problemsusing a simple approa
h. The learning is done byevaluating the results of exe
uting a given taskthrough su

ess and failure signals and their re-spe
tive rewards and penalties, allowing the sys-tem to plan a solution through a probabilisti
 de-
ision method by evaluating the performan
e.In the last few years, Sutton [1℄ and his asso-
iates have explored reinfor
ement learning algo-rithms. One of the algorithms developed is theDyna algorithm, whi
h integrates learning fromexperien
es in the real world and virtual experi-en
es done on an internal world model with rea
-tive exe
ution. The main advantage of this ap-proa
h is that the hypotheti
al experien
es speedup the learning pro
ess. In fa
t, the algorithmperforms an in
remental form of planning that is
losely related to dynami
 programming. Su
han approa
h helps to partially over
ome the fre-quently en
ountered limitations of reinfor
ementlearning appli
ations to roboti
s due to the prob-lem large state spa
e. A drawba
k of this ap-proa
h is that it assumes that the agent 
an a

essthe world state at no 
ost and at every time. Thisis not always realisti
 in real roboti
s appli
ations,e.g. when re
ognizing the goal state and perform-

ing obsta
le dete
tion. These are diÆ
ult tasks toa
hieve and 
ertainly not error-free.In [3℄, Weiser and Lima present an appli
ationof the Dyna algorithm to a real robot, in whi
hthey study the appli
ation of this kind of rein-for
ement learning algorithms to situations morerealisti
 then the simulations usually des
ribed inthe literature. The approa
h adopted 
onsists innavigating a mobile robot through a maze froman initial position to a �nal position. One 
on-
lusion drawn is that with su
h a setup, initiallearning rates are very low, resulting in time 
on-suming �rst trials. Also, the state representationby a grid of 
ells is not always suitable, espe
iallywhen dealing with large state spa
es.In this paper the Dyna algorithm is extendedto symmetri
 and 
ooperative learning with a pop-ulation of agents. With this extension, learningrates are speeded-up by exploring 
ooperation be-tween agents. The extension also explores symme-try in learning data whi
h allows an agent to 
om-bine learning data obtained when traveling froman initial state to a goal state and vi
e versa. Wepresent an appli
ation of the extended algorithm,using a real set-up with two robots.The Se
tion 2 outlines the Dyna algorithm andthen extends the algorithm to symmetri
 and 
o-operative learning. In se
tion 3, an experimentalsetup to apply the extended Dyna algorithm to aset of real robots is des
ribed. Se
tion 4 presentssome results obtained from a series of experimentsperformed with the extended algorithm. Finally,in Se
tion 5, 
on
lusions are drawn and futurework is dis
ussed.



2 THE EXTENDED ALGORITHM2.1 The Dyna algorithmThe Dyna algorithm [1℄,[2℄ is based on the oldidea that planning is like trial and error learn-ing from hypotheti
al experien
es. Based on this
on
ept, an agent intera
ts with the world, fromwhi
h it re
eives a su

ess or failure signal asso-
iated to a given state-a
tion pair. Together withthe su

ess signal, the agent re
eives a reward.The Dyna ar
hite
ture 
onsists of four primaryintera
ting 
omponents, the �rst of whi
h is thereal world and represents the task to be solved.The agent also maintains an internal world modelthat is updated with the information gathered byintera
ting with the real world. As an additionalfeature, the agent performs hypotheti
al experi-ments using the 
urrent world model, intermixedwith the intera
tion with the real world. The third
omponent is the agent poli
y that asso
iates a setof possible a
tions to ea
h state. Finally, the Dynaar
hite
ture in
ludes an evaluation fun
tion thatmaps states to values and is updated from the re-infor
ement signals re
eived from the world afterea
h a
tion. This is done a

ording to the sim-plest version of the temporal di�eren
e learningmethod [5℄. The algorithm uses this evaluation toupdate the poli
y so that the agent is able to planthe 
orre
t sequen
e of a
tions to a
hieve the goal.The poli
y table has an entry wxa for every pair ofstate x and a
tion a, whi
h is updated (using theevaluation fun
tion) so as to strengthen or weakenthe tenden
y to perform a
tion a in state x. A
-tions are 
hosen randomly a

ording to a Boltz-mann probability distribution, so as to guaranteesto
hasti
 
onvergen
e of the algorithm:pfa j xg = ewxaPa
tionsj ewxj (1)A step is de�ned as the transition from one 
ellto a neighboring 
ell. The algorithm 
ombinesreal steps, that are performed by the agent in thereal world, with hypotheti
al steps that are exe-
uted by the agent over its world model. Bothtypes of steps update the evaluation fun
tion andthe poli
y map of the agent. A trial is de�ned asa sequen
e of real steps whi
h a
hieves the goalstate starting at some initial state. For a detaileddes
ription of the Dyna algorithm we refer to [2℄.2.2 The symmetri
 problemBased on the above version of the Dyna algo-rithm, the agent needs to return to its initial posi-tion and start another trial ea
h time it rea
hes agoal state. Although this is a simple task in a 
om-puter simulation, in a real system it is ne
essary todevelop a pro
edure for returning the agent to the

initial position whi
h would imply some form ofba
k-tra
ing the agent steps to rea
h the goal po-sition. If we restri
t our problem to a setting werethere is a symmetry problem between the path tothe goal and the return path, then we propose toextend the Dyna algorithm su
h that the agent isable to 
ontinue learning when traveling from thegoal state to its initial position.For the Dyna algorithm to work in this sym-metri
 way, it is ne
essary to maintain two evalu-ation fun
tions (one to travel from the initial posi-tion to the goal and another on the way ba
k), soas to preserve the me
hanism of ba
kwards prop-agation of the evaluation fun
tion values in ea
hstate. Symmetri
 information 
an be found in thepoli
y map, whi
h indi
ates stepping dire
tions inea
h state.The main idea behind the extension is that af-ter entering the goal state, it is possible to trans-form the 
urrent poli
y su
h that it dire
ts theagent ba
k to the initial position instead of thegoal position. Considering the 
ase in whi
h thealgorithm is applied to solve a maze as in [1℄,where the state is des
ribed by the position ofthe agent in the maze given by a 
oordinate pair(i; j) with i � rows = 0; 1; :::; n � 1 and j �
olumns = 0; 1; :::;m � 1 and where the set ofavailable a
tions in ea
h state is given by: a
tion2 (left; right; up; down), we propose the followings
heme to implement su
h a transformation:For i = 0 : n� 1For j = 0 : m� 1If state (i; j) is not o

upied by an obsta
leThen:if 
ell (i; j � 1) has no obsta
lepoli
y(i; j)left = w(i; j � 1)rightelsepoli
y(i; j)left = w(i; j)leftif 
ell (i; j + 1) has no obsta
lepoli
y(i; j)right = w(i; j + 1)leftelsepoli
y(i; j)right = w(i; j)rightif 
ell (i+ 1; j) has no obsta
lepoli
y(i; j)up = w(i+ 1; j)downelsepoli
y(i; j)up = w(i; j)upif 
ell (i� 1; j) has no obsta
lepoli
y(i; j)down = w(i� 1; j)upelsepoli
y(i; j)down = w(i; j)downFor i = 0 : n� 1For j = 0 : m� 1w(i; j)left = poli
y(i; j)leftw(i; j)right = poli
y(i; j)rightw(i; j)up = poli
y(i; j)upw(i; j)down = poli
y(i; j)downWhere wxa is the entry of the poli
y table for



the state-a
tion pair given by state x = (i; j) anda
tion a and poli
y(i; j)a is an auxiliary variableused to 
al
ulate the transformed values for wxa.The value of wxa is used to 
ompute the proba-bility of an agent in the state (i; j) to move in thedire
tion given by a, a

ording to (1). Note thatin a given state (i; j), the value of the poli
y to-wards an obsta
le, known in the world model, isnot 
hanged by the transformation.For the agent to be able to add new informationto the poli
y table when returning to the initialposition, it is ne
essary to attribute a reward tothe initial position and reset the reward in the goalposition. Using the se
ond evaluation map whenreturning to the initial position, it is now pos-sible to apply the 
lassi
al Dyna algorithm withthe transformed poli
y and iterate until the agentrea
hes its initial position. At this point the poli
ymap is transformed again, a reward is attributedto the goal position and using the �rst evaluationfun
tion, the algorithm now iterates again untilentering the goal state.The only problem that arises 
on
erns the useof the two separate evaluations fun
tions. Whenthe agent steps ba
k to its initial position usingthe transformed poli
y and the se
ond evaluationfun
tion, a situation is 
reated in whi
h in
reasedpoli
y values appear in states for whi
h no in-
reased evaluation exists. But taking into a

ountthe stru
ture of the Dyna algorithm, the hypo-theti
al and real steps that will be performed willmake the se
ond evaluation fun
tion 
onverge toa symmetri
 version of the �rst evaluation map.
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GFigure 1: Example of the poli
y map before(left) and after (right) applying the transforma-tion; the arrows represent the dire
tion 
ontain-ing the largest poli
y values; no arrow means thatall dire
tions have a zero or negative poli
y value;the goal state is at (3,3) and the initial state at(0,0).2.3 Cooperative learning and planningAnother interesting extension for the Dyna al-gorithm is to have a population of small robotsrunning in parallel through the maze, with theobje
tive of speeding up the learning algorithmand testing 
ooperative strategies. Extending theDyna algorithm for a 
ooperative set of agents

means information sharing between the agents. Inthe 
ase of 
ommuni
ating agents, it is also ne
-essary to 
onsider the 
ommuni
ation 
hannel be-tween real agents as not 
ompletely reliable andnoisy. Taking into a

ount these 
onsiderations,we propose the following 
ooperation strategy:- Ea
h agent maintains its own internal worldmodel , evaluation fun
tion and poli
y map.- Upon dis
overing a new obsta
le or goal, anagent transmits the position of that obsta
leor goal to the rest of the population.- Upon taking a real transition between states,ea
h agent transmits the resultant poli
y valueobtained for that spe
i�
 state-a
tion pairto the rest of the population. The re
eiv-ing agents update the 
orresponding entryof their poli
y map using the following ex-pression:w(i; j)a
tion = w(i; j)a
tion + value2Where value is the resulting poli
y valuetransmitted by the agent that performed thetransition.The main idea behind 
ommuni
ating the pol-i
y values is that sharing the information of thenew obtained poli
y value for a given state-a
tionpair with the other agents will redu
e the sear
hspa
e of the other agents, thus a

elerating thelearning pro
ess. Note that although initially therewill be a dis
repan
y between the evaluation andpoli
y maps of the re
eiving agents, the hypothet-i
al experiments that are performed by ea
h agentwill redu
e the dis
repan
y.Another advantage of this 
ooperation strategyis its robustness. Sin
e ea
h agent has its individ-ual world model, it 
an always perform individuallearning and planning. Then, if for some reasona 
ommuni
ation failure arises during an intervalof time, ea
h agent still is 
apable of ful�lling itsobje
tives on a stand-alone basis.A disadvantage is that ea
h agent needs a sig-ni�
ant 
omputational 
apability to exe
ute theDyna algorithm for whi
h it also needs some mem-ory to be able to represent the world model with
orresponding poli
y maps and evaluation fun
-tions. An alternative is to assign some pro
essingtime and memory of a 
entral pro
essing unit toea
h individual agent whi
h runs the individuallearning and planning modules in parallel. Thisway, the agents only re
eive the a
tions and trans-mit the results of those a
tions to the 
entral unit.This approa
h will be further explored in the fol-lowing se
tion, whi
h deals with the implementa-tion of the extended algorithm on a real system.



2.4 Deadlo
k avoidan
eWhen running the extended Dyna algorithmfor a population of 
ooperative agents that sharethe same goal, all individual poli
ies will 
onvergeto the same poli
y due to the ba
kwards propaga-tion of the 
ommon re
eived rewards. This 
reatessituations in whi
h the agents will plan transitionsto 
ommon states, leading to deadlo
ks. A dead-lo
k o

urs whenever two or more agents preparea step in the real world to the same state or when-ever two or more agents are fa
e to fa
e and planto swap positions. To solve the deadlo
k situa-tions, we propose an alternative state transitionrule, triggered whenever a deadlo
k o

urs. A
-
ording to this rule , instead of 
onsulting its pol-i
y, an agent sele
ts a random a
tion with equalprobability from the set of available a
tions. If thea
tion is exe
utable, the agent makes the tran-sition without 
hanging the poli
y of the 
orre-sponding state-a
tion pair and without updatingthe evaluation values of the 
orresponding state.3 EXPERIMENTAL SETUP3.1 Overall systemThis se
tion des
ribes the experimental setupused for testing the extended version of the Dynaalgorithm on real robots. The overall system, il-lustrated in Figure 2, 
onsists of two vision-basedteleoperated 
ellular robots [6℄ 
ontrolled via a
amera lo
ated at an elevated position su
h thatthe 
amera-image 
overs the whole workspa
e ofthe robots.

Figure 2: S
hemati
s of the overall system used.The robots have no on-board sensors and are
ontrolled by a 
entral pro
essing unit. For ea
hindividual robot, the 
entral 
omputer runs threemodules: the learning and planning algorithm, avisual tra
king module and a 
ontrol module. Thevisual tra
king module is responsible for robotpose estimation from the visual information pro-vided by the 
amera. The 
ontrol module 
on-trols the individual robot position and headingdire
tion via a radio link. Ea
h module will be

des
ribed in more detail in the following subse
-tions.3.2 Learning and planning for real robotsTo apply the extended version of the Dyna al-gorithm to real robots, the world is de�ned as agrid of square 
ells (states), proje
ted onto theground-plane. Obsta
les are simulated by bla
k
ells. In Figure 3, this real setup is illustrated.
Figure 3: Example of a real world setup; the mazeis super-imposed on the 
amera image.Initially ea
h individual robot has an internalrepresentation of the world (stored in the 
entral
omputer), whi
h is empty. For ea
h robot stepin the real world, the learning and planning algo-rithm provides a referen
e input obtained from the
orresponding robot poli
y. To exe
ute the step,ea
h robot �rst 
he
ks the visual information pro-vided by the 
amera to determine if the referen
e
ell is empty. Although the 
amera provides the
entral 
omputer with visual information 
on
ern-ing the whole workspa
e of the robots, the indi-vidual robot does not a

ess this information. Inthis setup, on-board vision sensors are simulated,by allowing ea
h robot only to s
an for obsta
lesor other robots in the dire
tion of movement.Upon su

essful exe
ution of a step in the realworld, the 
orresponding world model is updated.3.3 Visual sensing and tra
kingIn order to 
ontrol the traje
tory of ea
h in-dividual robot, it is ne
essary to relate the robotposition on the ground-plane (in metri
 
oordi-nates) to its position in the image-plane (given inpixel 
oordinates). Ea
h image point ~m will 
orre-spond uniquely to a 
ertain point on the ground-plane ~M , a

ording to a plane-to-plane proje
tivetransformation [7℄: ~m = ~Pp: ~M (2)The 3� 3 transformation matrix P depends onthe 
amera intrinsi
 parameters and the 
ameraposition relative to the world frame. On
e thetransformation matrix is estimated, it 
an be used



to 
onvert the 
oordinates from robots and obsta-
les in the image plane to the ground-plane andvi
e versa.A tra
king system is developed whi
h estimatesea
h individual robot position and heading dire
-tion over time from the sequen
e of 
amera im-ages. The video 
amera uses a RGB representa-tion, allowing 
olor dete
tion for robot segmenta-tion in the image-plane.The tra
king systems runs at a frequen
y ofabout 5 Hz and performs robust estimation undervarious lightning 
onditions. Image pro
essing isdone lo
ally in a small neighborhood of the a
tualrobot position.3.4 Robot 
ontrol systemThe 
ontrol system implemented on the 
en-tral 
omputer runs a 
ontrol algorithm for ea
hindividual robot, 
ontrolling its position and ori-entation towards a �nal position provided by thelearning and planning algorithm.The mobile platforms used have a di�erential-drive stru
ture, where two DC-motors dire
tly drivethe left and right wheels independently.The 
ontrol strategy 
onsists in dynami
allyorienting the robot towards the �nal position, spe
-i�ed by the 
enter position of the goal 
ell and pro-vided by the learning and planning module. The
ontroller re
eives the a
tual position and orien-tation sensed by the visual system and generatesappropriate motor 
ommands. Along the path,the robot will move at 
onstant 
ruise speed. Therobot position is 
ontrolled by an on/o� 
ontroller,generating a 
onstant 
ommon-mode voltage (re-sulting in a 
onstant linear velo
ity of the robot)whenever the robot is outside a prede�ned radiusen
ir
ling the �nal position. A PID-
ontroller isused to 
ontrol the robot heading dire
tion, gener-ating di�erential voltages as a fun
tion of the errorin orientation. This di�erential signal is super-imposed on the 
ommon mode signal and sent toea
h robot by a radio-link. The radio-link oper-ates at a rate of 1200 bps via serial-port 
ommu-ni
ation with the 
entral 
omputer. At this rate,the 
entral unit rea
hes a 
ontrol frequen
y up to21.8 Hz with a single robot and 1.36 Hz with 16robots.4 RESULTSIn this se
tion we 
ompare the performan
e ofthe symmetri
 single agent algorithm with the 
o-operative symmetri
 algorithm. Results are ob-tained from experiments with the real world setupas illustrated in Figure 3.The real-time experiments were performed us-ing the symmetri
 algorithm for a single robot(blue robot) and the 
ooperative symmetri
 al-

gorithm for a set of two robots (red and bluerobot). In the se
ond 
ase, the blue robot waspla
ed in the initial position and the red robotwas pla
ed next to the blue robot. Neverthelessit 
ould be pla
ed anywhere in the world. Theparameter setting used for the Dyna algorithm is:� = 4; � = 0:1; 
 = 0:9. One hundred hypo-theti
al steps were performed for ea
h real step.Evaluation values were initialized at zero.The performan
e measure used for 
omparisonis the number of steps per trial. In the originalDyna algorithm a trial is de�ned as a 
ompletepath from the initial position to the goal position.Sin
e with the symmetri
 algorithm the agent willalso learn when returning from the goal position tothe initial position, it is ne
essary to restate thede�nition of a trial so as to be able to 
ompareperforman
es. De�ning a trial as a 
omplete pathbetween the initial position and goal position orvi
e versa, we used the average value between thenumber of steps obtained from stepping from theinitial position to the goal position and the num-ber of steps obtained from stepping ba
k from thegoal position to the initial position.Figure 4 displays the average number of stepsper trial obtained from two experiments with boththe symmetri
 and 
ooperative symmetri
 algo-rithm, where ea
h experiment runs �ve trials. Alsothe average number of deadlo
ks that o

urredwith the 
ooperative symmetri
 algorithm are dis-played.
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Figure 4: Results obtained from real experien
es.The values indi
ated are average values obtainedfrom 5 experien
es.Analyzing the obtained results it is possible toverify that the experiment with two robots willinitially 
onverge faster to the solution than theexperiment with a single robot. This is also il-lustrated in Figure 5, where the internal worldmodel and poli
y of the blue robot upon enteringthe goal state for the �rst time is illustrated forboth the symmetri
- and 
ooperative symmetri
algorithm. With the 
ooperative algorithm, the



blue robot poli
y is mu
h more 
omplete due toinformation ex
hange with the red robot, whi
halready has entered the goal state.
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GFigure 5: Internal world model and obtained pol-i
y of the blue robot upon entering the goal statefor the �rst time; left: symmetri
 algorithm; right:
ooperative symmetri
 algorithm.An important observation is that due to dead-lo
k situations, that o

ur in the 
ooperative set-ting, the number of steps per trial will os
illate,while in the 
ase of a single robot, the number ofsteps 
onverges to a minimum after three trials.It is important to realize that the os
illation ofthe number of steps per trial for the 
ooperativesetting does not imply that the path planned bythe robots 
hanges. The in
reased value of stepsis due to the extra steps needed to solve the dead-lo
k.5 CONCLUSIONS AND FUTUREWORKThe results obtained with the symmetri
 Dynaalgorithm show that the use of a 
ooperative setof agents allows the algorithm to rea
h the goalfaster, espe
ially in the �rst iteration where noknowledge of the world and of the goal positionis available. The possibility of distributing theagents over the world allows the algorithm to rea
hthe goal even faster, sin
e ea
h agent will explorea di�erent region of the sear
h spa
e and transmitthat information to all other agents.The development of a symmetri
 algorithm al-lows the agents to return to their initial positionwhile 
ontinuing to learn.A deeper experimental study using larger worldsis ne
essary to demonstrate more 
learly the per-forman
e of the 
ooperative extended algorithm.A theoreti
al study must be made to show thesto
hasti
 
onvergen
e of this extended Dyna al-gorithm.Future planned improvements in
lude the us-age of fully autonomous robots, without the needto use an overviewing 
amera and external pro-
essing.
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