
The Pruned N-Best Heuristic Search Algorithm

Jorge Pais
Instituto Superior de Engenharia de Lisboa

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Lisbon, Portugal

and

Carlos Pinto-Ferreira
Instituto de Sistemas e Robótica

Instituto Superior Técnico
Lisbon, Portugal

ABSTRACT

This paper presents a semi-optimal heuristic search
algorithm called Pruned N-Best, which has both the
search behavior of the N-Best heuristic search algorithm
and the minimization of backtracking search to applying
a pruning technique over certain search paths. This
minimization increases the Pruned N-Best algorithm
efficiency when compared with others semi-optimal al-
gorithms.

In domains where the number of operators grows up
exponentially with the problem dimension the Pruned N-
Best algorithm have been applied successfully (e.g.
qualitative spatial reasoning area. Spatial reasoning
planners usually tackle with problem models, where the
interaction among elements is higher and change should
be modeled not only taking the alteration of topological
properties but also the creation, elimination and mutation
of elements in the domain. As consequence, planners
based on the search paradigm need special approaches to
find out practical solutions. Even the N-Best search algo-
rithm perhaps is inadequate to solve some practical
problems speciall y those where the heuristic function is
monotonic increasing (the condition for which the N-
Best degenerates in the WA*).

The Pruned N-Best search algorithm here presented
does not share the previous critical characteristics and it
is complete under certain search conditions and it is ef-
fective in a wide class of problems.

Keywords
 Search, Heuristic Search, Computing Techniques.

1. INTRODUCTION

Problem solving based on the search paradigm is al-
ways applicable in domains where the corresponding
models can be defined by structured representations -
states - and also when it is possible to identify all entities

that can transform a state into another state - operators.
The search process intends to finding out a solution path
that is defined as the sequence of operators that makes
possible to go from an initial state to a goal state. In a
given domain the dimensional complexity of the search

space is db in which b defines the number of operators
(usually called theoretical branching factor) and d is the
solution depth.

Reasoning processes based on a search algorithm can
usually solve games (e.g., Maze), routing problems (e.g.,
TSP) or other A.I. problems since that they can be repre-
sented in terms of states and operators. However, when
we try to modeling and solving certain real-world prob-
lems, where the number of operators grows up exponen-
tially with the number of elements in the domain (e.g.,
qualitative spatial reasoning area [4]), special search
approaches are needed to find out practical solutions. As
though, this kind of problems and mainly their search
space dimension raise practical difficulties, which are
incomparable bigger than the NP-complete problems that
usually appear in A.I. bibliography (e.g. chess problem).
It means that when this kind of problems are to be solved
(find out a semi-optimal solution) by a search algorithm,
we do not find a search algorithm (RTA*[2], WA*[3])
with enough adequacy to solve them (in terms of space
and time). To cope with this search inadequacy in practi-
cal terms, we have developed a search algorithm called
N-Best but its behavior still depends hard from the heu-
ristic function characteristic, as presented in [1]. As the
N-Best search strategy is effective, we make some
changes in the N-Best algorithm and generating thus the
Pruned N-Best algorithm that in essential it remains the
N-Best search behavior and prevails it over the charac-
teristic of the adopted heuristic function.

The remainder of this paper describes the Pruned N-
Best algorithm, its properties and some applications
where it has been tested. In the next section, the heuristic
search terminology is introduced. This is followed by a

description of the Pruned N-Best algorithm and also an
example of its behavior is depicted for different values
of N. In section 4, the completeness of the algorithm is
discussed. Section 5 presents a performance analysis
with respect to the Pruned N-Best algorithm and others
semi-optimal heuristic search algorithms in solving N-
puzzle, Maze and TSP problems. Finally, the conclu-
sions will be presented.

2. Terminology of Heuristic Search

Problem solving using a heuristic search process
could be defined as a quadruplet (sc, G, Γ, S) where sc is
the current best state, G is the set of goal states, Γ is the
set of operators { }n0 ,, ΓΓ � and S is the generated state

space. At the beginning of the search process sc is usu-
ally called the initial state si and this process usuall y ter-
minates when sc is recognized as one of the goal nodes
(sc ∈ G). The i th successor state LVV is generated by ap-

plying the operator Γi ∈ Γ to the current state sc.
Any state sn is said completely expanded when its all

successor states are memorized and this state is kept in a
list of all completely expanded states named Closed. A
state sk is said partially expanded whenever it does not
have any memorized successor or a part of its successor
states are kept, all of these states are included in a list of
states called Open.

A path P is a sequence of states (s1, …, sn) generated
by a successive operator application and when a path has
the initial state as its first state and has the goal state as
its last state then it is named a solution path.

Heuristic search algorithms usually utili ze one or
more heuristic functions along the search process. A
heuristic function ()sf̂ gives an estimated cost on the

distance between the current state and a goal state ()sĥ

plus the minimal cost path from the initial state to the
current state ()sĝ . A heuristic function is said to be ad-
missible whenever it does not overestimate the real dis-
tance ()sf .

3. The Pruned N-Best Algorithm

The Pruned N-Best algorithm behavior is based on a
climber behavior when it climbs an unknown hill − the
next site to go is the best site selected among the first N
better sites than the current one, all of them seeming
accessible and closer to the top, any other site is not
memorized by the climber (out of its view). This behav-
ior can be rewritten in function of the accessibili ty con-
dition, as: 1. Accessibili ty − the next state to follow is
the best successor state with the best heuristic value
among pre-defined N successor states, all of them with
better heuristic values than the current state, 2. Inacces-
sibili ty − the absolute best state to follow is probably
different from the selected state because this approach

only memorizes the N successor states that are necessary
to respect the accessibili ty point.

In real-world problems, such as certain chemical pro-
cesses and physical domains, when a high number of
interacting elements is modeled, the complexity of
problems grow up exponential with the number of ele-
ments considered in the domain for each step level. This
means that in these domains the problems usually have a
number of operators that growing exponentially with the
step level. This characteristic turns the process of com-
plete successor generation computationally inadequate to
find out a solution path in terms of time and memory.

The development of the Pruned N-Best algorithm
(see figure 1) could be seen as an evolution of the N-
Best algorithm [1] in terms of minimizing the successor
generation needed to find out a solution path. This is to
cope with high branching factors and solution depths that
are always found in this kind of problems.
BestSuccessors(N, S, Γ)
{ i= 0, List=∅;
 While (i < N ∧ Γ≠∅)
 { Ss= Successor(S, Γ);
 If (() ()Sf̂Sf̂ s ≤) ++i;

 add(List, Ss);
 Γ= NextOperator(Γ);
 }
 return (List, Γ);
}

PrunedNBest()
1. Add(Open, (si, Γ0));
2. If (Open=∅) return failure;
3. (sc, Γc)= GetStateWithMinF(Open);
4. (ListSuccessors, Γc)= BestSuccessors(N, sc, Γc);
5. If (ListSuccessors=∅) add(Closed, sc), goto 2;
6. If (ListSuccessors ∩ G ≠ ∅) return success;
7. If (ListSuccessors ∈ (Open∪Closed) ∧ Γc≠∅) goto 4;
8. add(Open, ListSuccessors);
9. add(Closed, sc);
10. goto 2.
Figure 1: The Pruned N-Best heuristic search algorithm.

Figure 1 is divided in two parts to make easier the
understanding of the Pruned N-Best search algorithm. In
the lower side is described the Pruned N-Best algorithm
and in the upper side is described an auxili ary function
named BestSuccessors. The BestSuccessors function has
three parameters: N gives the number of successor states
to be generated that have heuristic values better than the
current best one; S represents the current best state to be
expanded; and Γ is the first operator to be applied upon
S. This function returns the list of all successor states
generated until it finds out the value N (represented by
List) and the first of the remaining operators that were
not applied upon S (represented by the symbol Γ).

The Pruned N-Best behavior can be il lustrated by an
example. For instance, figure 2 depicts a tree that repre-
sents the complete state space where numbers corre-

spond to f̂ĥĝ =+ values, circles represent non-goal

states and circles within squares are goal states.
A

B C D

FE G H I J

0+8= 8

2+5= 7 3+3= 6 1+5= 6

6 5 4 6+3= 9 45+2= 7

2
3 1

4 3 1 3 4 3

Figure 2: A complete state space

Figure 3 depicts the search strategy of the Pruned N-
Best algorithm with N=1 and N= 2. Where slightly con-
toured circles represent open states. Boldly contoured
circles represent the current best state. Black circles rep-
resent closed states. Slight straight lines represent paths.
Bold straight lines represent solution paths. And, num-

bers are the corresponding f̂ values.
The analysis of figure 3 allows extracting some char-

acteristics of the Pruned N-Best algorithm. In each step
of the generation process this algorithm memorizes all
states until it finds out N states better than the current
state. The best state is the state with the best heuristic
value among all memorized states. States are expanded

in depth whenever their f̂ values are lowering than the
current state value, especially in Pruned First-Best with
N=1. And, states are expanded in breath whenever the

successor states have worst f̂ values than the current
state.

Pruned 1-Best

Pruned 2-Best

8

A
8

B

7

A
8

B
7

6

A

8

A

8

B C

67

A
8

B C
7 6

94

A

E

G H

Figure 3: The Pruned N-Best algorithm behavior for N=1
and N=2

4. Completeness of the Pruned N-Best Algo-
rithm

A search algorithm is said to be complete when there
is at least one path from an initial state to a goal state
into a finite graph state and the search algorithm is able
to find out a path solution if there exists one. The Pruned
N-best algorithm only respects the completeness condi-
tion if it keeps in the Open list at least a state belonging
to the solution path. To guarantee this condition in any
pruning search algorithm like ours, the problem to solve
must have all states belonging to a solution path (e.g.
TSP). If the problem respects the previous condition, this
algorithm terminates without falling into an infinite loop
because it does not expand an identical state more than
once. However, if a state shares both the Open list and
the solution path, the Open list never can be empty and
the Pruned N-Best algorithm never ends in failure.
Hence, the Pruned N-Best algorithm is complete whether
all paths are solution paths in a finite state graph.

5. Performance Analysis

The performance and some characteristics of the
Pruned N-Best algorithm are evaluated in solving TSP,
Maze and N-puzzle problems.

The Traveling Salesman Problem(TSP) - a complete
connected graph with 16 cities is randomly generated in
a two-dimensional map with coordinates between (0, 0)
and (599, 399), the distance between two cities is equal
to the dimensional straight line in pixels between their
locations. The search space initiates always in city 0 and
the solution path includes all cities without repetitions
and the return to the start city. The heuristic function
utili zed to solve this problem is the Minimum Spanning
Tree (MST) admissible function to measuring the dis-
tance from the current state to the goal state plus the real
distance from the initial state to the current state.

Each Maze problem is a two dimensional 600x400
map where the start site is located at (0, 0) and the goal
site has the coordinate (599x399) and the obstacles are
located randomly at a ratio of 40%. The change is per-
formed using four operators Right, Left, Up and Down
and each one costs 1. The heuristic function is the Man-
hattan distance to measuring the distance from the cur-
rent position to the final position plus the number of op-
erators applied to go from the initial position to the cur-
rent position.

For the N-puzzle a 5x5 board with 24 numbered tiles
(24-puzzle) was utilized. The initial configuration of the
board must guarantees a path solution and it is randomly
generated. The final configuration is a fixed and ordered
configuration. The change of tiles is done by four op-
erators Right, Left, Up and Down and each one costs 1.
The heuristic function of a state is the number of opera-
tors applied to go from the initial state to the current
state plus both the Manhattan distance and the Rotating
sequence function (this function counts the number of

tiles that have no correct sequence tile rotating over the
board equidistant to the center plus 1 whether the center
tile is not correct) to measuring the distance from the
current state to the final state. The Rotating sequence
function makes this heuristic function not admissible but
it is much more informative.

The search algorithms used in this performance
analysis are the RTA*[3], the WA*[4], the N-Best algo-
rithm(with N=1) and the Pruned N-Best algorithm (see
figure 1) with different values of N. The WA* algorithm

uses a weighted version of ()sf̂ , namely

() () () ()sĥWsĝW1sf̂ +−= for 1W0 ≤≤ , and in this test

the value of W is fixed at 0,5. All search algorithms use
two lists called Open and Closed. Completely expanded
states are stored in the Closed list otherwise the states are
kept in the Open list.

We have prepared 100 randomly problems of TSP,
Maze and 24-puzzle and the obtained results are in table
1 for TSP, table 2 for Maze and table 3 for 24-puzzle.
The column Success Rate is the percentage of success
without abortion due to main memory limit. The column
Solution Cost gives the average and the standard devia-
tion in respect of the cost of solution paths for all suc-
cessful searches. The column Search Steps shows the
number of times that each algorithm repeats its looping
steps in terms of the average and standard deviation of
successful searches. The column Memorized States gives
the total number of states kept in Open and Closed lists.
And, the column Run Time shows the average and the
standard deviation values of time in seconds that the
successful searches delay. These tests have been done in
a personal computer with both a Pentium III -450MHz
processor and main memory able to memorize 600000
states without using virtual memory.

Solution Cost Search Steps Memorized States Run Time
Algorit-

hm
Success

Rate
Average Standard

Deviation
Average Standard

Deviation
Average Standard

Deviation
Aver-
age

Standard
Deviation

RTA* 100 5795 397 19 0 20 0 0.1 0
WA* 62 2369 167 31740 5647 254348 49919 43 9
1-Best 64 2350 233 39287 12105 201038 66103 34 12
Pruned
1-Best

100 2432 172 16125 10623 91919 62237 15 11

Pruned
2-Best

77 2300 125 26124 8308 197308 64296 33 11

Table 1: Performance of Search algorithms in TSP with
18 cities.

Solution Cost Search Steps Memorized States Run Time
Algorit-

hm
Success

Rate
Average Standard

Deviation
Average Standard

Deviation
Average Standard

Deviation
Aver-
age

Standard
Deviation

RTA* 0
WA* 100 1813 426 63857 21537 64029 21528 8 3
1-Best 100 1930 322 187867 33422 74841 13238 13 3
Pruned
1-Best

0

Pruned
2-Best

100 1930 322 74687 13266 74844 13258 12 5

Table 2: Performance of Search algorithms in Maze
600x400.

Solution Cost Search Steps Memorized States Run Time
Algorit-

hm
Success

Rate
Average Standard

Deviation
Average Standard

Deviation
Average Standard

Deviation
Aver-
age

Standard
Deviation

RTA* 0
WA* 42 170 13 124722 67232 293795 77837 73 41
1-Best 46 174 6 237513 100086 223703 88538 156 83
Pruned
1-Best

27 181 7 189651 107972 320278 185639171 111

Pruned
2-Best

63 169 10 144687 51886 259027 88008 236 120

Table 3: Performance of Search algorithms in 24-puzzle.

The results presented in tables 1, 2 and 3 demonstrate
both the effectiveness and the computational adequacy
of the Pruned N-Best search algorithm to solving prob-
lems in domains where it is complete (particularly with
N=1, e.g. TSP). For the others problems, Maze and 24-
puzzle, the Pruned N-Best Algorithm shows again its
effectiveness when the selected value of N is adequate to
the characteristics of the problem.

The main drawback of this algorithm is that it is nei-
ther optimal nor complete (for all problem conditions) as
it proceeds in a greedy fashion. Notwithstanding, the
search paradigm can be optimal in solving simpler NP-
complete problems but in solving hard NP-complete
problems the search paradigm must be semi-optimal
(and why not semi-complete) to ensure computational
adequacy.

6. Conclusion

This paper introduces the Pruned N-Best semi-
optimal heuristic search algorithm, which allows to
dealing with hard NP-problems, limited computational
resources and providing practical and useful time solu-
tions. An evaluation of its performance in classical
problems like N-puzzle, Maze and TSP problems is
done, such as, a performance comparison with WA*,
RTA* and N-Best semi-optimal algorithms.

 The Pruned N-Best algorithm is a generic semi-
optimal search algorithm that can be applied to other
kinds of problems. In this paper, we do not discuss both
the optimal value of N and the adequacy of this algo-
rithm to be used with learning techniques that varies the
value of N during the run time search to optimize solu-
tions in terms of memory and time. But, in our opinion
these two aspects are very important to be studied in
further research.

References

[1] Pais J., and Pinto-Ferreira C. (1999), "The N-Best Heu-
ristic Search Algorithm," in: Proceedings of the 18th

Workshop of the UK Planning and Scheduling Special
Interest Group PLANSIG99, England.

[2] Korf, R.E. (1990), "Real-Time Heuristic Search" Artifi-
cial Intelli gence, 62(1): 41-78.

[3] Pearl, S. (1984), Heuristics: Intelligent Search Strategies
for Computer Problem Solving, Addison-Wesley.

[4] Cohn A. (1995), The Challenge of Qualitative Spatial
Reasoning, Division of Artificial Intelligence, School of
Computer Studies, University of Leeds, England.

[5] Bisiani R. (1992):”Beam Search,” in Encyclopedia of
Artificial Intelli gence, 1467-1468, New York: Wiley-
Interscience Publication.

[6] Harvey W., and Ginsberg M. (1995):”Limited discrep-
ancy search,” in: Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelli gence, 607-
613.

[7] Russel S., (1992):”Efficient memory-bounded search
method," in: Proceedings of the Tenth European Confer-
ence on Artificial Intell igence, 1-5.

[8] Pais J., Pinto-Ferreira C.(1998), "Search Strategies for
Reasoning about Spatial Ontologies," in: 10th IEEE Inter-
national Conference On Tools with Artificial Intelli -
gence, Taiwanese Association for Artificial Intell igence
(ICTAI98), Taiwan.

