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Abstract: This paper describes the development of an Extended Kalman Filter
attitude estimator and its implementation in a small satellit e control loop. Sensor
models have first been added to an existing satellit e simulation. The attitude and
angular velocities are estimated from the available sensors and methods of tuning
the filter based on Genetic Algorithms are discussed. Simulation results are
presented for the estimator algorithm used with different control algorithms.
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1. INTRODUCTION

Small satellites have gained increased popularity
since the early eighties, due to their relative low cost
and fast turn-around time (from contract to launch).
Nevertheless, this comes at the cost of less powerful
sensors and actuators, as well as reduced
computational power, due to size and weight
limitations. Among other sub-systems, the Attitude
Determination and Control System (ADCS) is
affected by this trade-off, leading to more
challenging attitude control and determination
problems. The attitude is described by the rotation of
the satellit e body frame w.r.t. a local orbital co-
ordinate frame.

The purpose of this work was to develop an attitude
estimator for small satellites and to test it within the
control loop in a simulator. This was done in three
parts: i) development of realistic simulations of the
satellit e’s sensors; ii) development of an attitude
estimator algorithm; iii) integration of the estimator
and the attitude controllers previously developed in

the closed loop. The complete system is shown in
Fig. 1. A detailed description of the satellit e
simulator and controllers is given in references [1]
[4], [5] and [6].
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Fig. 1 - Satellit e closed loop control simulator.

The small satellite PoSat-1 was used as a case study.
PoSat-1 is a 50Kg micro-satellit e launched in 1993
as a technology demonstration. Throughout this
work it is assumed that the system is being
developed for this satellit e. Nevertheless, the ideas
and methodologies can be adapted to other satellit e
configurations. In Section 2 the realistic sensor
simulation is described. Section 3 goes through the
particularities of using an Extended Kalman Filter
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for attitude estimation. The filter tuning based on
Genetic Algorithms is covered in Section 4. The
results of closed loop attitude control with and
without the estimator for three different control
algorithms are discussed in Section 5. The paper
ends with conclusions and prospects for future work,
in Section 6.

2. SENSOR SIMULATION

Two PoSat-1 sensors are available for attitude
estimation: the magnetometer and the sun sensor.
The magnetometer measures the geomagnetic field
vector and the attitude is determined by comparing
this vector with the expected geomagnetic field at
the current orbital location, based on the widely used
IGRF model [8].  Therefore, the sensor reading can
be simulated by rotating the current geomagnetic
field vector into the satellit e co-ordinate system
(SCS) [5].

The Sun sensor measures the relative Sun and
satellit e locations from the angle of incidence of the
sunlight on the sensor. From the knowledge of the
Sun and spacecraft orbital locations, the current and
expected measurements can be compared to
determine the attitude. PoSat-1 has two Sun sensors
with each sensor having two channels. Both sensor’s
field of view lie in the x-y plane, one looking in the
positive y-direction, the other in the negative
x-direction (in SCS).

A number of common Sun sensor designs are given
in [8]. PoSat-1 Sun sensors layout is that shown in
Fig. 2. Each sensor consists of two light sensitive
cells, therefore producing the two-channel output.
Each cell i s angled to the horizontal as shown in the
figure. To implement this design it is necessary to
determine the geometry of the sensor (i.e. angles α
and β). Two key characteristics in the telemetry data
from PoSat-1 allow these angles to be determined.
These are that both channels of the sensor start
reading at the same time and that one channel starts
reading at a non-zero, positive value. The satellit e
technical documentation also states that the field of
view should be ±600. To satisfy these requirements
α=β=30o. This design is just shown in two
dimensions. In three dimensions the surrounding
structure would provide a similar ±60o view limit.

The simulator must also consider the possibilit y of
the Earth being between the satellit e and the Sun.
This case is simply detected by calculating if the
angle between the vector to the centre of the Earth

and the vector to the Sun is less than the angle of the
radius of the Earth as seen from the satellit e. The
angle of the radius of the Earth is pre-calculated
within the simulator from the orbit altitude, so can
be considered known at all time.

Fig. 3 - Comparison of Telemetry and simulation

It is clear from the telemetry that the value of output
from the sensors when they can’ t see the Sun varies.
Initial thought might suggest that the off value of the
sensor should always be zero. However, it was
realised that this variation was due to the sensor
picking up sunlight reflected from the Earth. So, if
the satellit e is over the dark side of the Earth, the off
value will be zero, if it is over the lit side it will have
a slightly increased value. The magnitude of this
increase will depend on factors like weather
conditions, current altitude and whether the satellit e
is over land or sea. The ‘off’ value over the lit side
of the Earth has thus been modelled using a random
noise signal which gives values similar to those seen
in the telemetry.

Fig. 4 - Comparison of Telemetry and Simulation

Comparison of the output from the simulator with
telemetry data from PoSat-1 can be seen in Fig. 3
and 4. Figure 3 shows a comparison for one orbit
(showing just one channel). It can be seen that real
and simulated data are very similar. The differences
in number and magnitude of each peak are due to
differences in attitude and spin rate of the satellit e in
the simulation and in reality. The attitude of PoSat-1
is not known exactly so it is not possible to get the
simulator to have exactly the same results. The
modelli ng of the off-value can also be seen in this
figure. Figure 4 shows the comparison of one
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revolution of the satellit e (showing two channels). It
can be seen that the cut-off times of the signals as
the Sun passes out of the field of view of each
channel are very similar. It is also clear to see that
both channels start giving a reading at the same
point in time. The spike that appears just before each
peak is due to interference on the telemetry
communication link and is thus not simulated.

3. KALMAN FILTER ESTIMATOR

In this section the attitude estimator based on an
Extended Kalman Filter estimator algorithm
introduced in [2] is described. This base algorithm,
whose equations are presented in Appendix A, has
been modified to include the sun sensor simulation
that was developed in the previous section. A
quaternion normalisation has also been added to the
method.

A proper quaternion of rotation possesses the quality
qTq = 1. It was shown in [2] that if this condition is
enforced after each state calculation the estimator
error will be reduced. This has therefore been
included in the estimator. The calculation necessary
to normalise the quaternion is explained fully in [2].
To use the Sun sensor within the estimator the Sun’s
position from the satellit e given the sensor reading
must be found. Each channel of the Sun sensor gives
an angle to the Sun. Using one single channel the
vector must be somewhere on a cone. From two
channels, two cones can be generated, thus, giving
two possible sun vectors. If the position of the Sun is
known a few seconds before we can determine
which of the two intersections is most likely to be
correct.

All Sun sensors are in the x-y plane. The SCS co-
ordinate system is rotated in the x-y plane so that the
new x-axis is aligned with the sensor plane normal
axis. This new co-ordinate system is referred to as
the Sun Sensor Co-ordinate System (SSCS). In this
co-ordinate system it can be easily seen that the
vector of all possible Sun vectors is given by,

[ ]Tφαφαα sinsincossincos    (1)

where α is the Sun sensor reading and φ is the
parameter describing the cone. This can then be
rotated back into SCS using the rotation matrix:
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Considering first the Sun sensor which points in the
positive y-direction, θ for channel 1 will be 60o and
120o for channel two. Therefore, using (1) and (2)
with the two values for θ gives the two cone vectors.
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Equating these two vectors and solving for ε and φ,
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Therefore, given both channels of the sensor
reading, (i.e. α and β), φ or ε can be found from (4)
and (5). Notice that there will be two values of φ or ε
because of the inverse cosine. These values can then
be substituted into (3) to give the two possible Sun
vectors. The correct vector can then be selected on
the basis of which one is closer to the previous
estimate. Because the sample time is very small
compared to the speed at which the satellit e moves
this should always be reliable.

The filter algorithm must now be modified to deal
with two sensor readings. The equations in the
estimator will be different depending on whether the
Sun sensor measurements are available or not. Sun
sensor measurements were not available, the
equations do not change. Otherwise, equation (12) in
Appendix A will change to
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where smeas,k+1 is the Sun Vector measurement (in
SCS) at time k+1, sorb,k+1 is the Sun Vector predicted
by the model in the orbital co-ordinate system
(OCS) [5] at time k+1. Note, if two Sun sensor
readings are available the average of the two
readings is used.

To use (6), K needs to be extended to a (6x7) matrix
(previously it was (3x7)). This is achieved by
redefining H, which is defined in the appendix as
equation (11), the output matrix. So, if the Sun
sensor measurement is available,  (11) becomes
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The matrix R, the measurement error covariance,
also needs to be redefined as a (6x6) matrix if the
Sun sensor measurement is available.
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4. ESTIMATOR TUNING

There are three matrices used within the estimator
that must be determined before it can be used. These
are Po (7x7) – the covariance of the error in the initial
state, Q(7x7) – the covariance of the system model
error, and R(3x3 or 6x6)

1– the covariance of the
measurement error. We have chosen to tune these
covariance matrices instead of making them match
sensor noise characteristics, so as to improve closed
loop control performance.

Initially it would seem that there are 77 parameters
which need to be determined (noting that covariance
matrices are always symmetric). To simpli fy the
problem, various parameters within each matrix can
be grouped by assuming that the error covariance in
the terms will be the same. For example, it is
reasonable to assume that the covariance of the
errors in the Ωx and Ωy terms will be the same. The
Ωz term may to different because it involves the spin
of the satellit e.

This grouping can reduce the total number of
parameters to 32. The P matrix can be tuned
separately from Q and R because P only effects the
initial transient errors. Q and R can be tuned
ignoring transient effects, therefore reducing the
problem further.

Because of the multi -parameter, non-linear, multi -
minimum nature of this optimisation problem a
logical approach was to use a genetic algorithm
(GA) [3]. A standard GA has been used, with
chromosomes containing all the elements of the
estimator covariance matrices. Each population was
evaluated by simulating each chromosome over a
number of orbits and evaluating a cost function
containing the average estimator error. New
populations were generated using mutations and
crossover with parents being selected using a
roulette wheel selection process. This is a very
effective method of tuning the estimator although,
due to simulation time, it can be very slow.

Table 1 - Estimator Accuracy Results

Mean
Standard
Deviation

Worst

Pointing
Error (deg)

0.58 0.56 1.72

Spin Rate
Error, %

0.39 0.37 1.23

The best average estimator results, shown in Table
1, were obtained in closed loop using a predictive
controller, described in the following section, over a
number of orbits. These results were obtained over

                                                          
1 The R matrix size changes depending on whether
the Sun sensor is included or not.

twenty simulations each ten orbits long with
different starting conditions.

5. CLOSED LOOP CONTROL

There are three controllers of interest that are
available within the simulator: the Predictive
controller [4], the Energy controller [9] and the
Alpha-Beta controller [7]. The predictive controller
attempts to predict, for all possible actuations, the
change in angular velocity of the satellit e if that
actuation was applied. It then determines which of
these will cause the greatest reduction in the
satellit e’s kinetic energy. As a result, a time-varying
control law is applied. The energy controller uses the
control law

)()()( tBthtm c
co

cc ×Ω= , (8)

where h is a positive constant. The alpha-beta
controller is the controller currently used on PoSat-
1. It uses the control law
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where α is the angle between the z-axis of the OCS
and the expected geomagnetic field and β is the
angle between the z-axis of the OCS and the
measured geomagnetic field. The alpha-beta
controller does not require an estimator. Both the
Predictive controller and the Energy controller can
control the spin of the satellit e as well as the attitude,
while the alpha-beta controller only controls attitude.
These controllers are described and their
performance without an estimator compared in detail
in [5].

To compare the effectiveness of the controllers and
estimator in the loop, twenty simulations, each ten
orbits in duration with varying starting conditions,
were made. The results presented below are average
results from these tests, where spin control as well as
attitude stabili sation were envisaged. Since the
alpha-beta controller can not control spin, a different
test with no spin control required was used to make
comparisons with this controller.
To check the effect of the estimator on the energy
and predictive controllers, tests were first conducted
without the estimator. Table 2 shows results for the
predictive and energy controllers.

Table 2 – Simulation Results without Estimator
Settling

Time to 5o

(orbits)

Pointing
Accuracy

(deg)

Spin Rate
Accuracy

(rad/s)

Energy
(Joules)

Predictive
Controller 2.40 1.86 4.6x10-5 2.70x105

Energy
Controller

2.75 1.85 8.8x10-4 2.56x105
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Comparing the performance of the two controllers
without the estimator, both have very similar results.
Considering the standard deviations of these
averages (not shown here) the slight differences are
insignificant. This is true with the exception of the
spin rate accuracy where the predictive controller is
considerably better.

Table 3 – Simulation Results with Estimator
Settling

Time to 5o

(orbits)

Pointing
Accuracy

(deg)

Spin Rate
Accuracy

(rad/s)

Energy
(Joules)

Predictive
Controller
(without Sun

Sensor)

8.76 3.22 1.3x10-4 3.84x105

Predictive
Controller
(with Sun
Sensor)

9.18 3.14 1.2x10-4 4.09x105

Energy
Controller
(with Sun
Sensor)

2.74 2.04 6.5x10-4 2.70x105

Table 3 shows the results for the two controllers
with the estimator included. This table also shows
the results for the estimate with and without the sun
sensor, for the predictive controller.

Looking at the effect of the estimator on the
predictive controller, the pointing accuracy has
deteriorated from ≈1.8o to ≈3.2o. Similarly, the spin
rate accuracy has been halved. The energy
consumed has also increased slightly. Considering
the effect of the estimator on the energy controller,
the reduction in accuracy is much smaller. Pointing
accuracy is reduced from ≈1.8o  to ≈2.0o. Spin rate
and energy consumed are not significantly affected.
Thus, comparing the controller + estimator
algorithms, the energy controller is better from
pointing accuracy, rapid settling and energy
standpoints. However, the predictive controller still
has a better spin rate accuracy.

Table 4 – Comparisons to Alpha-Beta Controller
Settling

Time to 1o

(orbits)

Pointing
Accuracy

(deg)

Energy
Consumed

(Joules)
Alpha-Beta
Controller

No Settling 1.26 3.20x103

Predictive
Controller

4.00 0.14 1.66x105

Energy
Controller

0.80 0.01 2.51x105

Tuned Predictive
Controller

1.80 0.02 7.67x103

For a controller + estimator algorithm to be used
with PoSat-1, it must perform better than its current
alpha-beta controller. In Table 4, results of the
alpha-beta, predictive and energy controllers are
compared with no estimator in the loop and no spin
control. The alpha-beta controller does not require
an estimator and can not control spin, hence the
three control algorithms were compared under the
same circumstances.

The energy controller clearly has the best pointing
accuracy and settling time. However, the energy
consumed is considerably larger than that used by
the alpha-beta controller. The predictive controller
outperforms the alpha-beta controller regarding
pointing accuracy and settling time, but energy
consumption is high too. This shows that, to use
either the predictive or the energy controller their
energy consumption must be reduced. Both the
predictive controller and the energy controller
contain a number of parameters that can be adjusted
to change their performance. To improve the overall
controller + estimator performance, the estimator
and the controller parameters can be tuned together
in closed loop. Only limited exploration of this sort
of tuning has been possible during this work, but the
last row of Table 4 shows results that were obtained
after the predictive controller was tuned to reduce
energy consumption. Comparing these to the alpha-
beta controller results, the controller now uses
similar energy but with a pointing accuracy about 50
times better. It is also noticeable that these accuracy
results are better than the pre-tuning controller
results. Furthermore, it should be noted that the
energy controller was tested with unrestricted
actuators, while the predictive controller uses
restricted actuators. Nonetheless, their performance
under such distinct conditions is similar. Usually, the
energy controller produces bad results with
restricted actuators.

6. CONCLUSIONS AND FUTURE WORK

A Kalman Filter attitude estimator using
magnetometers and sun sensors has been developed
and implemented showing, in realistic simulations, a
pointing accuracy of ≈0.6o and a spin rate error of
≈0.4%. A genetic algorithm has been used to tune
the Kalman filter estimator.  With the estimator in
the loop the system worked best with the energy
controller where there was an accuracy loss of only
0.2 degrees. With the predictive controller the drop
in performance was nearly 1.4 degrees. The obtained
results suggest that these controllers outperform the
benchmark alpha-beta controller regarding accuracy.

Further work on closed loop tuning could reap
significant rewards. It has been shown that tuning
the controllers can make major improvements in
areas like energy consumption and pointing
accuracy. Another important area not considered so
far is the processing time required by the estimator
and controller. On a small satell ite it is important to
minimise the computation effort that is required to
control the attitude. Currently the predictive and
energy controllers with the estimator use about three
times more CPU time than the alpha-beta controller.
One potential method to reduce the computation
effort associated to the estimation would be to
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linearise the equations of motion about a number of
key attitudes and then use a gain scheduling
controller to determine the motion between these
linearised points. At the moment the equations are
linearised at every time step, a time consuming
process. In a real satellit e, the attitude perturbation
from the stabili sed position will be small , and so few
attitude way-points would be required to achieve
accurate results.
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APPENDIX A
Extended Kalman Filter Algorithm [2]

1) Calculation of Kalman Gain
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where Kk+1 is the Kalman Gain Matrix (7x3), Pk+1/k is
the perturbation covariance matrix (7x7) at time k+1
given the measurements at time k, R is the
measurement error covariance matrix (3x3) and
Hk+1/k is a (3x7) matrix defined as follows:
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3) Update the Covariance Matrix
The perturbation covariance matrix is updated using
(16) where Hk+1/k+1 is calculated from (12) except
that the quaternions at time k+1 are used instead of
at time k.
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Dij is an element of D and x
soΩ is the x component of

angular velocity in SCS w.r.t. OCS.
5) Propagate the Perturbation Covariance Matrix
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