COOPERATIVE LEARNING AND PLANNING
FOR MULTIPLE ROBOTS

SJOERD VAN DER ZWAAN, JOSE A. A. MOREIRA, PEDRO U. LIMA
Instituto de Sistemas e Robdtica, Instituto Superior Técnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal,
Fax: 4+351-218418291, E-mail: {sjoerd,moreira,pal}@isr.ist.utl.pt

Abstract. This paper deals with the the subject of learning and planning for
real mobile robots, using Sutton’s Dyna algorithm. The Dyna algorithm integrates
reinforcement learning, planning and reactive execution. In this paper we present
an extension of the Dyna algorithm which includes symmetric and cooperative
learning with multiple robots. We applied the extended version of the algorithm to a
population of two real robots. Practical problems associated with the implementation
of the algorithm on a real setup are solved. Results obtained from simulations and
real experiments are presented and discussed.

Key words: Reinforcement Learning, Cooperative Robotics, Visual Tracking, Dyna.

1 INTRODUCTION

The control of a robotic system, especially the
planning of tasks to be performed by the robot
to achieve a goal, is in most cases a very com-
plex problem. Several methods have been devel-
oped to address this problem, one of which is rein-
forcement learning [5]. This method reveals great
simplicity, addressing large and complex problems
using a simple approach. The learning is done by
evaluating the results of executing a given task
through success and failure signals and their re-
spective rewards and penalties, allowing the sys-
tem to plan a solution through a probabilistic de-
cision method by evaluating the performance.

In the last few years, Sutton [1] and his asso-
ciates have explored reinforcement learning algo-
rithms. One of the algorithms developed is the
Dyna algorithm, which integrates learning from
experiences in the real world and virtual experi-
ences done on an internal world model with reac-
tive execution. The main advantage of this ap-
proach is that the hypothetical experiences speed
up the learning process. In fact, the algorithm
performs an incremental form of planning that is
closely related to dynamic programming. Such
an approach helps to partially overcome the fre-
quently encountered limitations of reinforcement
learning applications to robotics due to the prob-
lem large state space. A drawback of this ap-
proach is that it assumes that the agent can access
the world state at no cost and at every time. This
is not always realistic in real robotics applications,
e.g. when recognizing the goal state and perform-

ing obstacle detection. These are difficult tasks to
achieve and certainly not error-free.

In [3], Weiser and Lima present an application
of the Dyna algorithm to a real robot, in which
they study the application of this kind of rein-
forcement learning algorithms to situations more
realistic then the simulations usually described in
the literature. The approach adopted consists in
navigating a mobile robot through a maze from
an initial position to a final position. One con-
clusion drawn is that with such a setup, initial
learning rates are very low, resulting in time con-
suming first trials. Also, the state representation
by a grid of cells is not always suitable, especially
when dealing with large state spaces.

In this paper the Dyna algorithm is extended
to symmetric and cooperative learning with a pop-
ulation of agents. With this extension, learning
rates are speeded-up by exploring cooperation be-
tween agents. The extension also explores symme-
try in learning data which allows an agent to com-
bine learning data obtained when traveling from
an initial state to a goal state and vice versa. We
present an application of the extended algorithm,
using a real set-up with two robots.

The Section 2 outlines the Dyna algorithm and
then extends the algorithm to symmetric and co-
operative learning. In section 3, an experimental
setup to apply the extended Dyna algorithm to a
set of real robots is described. Section 4 presents
some results obtained from a series of experiments
performed with the extended algorithm. Finally,
in Section 5, conclusions are drawn and future
work is discussed.

2 THE EXTENDED ALGORITHM
2.1 The Dyna algorithm

The Dyna algorithm [1],[2] is based on the old
idea that planning is like trial and error learn-
ing from hypothetical experiences. Based on this
concept, an agent interacts with the world, from
which it receives a success or failure signal asso-
ciated to a given state-action pair. Together with
the success signal, the agent receives a reward.

The Dyna architecture consists of four primary
interacting components, the first of which is the
real world and represents the task to be solved.
The agent also maintains an internal world model
that is updated with the information gathered by
interacting with the real world. As an additional
feature, the agent performs hypothetical experi-
ments using the current world model, intermixed
with the interaction with the real world. The third
component is the agent policy that associates a set
of possible actions to each state. Finally, the Dyna
architecture includes an evaluation function that
maps states to values and is updated from the re-
inforcement signals received from the world after
each action. This is done according to the sim-
plest version of the temporal difference learning
method [5]. The algorithm uses this evaluation to
update the policy so that the agent is able to plan
the correct sequence of actions to achieve the goal.
The policy table has an entry w,, for every pair of
state z and action a, which is updated (using the
evaluation function) so as to strengthen or weaken
the tendency to perform action a in state x. Ac-
tions are chosen randomly according to a Boltz-
mann probability distribution, so as to guarantee
stochastic convergence of the algorithm:

e’anca
plal e} = Saarmons o (1)
J

A step is defined as the transition from one cell

to a neighboring cell. The algorithm combines
real steps, that are performed by the agent in the
real world, with hypothetical steps that are exe-
cuted by the agent over its world model. Both
types of steps update the evaluation function and
the policy map of the agent. A trial is defined as
a sequence of real steps which achieves the goal
state starting at some initial state. For a detailed
description of the Dyna algorithm we refer to [2].

2.2 The symmetric problem

Based on the above version of the Dyna algo-
rithm, the agent needs to return to its initial posi-
tion and start another trial each time it reaches a
goal state. Although this is a simple task in a com-
puter simulation, in a real system it is necessary to
develop a procedure for returning the agent to the

initial position which would imply some form of
back-tracing the agent steps to reach the goal po-
sition. If we restrict our problem to a setting were
there is a symmetry problem between the path to
the goal and the return path, then we propose to
extend the Dyna algorithm such that the agent is
able to continue learning when traveling from the
goal state to its initial position.

For the Dyna algorithm to work in this sym-
metric way, it is necessary to maintain two evalu-
ation functions (one to travel from the initial posi-
tion to the goal and another on the way back), so
as to preserve the mechanism of backwards prop-
agation of the evaluation function values in each
state. Symmetric information can be found in the
policy map, which indicates stepping directions in
each state.

The main idea behind the extension is that af-
ter entering the goal state, it is possible to trans-
form the current policy such that it directs the
agent back to the initial position instead of the
goal position. Considering the case in which the
algorithm is applied to solve a maze as in [1],
where the state is described by the position of
the agent in the maze given by a coordinate pair
(i,7) with i = rows = 0,1,...m — 1 and j =
columns = 0,1,....,m — 1 and where the set of
available actions in each state is given by: action
€ (left, right, up, down), we propose the following
scheme to implement such a transformation:

Fori=0:n-1
For j=0:m -1

If state (7, j) is not occupied by an obstacle

Then:
if cell (i, — 1) has no obstacle
policy(iy)it = w(i,j — 1)right
else
policy(i, j)iet = w(i, J)ieft
if cell (i,7 + 1) has no obstacle
policy(i, j)right = w(i,j + 1)ieps
else
pOlicy(iaj)right = W(i,j)right
if cell (i + 1, 4) has no obstacle
policy(i, jup = w(E + 1, §)down
else
policy(i, j)up = w(i, J)up
if cell (i — 1,7) has no obstacle
policy(i,j)dawn = 71)(Z - 17j)up
else
policy (i, j)down = W(%, J)down
Fori=0:n-1
For j=0:m -1

w(i, et = policy(i, J)iest
w(iaj)right = pOZicy(i:j)m'ght
(i, J)up = policy(i, j)up
w(iaj)down = poucy(izj)down

Where w,, is the entry of the policy table for

the state-action pair given by state z = (4,7) and
action a and policy(i,j), is an auxiliary variable
used to calculate the transformed values for wg,.
The value of w,, is used to compute the proba-
bility of an agent in the state (4,7) to move in the
direction given by a, according to (1). Note that
in a given state (i,7), the value of the policy to-
wards an obstacle, known in the world model, is
not changed by the transformation.

For the agent to be able to add new information
to the policy table when returning to the initial
position, it is necessary to attribute a reward to
the initial position and reset the reward in the goal
position. Using the second evaluation map when
returning to the initial position, it is now pos-
sible to apply the classical Dyna algorithm with
the transformed policy and iterate until the agent
reaches its initial position. At this point the policy
map is transformed again, a reward is attributed
to the goal position and using the first evaluation
function, the algorithm now iterates again until
entering the goal state.

The only problem that arises concerns the use
of the two separate evaluations functions. When
the agent steps back to its initial position using
the transformed policy and the second evaluation
function, a situation is created in which increased
policy values appear in states for which no in-
creased evaluation exists. But taking into account
the structure of the Dyna algorithm, the hypo-
thetical and real steps that will be performed will
make the second evaluation function converge to
a symmetric version of the first evaluation map.

llllllllllll (Gonl)

G
%%%Tl
N K
Po— 1

Figure 1: Example of the policy map before
(left) and after (right) applying the transforma-
tion; the arrows represent the direction contain-
ing the largest policy values; no arrow means that
all directions have a zero or negative policy value;
the goal state is at (3,3) and the initial state at
(0,0).

2.3 Cooperative learning and planning

Another interesting extension for the Dyna al-
gorithm is to have a population of small robots
running in parallel through the maze, with the
objective of speeding up the learning algorithm
and testing cooperative strategies. Extending the
Dyna algorithm for a cooperative set of agents

means information sharing between the agents. In
the case of communicating agents, it is also nec-
essary to consider the communication channel be-
tween real agents as not completely reliable and
noisy. Taking into account these considerations,
we propose the following cooperation strategy:

- Each agent maintains its own internal world
model , evaluation function and policy map.

- Upon discovering a new obstacle or goal, an
agent transmits the position of that obstacle
or goal to the rest of the population.

- Upon taking a real transition between states,
each agent transmits the resultant policy value
obtained for that specific state-action pair
to the rest of the population. The receiv-
ing agents update the corresponding entry
of their policy map using the following ex-
pression:

w(%,) action + value
2

’IU(’L., j)actz’on =

Where value is the resulting policy value
transmitted by the agent that performed the
transition.

The main idea behind communicating the pol-
icy values is that sharing the information of the
new obtained policy value for a given state-action
pair with the other agents will reduce the search
space of the other agents, thus accelerating the
learning process. Note that although initially there
will be a discrepancy between the evaluation and
policy maps of the receiving agents, the hypothet-
ical experiments that are performed by each agent
will reduce the discrepancy.

Another advantage of this cooperation strategy
is its robustness. Since each agent has its individ-
ual world model, it can always perform individual
learning and planning. Then, if for some reason
a communication failure arises during an interval
of time, each agent still is capable of fulfilling its
objectives on a stand-alone basis.

A disadvantage is that each agent needs a sig-
nificant computational capability to execute the
Dyna algorithm for which it also needs some mem-
ory to be able to represent the world model with
corresponding policy maps and evaluation func-
tions. An alternative is to assign some processing
time and memory of a central processing unit to
each individual agent which runs the individual
learning and planning modules in parallel. This
way, the agents only receive the actions and trans-
mit the results of those actions to the central unit.
This approach will be further explored in the fol-
lowing section, which deals with the implementa-
tion of the extended algorithm on a real system.

2.4 Deadlock avoidance

When running the extended Dyna algorithm
for a population of cooperative agents that share
the same goal, all individual policies will converge
to the same policy due to the backwards propaga-
tion of the common received rewards. This creates
situations in which the agents will plan transitions
to common states, leading to deadlocks. A dead-
lock occurs whenever two or more agents prepare
a step in the real world to the same state or when-
ever two or more agents are face to face and plan
to swap positions. To solve the deadlock situa-
tions, we propose an alternative state transition
rule, triggered whenever a deadlock occurs. Ac-
cording to this rule , instead of consulting its pol-
icy, an agent selects a random action with equal
probability from the set of available actions. If the
action is executable, the agent makes the tran-
sition without changing the policy of the corre-
sponding state-action pair and without updating
the evaluation values of the corresponding state.

3 EXPERIMENTAL SETUP
3.1 Overall system

This section describes the experimental setup
used for testing the extended version of the Dyna
algorithm on real robots. The overall system, il-
lustrated in Figure 2, consists of two vision-based
teleoperated cellular robots [6] controlled via a
camera located at an elevated position such that
the camera-image covers the whole workspace of
the robots.

Figure 2: Schematics of the overall system used.

The robots have no on-board sensors and are
controlled by a central processing unit. For each
individual robot, the central computer runs three
modules: the learning and planning algorithm, a
visual tracking module and a control module. The
visual tracking module is responsible for robot
pose estimation from the visual information pro-
vided by the camera. The control module con-
trols the individual robot position and heading
direction via a radio link. Each module will be

described in more detail in the following subsec-
tions.

3.2 Learning and planning for real robots

To apply the extended version of the Dyna al-
gorithm to real robots, the world is defined as a
grid of square cells (states), projected onto the
ground-plane. Obstacles are simulated by black
cells. In Figure 3, this real setup is illustrated.

Figure 3: Example of a real world setup; the maze
is super-imposed on the camera image.

Initially each individual robot has an internal
representation of the world (stored in the central
computer), which is empty. For each robot step
in the real world, the learning and planning algo-
rithm provides a reference input obtained from the
corresponding robot policy. To execute the step,
each robot first checks the visual information pro-
vided by the camera to determine if the reference
cell is empty. Although the camera provides the
central computer with visual information concern-
ing the whole workspace of the robots, the indi-
vidual robot does not access this information. In
this setup, on-board vision sensors are simulated,
by allowing each robot only to scan for obstacles
or other robots in the direction of movement.

Upon successful execution of a step in the real
world, the corresponding world model is updated.

3.3 Visual sensing and tracking

In order to control the trajectory of each in-
dividual robot, it is necessary to relate the robot
position on the ground-plane (in metric coordi-
nates) to its position in the image-plane (given in
pixel coordinates). Each image point 7 will corre-
spond uniquely to a certain point on the ground-
plane M, according to a plane-to-plane projective
transformation [7]:

m = P,.M (2)

The 3 x 3 transformation matrix P depends on
the camera intrinsic parameters and the camera
position relative to the world frame. Once the
transformation matrix is estimated, it can be used

to convert the coordinates from robots and obsta-
cles in the image plane to the ground-plane and
vice versa.

A tracking system is developed which estimates
each individual robot position and heading direc-
tion over time from the sequence of camera im-
ages. The video camera uses a RGB representa-
tion, allowing color detection for robot segmenta-
tion in the image-plane.

The tracking systems runs at a frequency of
about 5 Hz and performs robust estimation under
various lightning conditions. Image processing is
done locally in a small neighborhood of the actual
robot position.

3.4 Robot control system

The control system implemented on the cen-
tral computer runs a control algorithm for each
individual robot, controlling its position and ori-
entation towards a final position provided by the
learning and planning algorithm.

The mobile platforms used have a differential-
drive structure, where two DC-motors directly drive
the left and right wheels independently.

The control strategy consists in dynamically
orienting the robot towards the final position, spec-
ified by the center position of the goal cell and pro-
vided by the learning and planning module. The
controller receives the actual position and orien-
tation sensed by the visual system and generates
appropriate motor commands. Along the path,
the robot will move at constant cruise speed. The
robot position is controlled by an on/off controller,
generating a constant common-mode voltage (re-
sulting in a constant linear velocity of the robot)
whenever the robot is outside a predefined radius
encircling the final position. A PID-controller is
used to control the robot heading direction, gener-
ating differential voltages as a function of the error
in orientation. This differential signal is super-
imposed on the common mode signal and sent to
each robot by a radio-link. The radio-link oper-
ates at a rate of 1200 bps via serial-port commu-
nication with the central computer. At this rate,
the central unit reaches a control frequency up to
21.8 Hz with a single robot and 1.36 Hz with 16
robots.

4 RESULTS

In this section we compare the performance of
the symmetric single agent algorithm with the co-
operative symmetric algorithm. Results are ob-
tained from experiments with the real world setup
as illustrated in Figure 3.

The real-time experiments were performed us-
ing the symmetric algorithm for a single robot
(blue robot) and the cooperative symmetric al-

gorithm for a set of two robots (red and blue
robot). In the second case, the blue robot was
placed in the initial position and the red robot
was placed next to the blue robot. Nevertheless
it could be placed anywhere in the world. The
parameter setting used for the Dyna algorithm is:
a=4, (=01, < =0.9. One hundred hypo-
thetical steps were performed for each real step.
Evaluation values were initialized at zero.

The performance measure used for comparison
is the number of steps per trial. In the original
Dyna algorithm a trial is defined as a complete
path from the initial position to the goal position.
Since with the symmetric algorithm the agent will
also learn when returning from the goal position to
the initial position, it is necessary to restate the
definition of a trial so as to be able to compare
performances. Defining a trial as a complete path
between the initial position and goal position or
vice versa, we used the average value between the
number of steps obtained from stepping from the
initial position to the goal position and the num-
ber of steps obtained from stepping back from the
goal position to the initial position.

Figure 4 displays the average number of steps
per trial obtained from two experiments with both
the symmetric and cooperative symmetric algo-
rithm, where each experiment runs five trials. Also
the average number of deadlocks that occurred
with the cooperative symmetric algorithm are dis-
played.

1401

120

H

1

3
T

symmetric

\ —-—-— = symmeric cooperative

a deadlocks

o
3
T

average number of steps per trial
2
3
T

I
=]
T

201

trials

Figure 4: Results obtained from real experiences.
The values indicated are average values obtained
from 5 experiences.

Analyzing the obtained results it is possible to
verify that the experiment with two robots will
initially converge faster to the solution than the
experiment with a single robot. This is also il-
lustrated in Figure 5, where the internal world
model and policy of the blue robot upon entering
the goal state for the first time is illustrated for
both the symmetric- and cooperative symmetric
algorithm. With the cooperative algorithm, the

blue robot policy is much more complete due to
information exchange with the red robot, which
already has entered the goal state.

Figure 5: Internal world model and obtained pol-
icy of the blue robot upon entering the goal state
for the first time; left: symmetric algorithm; right:
cooperative symmetric algorithm.

An important observation is that due to dead-
lock situations, that occur in the cooperative set-
ting, the number of steps per trial will oscillate,
while in the case of a single robot, the number of
steps converges to a minimum after three trials.
It is important to realize that the oscillation of
the number of steps per trial for the cooperative
setting does not imply that the path planned by
the robots changes. The increased value of steps
is due to the extra steps needed to solve the dead-
lock.

5 CONCLUSIONS AND FUTURE WORK

The results obtained with the symmetric Dyna
algorithm show that the use of a cooperative set
of agents allows the algorithm to reach the goal
faster, especially in the first iteration where no
knowledge of the world and of the goal position
is available. The possibility of distributing the
agents over the world allows the algorithm to reach
the goal even faster, since each agent will explore
a different region of the search space and transmit
that information to all other agents.

The development of a symmetric algorithm al-
lows the agents to return to their initial position
while continuing to learn.

A deeper experimental study using larger worlds
is necessary to demonstrate more clearly the per-
formance of the cooperative extended algorithm.
A theoretical study must be made to show the
stochastic convergence of this extended Dyna al-
gorithm.

Future planned improvements include the us-
age of fully autonomous robots, without the need
to use an overviewing camera and external pro-
cessing.

ACKNOWLEDGEMENTS

We would like to thank José Santos-Victor for
the use of the installations and equipment of the
Computer and Robot Vision Lab - Vislab - at the
Institute of Systems and Robotics.

REFERENCES

[1] Richard S. Sutton, “First Results with Dyna,
an Integrated Architecture for Learning, Plan-

ning and Reacting,” Neural Networks for Con-
trol, The MIT Press, 1990.

[2] Richard S. Sutton, “Dyna, an Integrated
Architecture for learning,Planning, and Re-
acting,” Working Notes for the 1991 AAAI
Spring Symposium, pp. 151-155, 1991.

[3] Alex Weiser and Pedro Lima, “An Integrated
Learning, Planning and Reacting Algorithm
Applied to a Real Mobile Robot,” in Proceed-
ings of Controlo’96, Portugal, 1996.

[4] Jie Yang and Alex Waibel, “A Real-Time
Face Tracker,” Proceedings of the WACV 96,
Florida, 1996.

[5] Tom M. Mitchell, “Machine Learning,”
Mec.Graw Hill 1987.

[6] José Santos Victor, “ Vision-based remote con-
trol of cellular robots,” , Robotics and Au-
tonomous Systems, 23, pp 221-234, 1998.

[7] B. Horn, “Robot Vision,” , MIT Press 1986.

