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Abstract. In this paper a method for optical track detection based on fuzzy decision-
making is introduced. The method is robust to non-homogeneous lighting conditions, 
changing background pattern, flash lights and other spurious disturbances, and was 
designed for real time implementation as part of the guidance system of an autonomous 
mobile robot. 
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1. INTRODUCTION 
 
International Mobile Robot competitions are 
currently interesting fora where different research 
and pedagogic solutions are presented for the same, 
often challenging problem [1][4][6]. An autonomous 
mobile robot was built , entirely from scratch, to 
compete in the 5th and 6th editions of the Festival 
International des Sciences et Technologies, both 
held in Bourges, France, in 1998 and 1999. 
 
In the Open class of the contest, where IST has 
competed since 1995, robots are desirably built from 
scratch and are designed to follow a 5cm wide track 
painted on a chessboard-like surface, composed of 
2m side squares of alternating black and white 
colors. The track, shown in Fig. 1, has the opposite 
color of the corresponding background square and is 
composed of 2 meter long straight lines and one-
fourth of a circle arc segments with 1 meter radius, 
in a total length of approximately 46m. There are 
track interruptions somewhere along the path, 
obtained by replacing the corresponding background 
square by one with the same color but with no track 
segment painted on. The robot must detect the 
interruption, and recover the track at the closest 
segment. There are also track intersections and the 
end of the main track is signaled by a T-shaped 
pattern. 

 
Fig 1: Typical setup for the mobile robot 
competition. 
 
In this paper, the real-time detection and 
identification of the optical track to be followed, 
consisting of determining the parameters which 
characterize track position and orientation with 
respect to the vehicle, is fully described. The 
estimated track parameters are provided to the 
vehicle guidance system and should be robust to 
non-homogeneous lighting conditions, changing 
background pattern, flash lights and other spurious 
disturbances. Moreover, the track detection and 



  

identification algorithm should not require prior 
calibration (e.g., histogram checking to determine 
the optimal threshold between black and white 
colors) and should run as fast as possible, since its 
performance constrains maximum vehicle speed. 
 
Several authors have used fuzzy logic for the 
navigation and behavior control of mobile robots. 
Tunstel and Jamshidi [11] introduced a hierarchical 
fuzzy control architecture which integrates fuzzy 
behavior control, synthesis and design. Pin [10] 
describes an automated generator of fuzzy rules 
under his Fuzzy Behaviorist Approach framework 
for rule-based development. Oriolo et al [8] 
introduced fuzzy maps to manage sensor uncertainty 
when planning robot motion. Ollero et al [7] use a 
fuzzy-based guidance controller for a mobile robot, 
designed to either follow programmed paths or walls 
and other environment features. In our work, a fuzzy 
guidance controller was also used, but here we 
concentrate on a fuzzy decision making [4] 
algorithm that has been developed to evaluate 
several features of the observed track image and 
detect a track in cases where an associated 
confidence factor, which is a function of those 
features, exceeds a given threshold. The track 
features are then used by the fuzzy guidance 
controller. The method has proven to be very robust 
under the competition environment, where non-
uniform ill umination, flash lights and changes in the 
light quality are constant sources of disturbances. 
The robot using this system got the 1st and 2nd prizes 
in its class among 10 teams from France, Portugal, 
Russia and South Korea, in 1998 and 1999, 
respectively. 
 
The paper is organized as follows. In Section 2, the 
track concept in this case study is specified. The 
core of the paper is Section 3, where the track 
detection algorithm is described. The purpose of 
track detection is to provide information to the 
mobile robot guidance system so that it keeps the 
vehicle on the track. Track parameter identification 
is briefly referred in Section 4. Experimental results 
show the effect of applying the method over real 
image data on Section 5. The paper ends with 
conclusions and future work plans in Section 6. 
 
 
2. TRACK SPECIFICATION  
 
An 8 bit 200x150 pixel track image can be as 
complex as that shown in Fig. 2, where a track 
intersection and two red and black billi ard balls are 
visible. The track to be followed by the vehicle must 
be correctly detected from such an image, so a first 
necessary step is to specify what a track is. 
 
From the competition rules, the track can be 
quantitatively described by following features: 

i) the track is well contrasted (black track on 
white background or white track on black 
background); 
ii ) the track has an approximate fixed width 
(close to 5 cm); 
iii ) track and background are painted with 
different uniform colors. 
 
It is also reasonable to assume that the angle 
between an image column and the track as seen in 
the image never exceeds a given value (e.g., 30º), 
corresponding to an initial and while-in-motion 
vehicle alignment with the track such that this 
condition is met. 
  

 
 

Fig 2: Track image. 
 

 
3. TRACK DETECTION 
 
Past and other team's experience [6] had shown that 
vision-based track detection is highly sensitive to 
changing lighting conditions and spurious noise 
(e.g., flash lights, light spots, non-uniform 
ill umination) along the track.  Therefore, a basic 
requirement for robust track detection should consist 
of using as much information regarding track 
features as possible to ensure that a track is present 
in some acquired image. Since the features are 
qualitatively described and it is important to handle 
their associated uncertainty (e.g., different pixel 
brightness will correspond to the same white floor 
under different light conditions), fuzzy linguistic 
variables are good candidates to characterize and 
quantify them. After this characterization is made, 
fuzzy decision making can be used to find the track 
on an image and to identify its associated 
parameters. 
 
To detect a track on the image, the usage of full 
image processing methods [2] is not feasible due to 
the computational speed requirements. Instead, we 
chose to process image rows only. For a given row, a 
1st order 1-D spatial derivative is computed at pixel k 
as 
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where i[k], k=1,...,200 is the pixel brightness. A 
derivative operator having high-pass filtering 
characteristics should always be associated with a 
low-pass filter, to reduce noise. In this case the 1-D 
[0.1  0.2  0.4  0.2  0.1] filter is applied before (1). 



  

 
The simplest approach to track detection after 
applying (1) would consist of determining the 
maximum and minimum derivative values and 
assume that the track consisted of the intermediate 
pixels. However, pixel noise, the presence of other 
objects and shadows would make this method very 
unreliable. Track detection robustness was increased 
by the extraction of the three largest absolute values 
of the derivative maxima and minima as track 
boundary candidates, followed by a selection of the 
best maximum and minimum pair of derivatives 
(max-min pair), using fuzzy decision making. 
 

filtered sample derivative

3 minima

3 maxima

 
Fig 3: Results of processing an image row, showing 
the original brightness, its derivative, the three 
largest  maxima  and minima and a confidence level 
for the selection of the best max-min pair. 
 
Under the above assumption of vehicle/track 
alignment the results of processing an image row 
directly correspond to the track features listed in the 
previous section: 
 
i) the derivative maxima and minima display 
large values; 
ii ) the number of pixels within track 
boundaries is approximately constant; 
iii ) the pixel brightness of the original row is 
approximately constant between the track boundaries 
(a given derivative max-min pair). 
  
Fuzzy decision making analysis is used to grade 
separately each track feature, and to obtain joint 
feature grades for each max-min pair, leading to the 
determination of the best pair, with an associated 
confidence level. This is detailed in the sequel. 
 
 
3.1   Individual Features Grading 
 
3.1.1 Feature 1: "Derivative amplitude is high" 
To grade this feature, the fuzzy linguistic term 
derivative amplitude is high is defined 
for the fuzzy linguistic variable derivative 
amplitude, whose universe of discourse 
corresponds to the range of values taken by the 
derivative of pixel brightness.  The corresponding 
membership function is depicted in Fig. 4 and was 
tuned based on experimental data under average 
lighting conditions. 
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Fig 4: Fuzzy membership function for derivative 
amplitude. 
 
 Given a max-min pair with value-max and value-
min values, respectively, the corresponding x-axis 
value will be calculated as 

amplitude derivative
2

minvaluemaxvalue −+−
=       (2) 

 
and the associated confidence level is obtained from 
the derivative amplitude is high 
membership function. 
 
3.1.2   Feature 2: "Track width is approximately 
W " 
The value W=15 pixels has been calibrated for the 
situation when the track is orthogonal to the image 
sample row. In non-orthogonal scenarios, the track 
width will be slightly larger, as shown in Fig. 5. 
 

 
 

Fig 5: Track width in different situations. 
 

Therefore we defined the asymmetric fuzzy 
membership function plotted in Fig. 6 for the 
linguistic term track width approximately 
W=15 over the universe of discourse for the 
linguistic variable track width. 
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Fig 6.: Fuzzy membership function for track width. 

 
For each max-min pair the confidence level is 
determined for a track width corresponding to the 



  

distance in pixel between the location of the max and 
min on the x-axis. 
 
 
3.1.3    Feature 3: "Different background and 
track pixel brightness"   
The major diff iculty in this case, is to define the 
threshold to discriminate black and white colors. A 
fuzzy threshold is robust to ill li ghting conditions, 
and is obtained by establishing one fuzzy 
membership function per color (black and white), as 
depicted in Fig. 7. 
 

 
Fig 7: Fuzzy membership functions for black and 
white colors, defined over the universe of pixel 
brightness. 
 
The fuzzy membership functions are dynamically 
adjusted for each sample, and were tuned based on 
experimental data, leading to the following 
expressions for the parameters in Fig. 7: 
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where 
 cor_max : sample maximum color value (in 
pixel brightness) 
 cor_min: sample minimum color value (in 
pixel brightness) 
  ∆cor = cor_max - cor_min                        (4) 
 
The 39 and 215 values represent the maximum and 
minimum pixel brightness for which some color can 
be considered black or white, respectively. Within 
those bounds, the threshold changes from sample to 
sample adjusting itself to changes in light conditions. 
 
Next, a fuzzy sentence is built to represent feature 3. 
Assuming that the background is represented by all 
sample pixels except those between the max and min 
positions (for some pair) and that the track is 
represented by those pixels between the max and 
min positions of the same pair, we have two 
alternatives for these colors, as ill ustrated by Fig. 8:  
a black track on a white background or a white track 
on a black background. 

 
 
Fig 8: Black track on white background (left) and 
white track on black background (right) images. 
 
Given the fuzzy membership functions for the black 
and white colors and these two possible track 
configurations, we are able to state the last feature in 
fuzzy linguistic terms: 
 
 {  

(average color until the first edge  
 is  white)   Λ 
  (average color between the two edges       
 is  black)   Λ 
  (average color after the second edge          
 is  white)  
   }   
 V 
  {   

(average color until the first edge     
 is  black)  Λ  
 (average color between the two edges     
 is  white)  Λ 
 (average color after the second edge          
 is  black)  
   } . 
 
The sentence confidence level is obtained by the 
application of traditional fuzzy logic connectives [3] 
[9]: 
 
Confidence level = max[min(color1 is white, color2 
is black, color3 is white) ,   

     min(color1 is black, color2 is white, 
color3 is black) ] 
 
with: color1:  average color of the 
pixels until the first edge 
  color2:  average color of 
the pixels between the two edges 
  color3:  average color of 
the pixels after the second edge 
  x is A:  membership of x 
(x ∈ { color1 , color2, color3} ) in the fuzzy set A, 
A={ black, white} . 
 
3.2 Joint Feature Grading  
After grading each max-min pair with respect to each 
track feature we have to combine all this information 
and infer which combination represents the track 
location best. The following matrix data 
representation was used: 
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Were µjk (ci) represents the pair (maxj,mink) 
membership function  concerning featureI, i,j,k=1,2,3. 
 
The max-min pair chosen to be the track 
representative is the one that maximizes the product 
of the feature membership functions,  
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This corresponds to choosing the best confidence 
level in the worst case, i.e., the one corresponding to 
the fuzzy intersection of all the features, therefore 
increasing the robustness of the method. In this case 
the intersection is represented by an algebraic 
product, instead of the more usual min connective. 
The track intersection with the image row under 
analysis is assumed to be the middle point between 
maxj and mink, with a µjk confidence level. When µjk 
is below a pre-defined threshold, the track is not 
considered as detected. 
 
 
4. TRACK IDENTIFICATION FOR 
VEHICLE GUIDANCE  

 
The purpose of track detection is to provide 
information to the mobile robot guidance system, 
which keeps the error between the vehicle and the 
track reference frames small . To achieve this, the 
guidance system needs ate least two parameters: the 
angle a between the vehicle longitudinal axis and the 
track tangent and the distance o between the vehicle 
and the track reference points. Even over curves, the 
portion of the track seen by the vehicle’s vision 
system can be correctly approximated by a straight 
line. This is accomplished by determining the track 
intersection with two rows in the image (see previous 
section) one placed close to the top, and the other 
close to the bottom of the image. A straight line is 
adjusted to the intersection points. The equation of 
the straight line is used to determine a and o, as 
depicted in Fig. 9. When the track is not detected in 
one of the image rows, the corresponding row is 
moved down (in the case of the top row) or up (in the 
case of the bottom row) the image to search for a 
track. This is also useful to detect track interruptions, 
which were part of the competition challenge.  
The track detection confidence level is used to 
weight the vehicle speed. When confidence 
decreases, so does the speed. 
 

 
 

Fig 9: Track angle and offset with respect to the 
vehicle longitudinal axis. 

 
 
5. EXPERIMENTAL RESULTS 

 
Fig. 10 shows the results of applying the method to 
an image with several tracks of different widths and 
colors. In the figure, small circles represent the max-
min pair chosen as the track representative, and 
crosses represent track intersections with image rows. 
Vertical and horizontal li nes were analyzed, as well 
as black tracks on a white background and a white 
track on a dark background with widths slightly 
different from the nominal 15 pixel. For each line, 
pixel brightness and its derivative are shown, as well 
as the (non-normalized) confidence matrices for each 
of the 3 features. It can be seen that only one 
significant edge is detected over vertical li nes, 
leading to very low confidence levels (1-2%) for the 
max-min pair. Over horizontal li nes, the correct pairs 
are detected, with a larger confidence factor (17-
37%). A straight line is adjusted to the straight line 
based on the three track intersections with the rows, 
resulting in a good estimate of track to be used by the 
guidance system. 
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Fig 10: Experimental results. Pixel brightness is 
shown in red, its derivative is shown in blue. 

 
The developed algorithm, based on fuzzy decision 
making theory, has proven to be very effective, fast 
and extremely robust, even at ill li ghting conditions. 
The confidence level provided can be used to control 
the speed of the vehicle, making the vehicle 
slowdown when the conditions of visibilit y are bad 
and speedup when the conditions are good.  
 
 



  

6. CONCLUSIONS AND FUTURE WORK 
 
In this paper, a method for vision-based track 
detection using fuzzy decision-making was 
introduced. The algorithm presented runs in real time 
as part of the guidance system of a mobile robot 
designed to follow as fast as possible an optical track 
in a robot competition. Results show the robustness 
of the method under noisy conditions. 
 
Future work includes the expansion of the algorithm 
usage for detection of the resuming point after an 
interruption, as well as, based on the processing of 
the track detected ahead of the vehicle, to increase or 
decrease the vehicle speed on-line, depending on 
whether a straight line or a curve is approaching, 
respectively. This has been done before with a less 
robust algorithm, which needed calibration for light 
conditions [6] . 
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