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RESUMO
Resultados re
entes da neuro�siologia têm mostrado alguns aspe
tos inte-ressantes da inteligên
ia humana: os pro
essos mentais do pensamento s~aoguiados pelas emo�
~oes. In
lusive o pensamento ra
ional requere emo�
~oes pa-ra fun
ionar apropriadamente. Esta tese propôe um modelo para um agente
ujo fun
ionamento baseia-se em emo�
~oes. Este modelo �e suportado pelotrabalho de Antonio Damasio [18℄ em pôr a des
oberto o papel das emo�
~oesna ra
ionalidade humana. O modelo proposto �e baseado numa paradigmade dupla representa�
~ao: uma representa�
~ao 
omplexa, n~ao-tratada, estrutu-rada denominada de imagem 
ognitiva, e uma representa�
~ao simples, b�asi
a,built-in denominada de imagem per
eptual. Ap�os a dis
uss~ao do modelo, trêsimplementa�
~oes s~ao des
ritas, tal 
omo alguns resultados experimentais. Fi-nalmente, algumas 
onsequên
ias da abordagem s~ao dis
utidas, tais 
omo aemergên
ia de relevân
ia e signi�
ado, terminando 
om uma enumera�
~ao deposs��veis futuras dire
�
~oes de investiga�
~ao, nomeadamente a integra�
~ao destemodelo num ambiente rob�oti
o.
Palavras-
have: Emo�
~oes, Agentes, Arquite
turas, Inteligên
ia Arti�
ial,Neuro
iên
ia, Sistemas.



ABSTRACT
Re
ent neurophysiologi
 �ndings have un
overed some interesting aspe
ts ofhuman intelligen
e: the mind's thought pro
esses are driven by emotions.Even rational thinking does require emotion to fun
tion properly. This the-sis proposes a model for an agent whose fun
tioning is based on emotion.This model is supported by the work of Antonio Damasio [18℄ on unveilingthe role of emotion in human rationality. The proposed model is based ona double-representation paradigm: a 
omplex, un�ltered, stru
tured repre-sentation termed 
ognitive image, and a simple, basi
, built-in one termedper
eptual image. After the dis
ussion of the model, three implementationsare des
ribed, as well as some experimental results. Finally, some 
onse-quen
es of the approa
h are dis
ussed, su
h as the emergen
e of relevan
eand meaning, ending with the enumeration of possible future resear
h dire
-tions, namely the integration of the model in a roboti
 environment.
Key Words: Emotions, Agents, Ar
hite
tures, Arti�
ial Intelligen
e, Neu-ros
ien
e, Systems.
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Chapter 1Introdu
tion
SummaryThis thesis begins with some 
onsiderations prior to the presentation of the de-veloped work. First, the motivation of this work is presented. Then the obje
tivesof this thesis obje
tives are enumerated. Finally, some representative work in thisresear
h area is brie
y summarized.1.1 MotivationThrough the reading of this thesis, its ideologi
al epi
enter 
an be 
learlyidenti�ed: the ideas presented in Damasio's seminal book \Des
artes' Er-ror" [18℄. What he proposes is that rationality 
annot be understood sepa-rately from emotion.Sin
e the Greek philosophers the phenomenon of reason has been dividedfrom emotion. S
ienti�
 knowledge has been des
ribed in rational terms,logi
ally sound, 
leared of any emotional 
onsideration. And therefore, itseemed natural that emotions were a regretful heritage humans shared withtheir an
estors. This suggested an assumption that has (almost) always beenpresent when attempting to build intelligent ma
hines: they require no morethan pure rationality in order to \think." In other words, there is no sensein taking emotions into a

ount when designing intelligent ma
hines. It isimportant to stress that this is an empiri
al assumption, supported by theobservation (mostly introspe
tion) that humans reason rationally withoutany emotional feeling.But the 
ontribution of Damasio's work is pre
isely to 
hallenge thatassumption. As far as humans are 
on
erned, even rational thought doesinvolve emotions. And he was able to �nd neurophysiologi
al eviden
e that1



supports his thesis. And one 
an argue that no one is 
loser to understandingintelligen
e than the ones that study how the human brain works.However, it should be noti
ed that this model developed by Damasio isdes
riptive, i.e., it is supposed to provide an explanation of how the humanmind works. There is still a step to be taken when one 
onsiders to implementthose ideas. In other words, a pres
riptive model is required. A possible stepto bridge this gap is what this thesis proposes. The reader is invited throughthe following pages to assess on what degree that endeavor was a

omplished.1.2 Obje
tivesThis thesis proposes the a

omplishment of two obje
tives: �rst, to presenta pres
riptive model based on neurophysiologi
al grounds of the emotionma
hinery in the brain, and se
ond, to implement the model and to do someexperimentation.But prior to the presentation of the model, a set of �ndings from neu-ros
ien
e that were taken into a

ount is gathered in 
hapter 2. No priorknowledge of neuros
ien
e is required to understand this 
hapter.Then, the 
on
eptual issues of the model are presented and dis
ussed in
hapter 3. Chapter 4 presents three implementations of the model, alongwith some experimental results.This thesis ends with a 
hapter dis
ussing some of the 
onsequen
es ofthis approa
h, and some future dire
tion that this resear
h 
an take.1.3 OverviewThere is no agreement on a methodologi
al foundation for building intelligentma
hines. In the antipodes of the broad spe
trum of possibilities, lie the logi
approa
h proposed by M
Carthy [36℄, and the roboti
 inse
ts approa
h fromBrooks [8, 9℄. The former is based on a logi
al approa
h | failing to 
opewith the 
omplexity of the real world | whereas the latter, deta
hed fromreasoning models, la
ks the ability of handling more diÆ
ult tasks.The �rst question that pops into mind, when implementing emotions inma
hines, is whether or not it is legitimate to as
ribe emotions to them | \isthis ma
hine feeling?" In a broader sense, John M
Carthy has dis
ussed theproblem of as
ribing mental qualities to ma
hines:To as
ribe 
ertain beliefs, knowledge, free will, intentions, 
ons
iousness,abilities or wants to a ma
hine or 
omputer program is legitimate whensu
h an as
ription expresses the same information about the ma
hine thatit expresses about a person. ([37℄) 2



Although M
Carthy was almost surely not thinking about emotions andfeelings when he wrote this, an attempt to apply this 
on
ept to emotionslooks interesting. But while the mental qualities referred by M
Carthy 
anbe identi�ed with a purely rational perspe
tive of the mind, the same 
annotbe said about emotions. A

ording to Damasio [18℄, emotions involve thebody, a physi
al part of a person, as it will be dis
ussed in 
hapter 2.From a philosophi
al foundations viewpoint, AI is divided in the useful-ness of emotions in ma
hines. On the one hand, John M
Carthy sustains that\Robots Should Not be Equipped with Human-like Emotions" [38℄, defend-ing the idea that rational thought 
an be deta
hed from emotions, and thatemotions only disturb pure rationality. However neuros
ien
e 
ontradi
tsthis deta
hment [18℄. On the other hand, Aaron Sloman [52℄ and MarvinMinsky [40℄ are quite 
on�dent that, besides being useful, emotions will beessential, at least as far as an human-like intelligent ma
hine is pursued.Quoting Minsky from his seminal book \So
iety of Mind":The question is not whether intelligent ma
hines 
an have any emotions, butwhether ma
hines 
an be intelligent without emotions. ([40℄)In a di�erent perspe
tive, Sloman sustains that emotions are essential to in-telligent robots, arguing its 
lose relationship to the origin of motivations [52℄.Applying emotions in arti�
ial intelligen
e does not imply a unique path.The new-born �eld has already bran
hed sin
e its very beginning. A �rstmajor division 
an be established between external emotions and internalemotions. In other words, does one want to relate to 
omputers on an emo-tional basis, or to enable the ma
hine to use emotions internally? Of 
oursethese two perspe
tives are not mutually ex
lusive, but usually one of them isemphasized. In the former 
ase, the 
entral question is \how 
an a ma
hineexpress emotions?" and \how 
an a ma
hine dete
t an emotion expressedby a human 1?" While in the latter, the question is \how 
an emotions
ontribute to the de
ision making pro
ess?".A

ording to Rosalind Pi
ard, emotions 
an play an essential role in theway people deal with 
omputers. They de�ne a line of resear
h she 
alls\a�e
tive 
omputing" [46, 45℄ | \
omputing that relates to, arises from,or deliberately in
uen
es emotions." For instan
e, fa
ial expressions are amedium through whi
h emotions are expressed between people. One aspe
tof this resear
h area is to dete
t human fa
ial expressions, as well as how tosynthesize a fa
ial expression to show a given emotional state. The appli
a-tions of this s
ienti�
 area are immense: they 
an drasti
ally 
hange the way1Or by another ma
hine. 3



people relate with 
omputers. If people got personally 
aught by 
onversa-tions with the ELIZA program, imagine when 
omputers start dete
ting andexpressing emotions in a 
onvin
ing way.In 1988, Andrew Ortony et. al. published the book \The CognitiveStru
ture of Emotions" [42℄, whi
h presents a systemati
 
ategorization ofemotions. Based on this work, the Oz Proje
t on believable agents, integrateda module (Em) implementing emotions [47℄ in one of their agent ar
hite
-tures [2℄. This module provides a representation of the agent's emotionalstate whi
h 
onditions the agent's behavior.Another publi
ation worth reporting is Ian Paul Wright's PhD thesis onemotional agents [66℄. This work provides some interesting perspe
tives onthe implementation of emotions in agents. Its foundations are based on rein-for
ement learning and an e
onomi
 view of the so
iety of mind prin
iple [40℄.The �eld has been more or less lethargi
, with sparse publi
ations, until aSAB-98 workshop [12℄, and a 1998 AAAI Fall Symposium session [11℄ events,both 
entered on emotions, putting together a large number of papers andapproa
hes. The publi
ation of the Pi
ard's book \A�e
tive Computing" [45℄has 
ertainly 
ontributed to the attention shift onto the �eld of several AIresear
hers. At the present stage, there is little 
onvergen
e on the approa
hto be taken. Almost every paper proposes a di�erent approa
h. But it 
anbe expe
ted that in the future the �eld will de
ide on smaller number ofapproa
hes, resulting from the failure of some to further development, andpossibly the merger of others.Inside the emotions (in AI) �eld, several sub-areas of resear
h 
an beidenti�ed.Regarding what was termed above as external emotions, there is resear
hon intera
tion with a roboti
 fa
e, responding with an \emotional" expressionto 
ertain visual stimuli, like waving obje
ts in front of it [22, 23℄. Anotherexample is the intera
tion with a software GUI, using Bayesian networksto model the user (emotional) personality [7℄. In a more spe
i�
 
ontext,the re
ognition of a�e
tive states [65℄ and the expression of emotions usingmotion, through gestual primitives [13℄, are also interesting.In an internal emotions approa
h, several perspe
tives 
an be identi-�ed. The ar
hite
tural one views emotions as a fundamental 
omponent in abroader ar
hite
ture, su
h as the already 
ited Em module (Oz Proje
t) [47℄,the TABASCO layered ar
hite
ture [53℄, or a rule-based approa
h for 
on-trolling the agent behavior of Botelho et al. [6℄. These approa
hes make useof the appraisal theory (see [24, 50℄ for further information), whi
h is basedon 
ognitive assessments of situations. The appraisal has strongly in
uen
edthe �eld (and still does). But in the author's opinion, it fails to 
apture somerelevant neurophysiologi
al aspe
ts of emotions (e.g., the nature of Damasio's4



somati
 marker [18℄).There are further attempts to build models of emotions from its veryfoundations. A reinfor
ement learning approa
h is taken by the work ofGadanho [26, 25℄. Taking the agent so
iety paradigm from Minsky [40℄ as astarting point, Vel�asquez has rea
hed some interesting results [56, 57, 55, 58℄.This thesis is viewed by the author as belonging to this perspe
tive [62, 60,63, 61℄. Interestingly, all these resear
hers share in 
ommon the inspirationfrom Damasio's work [18℄.Some tentative formalization of emotions have also been attempted, tak-ing a more abstra
t mathemati
al approa
h in some 
ases [1, 10, 35℄, or aneurophysiologi
al one in [16, 17℄. These 
ontributions are interesting, butin the author's opinion, while the former la
k neurophysiologi
al grounding,the latter have a strong des
riptive 
ontent, rather than a pres
riptive one.

The robot had no feelings, only positroni
 surges thatmimi
ked those feelings. (And perhaps human beingshad no feelings, only neuroni
 surges that were inter-preted as feelings.)Isaa
 Asimov, \The Robots of Dawn"(Harper-Collins, 1994)The robot is going to lose. Not by mu
h. But when the�nal s
ore is tallied, 
esh and blood is going to beat thedamn monster. Adam Smith5



Chapter 2Foundations
SummaryThis 
hapter opens with a se
tion presenting the foundations of this thesis. Thesefoundations are mostly biologi
al, and 
ome from experimental data. Some fun-damental data about the brain is presented. Several stru
tures of the brain aredis
ussed, stressing the 
on
ept of the topologi
al map. Then, a brief overview ofmodels of the brain stru
tures dire
tly involved with emotions is presented. Fromthese models, the double pro
essing paradigm is extra
ted, whi
h underlies the pro-posed model. Finally, the relationship of emotions with rationality is dis
ussed,rea
hing the supporting pillar of this work | Antonio Damasio's �ndings of howhuman rationality depends on emotions to work properly [18℄.The main inspiration and motivation for the ideas presented in this thesislie primarily on �ndings from biology (namely neuros
ien
e, neurobiology andrelated �elds). This se
tion des
ribes some of these �ndings, that underpinmany 
hoi
es taken during the development of the presented model.It is not free from 
ontroversy that the 
onstru
tion of arti�
ial intel-ligen
e models has to take into 
onsideration the way nature implementsintelligen
e in biologi
al beings. It has been advo
ated by some parties that,as the human brain works in a distin
tly di�erent way than the ma
hines towhi
h we are targeting our models, AI resear
h should be deta
hed from anybiologi
al inspiration. Moreover, as the sole eviden
e of verbal, sophisti
atedintelligen
e 
omes from human beings no one really has a 
omplete modelof it (i.e., reverse engineering). To derive a model of an intelligent ma
hine,regardless of the inner workings of the instan
es humans are, 
an be expe
tedto be extremely diÆ
ult, to say the least.This debate is by itself dis
ardable, sin
e it does not seem fruitful. This6



thesis is about a way of implementing emotions on arti�
ial ma
hines. Thereis yet no 
lear 
ase of emotions outside the biologi
al sphere. Therefore,an independent approa
h to arti�
ial emotions has to be based on the waynature \implements" emotions.In the following se
tions, it will be presented a set of �ndings from neuro-s
ien
e (and biology in general) that are behind the model proposed in thisthesis. The starting point will be a brief des
ription of the overall brain orga-nization in terms of mi
rostru
tures su
h as neurons and synapses, upwardstoward major brain zones. Next, a brief overview of some biologi
al emotionmodels are presented, and �nally | the 
ornerstone of this thesis | AntonioDamasio's work on the relationship between emotions and rationality.Mu
h of the data referred in the following se
tions was taken from [14℄,unless otherwise noted. This book 
onstitutes an ex
ellent overview to thebroad spe
trum of neuros
ien
e issues.2.1 Brain OrganizationSu
h a 
omplex me
hanism as the human brain 
annot be explained, not evenstudied, as a whole at on
e. Some kind of \divide and 
onquer" prin
iplehas to be applied to separate more or less inter
onne
ted areas of resear
h.The approa
h taken here was to divide it in terms of levels of granularity ofthe stru
tures involved. These levels are presented in �gure 2.1.The smallest unit | atomi
 element | whi
h may still be identi�edwith the brain, is the brain 
ell, i.e., the neuron. The human brain is madeout of approximately 1012 neurons. These neurons are 
onne
ted to otherneurons by synapses, whi
h 
ount up to the order of magnitude of 1015. Theinformation ex
hange between the neurons is ele
tri
al in nature, making useof 
omplex 
hemi
al me
hanisms (yet to be fully understood). The synapses
onne
t unidire
tionally neurons outputs to inputs of others, 
onditioning(among many other fa
tors) the way the a
tivation of the former a�e
ts thelatter.Although the inputs of one neuron are analog signals, its output is digital,forming a �ring pattern. A spike in this �ring patterns lasts about 1 mse
,and the transmission delay up to another neuron takes about 5 mse
.In terms of density, there are about 105 neurons and 109 synapses per
ubi
 millimeter. Ea
h of these neurons is 
onne
ted to approximately 3%of the neurons in the same amount of surrounding volume. However, themajority of the synapses of a single neuron are 
onne
ted to other neuronsfar from the neighborhood, forming what are 
alled proje
tions.Despite an apparent randomness in the neuron inter
onne
tions (whi
h7



Figure 2.1: Levels of the brain in terms of granularity, from mole
ules up tothe 
entral nervous system (CNS). (From [14℄ page 11, reprint by 
ourtesyof the author.)seems to exist, sin
e there is no way the geneti
 
oding 
ould hold enoughinformation to determine every 
onne
tion), some stru
ture 
an be noti
ed.One kind of these is the topographi
 map. A topographi
 map is a zoneof the brain where the pla
ement of single neurons with respe
t to others istopographi
ally organized. The most signi�
ant example of su
h a map, is theproje
tion of the retina into V1 | an area in the ba
k of the head (o

ipitallobe, see �gure 2.2) whi
h forms the primary visual 
orti
es. Re
eptive unitswhi
h are 
lose in the retina, are proje
ted into 
lose neurons into V1. Thisway, the pattern of a
tivation in V1 resembles the image seen by the eyes.This mapping does not preserve proportion, as it is severely distorted. Thisdistortion 
an be interpreted as some areas having higher resolution thanothers. Figure 2.3 shows how a sample pi
ture a
tivates these early visual
orti
es, in an experimental setup.Topographi
 maps 
an be found asso
iated with nearly every sensorysystem, namely the auditory and the ta
tile systems, as well as in motor
orti
es. There is eviden
e that the topographi
 map is a devi
e frequentlyused by the brain, not only in these most visible examples, but also in lessevident and more abstra
t levels.Interestingly enough, the early visual 
orti
es, not only hold topograph-i
ally mapped images from the retina, but also hold images re
alled frommemory. As Damasio notes ([18℄, page 101), \Preliminary studies of visual8



Figure 2.2: Identi�
ation of the zones where the opti
 nerves 
onne
t to thebrain, by the means of topographi
 maps. Note the 
onne
tions from theretina to the nu
lei of the thalamus (see below the role of the thalamus inthe Papez 
ir
uit model), relaying the visual map to the hypothalamus (partof the limbi
 system, the emotion 
enter), and to the visual 
ortex, in theba
k of the brain. (From [14℄ page 151, reprint by 
ourtesy of the author.)re
all using positron emission tomography (PET)," have shown that \there
olle
tion of visual images a
tivates the early visual 
orti
es, among otherareas." These re
alled images are not sparse phenomena, but rather some-thing that seems to underly the whole pro
ess of thinking. Damasio devotesa se
tion to this fa
t, with the suggestive title \Thought is made largely ofimages":It is often said that thought is made of mu
h more than just images, thatit is made also of words and nonimages abstra
t symbols. Surely nobodywill deny that thought in
ludes words and arbitrary symbols. But whatthe statement misses is the fa
t that both words and arbitrary symbols arebased on topographi
ally organized representations and 
an be
ome images.Most of the words we use in our inner spee
h, before speaking or writing asenten
e, exist as auditory or visual images in our 
ons
iousness. If they didnot be
ome images, however 
eetingly, they would not be anything we 
ouldknow. ([18℄, page 106)And many instan
es of this phenomenon are experien
ed by the reader (al-though introspe
tion is a dangerously misleading tool): when a senten
e isspoken by someone, out of our attention, it 
an be later \re-heard" in the9



Figure 2.3: At the bottom it is shown the shape of the neural a
tivity pattern,at the early visual 
orti
es of an animal, that is looking to the pi
ture shownat the top. Although deformed, the neural a
tivity pattern shows that the to-pographi
 
hara
teristi
s of the stimulus are preserved. (From [18℄ page 104,reprint by 
ourtesy of the author.)brain and only then understood; the pi
torial nature of the mathemati
 no-tation, that is mu
h easier to manipulate than some horizontal non-intuitiverepresentation (e.g., in a LISP expression); arithmeti
 
al
ulation make ex-tensive use of graphi
 disposition of numerals; European traÆ
 signs aremainly based on s
hemati
 shapes (they are supposed to be sighted andunderstood swiftly and 
learly, and do not require the knowledge of a spe-
i�
 written language); primitive writing is based on i
ons rather than onabstra
t symbols1; the easy memorization of 
orporate wordless logos; andmore examples 
an easily be found in everyday life.This suggests that the way the brain represents and manipulates knowl-edge is primarily pi
torial in nature, rather than symboli
. This is a ratherastonishing �nding, whi
h has not re
eived the deserved attention within AImainstream (but is has been a
tively resear
hed as a small sub�eld of AI,under the name \diagrammati
 reasoning", see for instan
e [27℄). But inpsy
hology it is well studied for many years. In [32℄ for instan
e, \images"1In the sense that i
ons represented obje
ts and persons in s
enes, and symbols implieda synta
ti
 and semanti
 stru
ture. 10



are de�ned as:Any thought representation that has a sensory quality we 
all an image.Images 
an involve the senses of seeing, hearing, smell, taste, tou
h, andmovement; but sin
e my fo
us is on visual images, I use the word \image"for mental 
ontents that have a visual sensory quality (unless otherwise in-di
ated). ([32℄, page 3)In the 
ourse of this thesis, the term image is used in this broad sense, of api
torial representation, as the one that 
an be found in topographi
 mapsin the human brain.Piaget makes referen
e to a set of abilities that 
hildren show, long beforebeing able to verbalize words, 
alled sensorimotor intelligen
e [44℄. Theseabilities are, for instan
e, rea
hing obje
ts with hands, manipulating obje
ts,spatial understanding, and learning in the pro
ess. It seems 
lear that thepro
esses involved in the brain deal with the world in terms of topographi
maps. And these abilities appear before spoken language.As we go up in the level of organization of the brain, the major top levelbrain zones 
an be found. The idea of 
lassifying of the brain in zones 
ameabout with the advent of \phrenology" in the eighteenth 
entury. The phre-nologists used to 
lassify bumps in 
ertain areas of the head as indi
ators ofspe
i�
 abilities (su
h as sensing, feeling, spee
h, memory, intelligen
e, andso on). These ideas inspired the sear
h for the lo
ation of fun
tional 
enterson the brain. Nowadays there exists a mu
h more re�ned map of the brainzones, with strong s
ienti�
 foundations, rather than on empiri
al methods.Many of these results 
ame from the study of the e�e
ts of 
ertain brainlesions in the patient behavior. Neurologists usually are able to pinpoint theregion of a lesion just by the means of the study of the way the patient be-
omes impaired. Lo
ated brains 
enters are identi�ed with 
apabilities su
has vision, language 
omprehension, tou
h, voluntary movement, reasoning,spee
h, memory, hearing, and so on (see �gure 2.4). As brain lesion reportsare 
olle
ted and analyzed, and with the aid of apparatus able to tra
e braina
tivity (e.g., PET2), this map of the brain has been re�ned. For instan
e,Hanna Damasio has re
ently reported that memories asso
iated with per-son names, tools and utensils names, and animal names, have distin
t brainlo
ations [19℄. She was able to obtain this result by the means of the sys-temati
 and 
omparative study of patients impaired with very well lo
atedbrain lesions in the memory region.2Positron Emission Tomography.
11



Figure 2.4: Lo
ation of several brain 
enters. (From [34℄ page 77, reprint by
ourtesy of the author.)2.2 Emotion Cir
uitrySin
e Aristotle emotions have been 
onsidered a spurious phenomenon thatstubbornly stands between mind and body. In the �eld of AI, it has al-ways seemed obvious that emotions and feelings3 have nothing to do withintelligen
e and the domain of pure reason. No proof of any formal theoremhas ever required emotions to stand valid. S
ienti�
 knowledge has neverneeded emotions to support itself (in the sense of exa
t s
ien
es). But whatremains arguable is that, be
ause of these fa
ts, it should be possible toattain human-like ma
hine intelligen
e without ever 
onsidering the role ofemotional me
hanisms in humans. The idea of arti�
ial intelligen
e with-out emotions seems to originate from the introspe
tive idea that one person
an endorse a rational (and then intelligent) line of thought, without theintervention of emotions. As we will show in this se
tion, this is not so. Atleast in humans, any rational thought uses the human emotional 
ir
uitryintensively.In 1884, William James was the �rst to attempt to model emotionalpro
esses in human beings4. Until then, it was well established that anemotional rea
tion (su
h as faster heart beat rate, sweaty hands, and so on)3For the time being, the terms \emotions" and \feelings" are taken by their 
ommon-sense meaning. This 
hapter will not provide an exa
t de�nition, but des
ribe approa
hesto understand and distinguish these 
on
epts.4The des
ription of models here des
ribed 
an be found in [34℄, unless otherwise noted.12



to an external stimulus, 
ame from a mental assessment of that stimulus.The proposal by James went the other way round:Our natural way of thinking about [...℄ emotions is that the mental per
ep-tions of some fa
t ex
ites the mental a�e
tion 
alled emotion, and that thislatter state of mind gives rise to the bodily expression. My thesis on the
ontrary is that the bodily 
hanges follow dire
tly the PERCEPTION of theex
iting fa
ts and that our feeling of the same 
hanges as they o

ur IS theemotion. [Original emphasis℄ (
ited in [34℄)Noti
e that the word \emotion" is used in this thesis in a slightly di�erentsense than in the above quotation. William James used the word \emotion"to name the a
t of internally per
eiving the emotional response by the brain.Essentially, what William James proposed was a radi
al statement that
ontradi
ted everything that had been said in the subje
t before. But thereis mu
h more to follow. As emotion models are developed and re�ned, a
learer pi
ture be
omes visible. It is important to stress the fa
t that themethodology to develop these models is experimental. They are not purelyphilosophi
al models | the rough tool of introspe
tion is very mu
h ruledout5Another relevant model is Papez' 
ir
uit theory [34℄, proposed in 1937(�gure 2.5). The 
omponents of this model 
an be dire
tly identi�ed withareas in the brain, but to the present dis
ussion, their names are irrelevant.However it is important to understand that its ar
hite
ture is grounded ona
tual brain stru
tures.A

ording to this model, following the path taken by an external stimu-lus, the per
eption layer is proje
ted into a 
enter (the thalamus) from whereit bifur
ates in two separate paths. One of them follows to the hypothalamusthat is able to dire
tly generate a bodily response (a�e
ting blood pressure,stress hormones, provoking a freeze rea
tion, and so on). This path thatgoes from per
eption to a
tion is 
alled stream of feeling. The response toa stimulus through this path is very qui
k, but it is unable to dis
riminatesubtle di�eren
es. A se
ond path goes from the thalamus, up through thesensory 
ortex, until rea
hing the 
ingulate 
ortex | the stream of thought.This latter path 
orresponds to higher 
ognitive abilities, su
h as reasoning,memories, and so on. The pro
essing at this level is 
onsiderably slower thanthe former. The terminal 
enters of these two paths are 
onne
ted in bothdire
tions, via the hippo
ampus (downwards) and the anterior thalamus (up-wards). The upward 
onne
tion relates to the feeling of an emotion, and the5This does not mean that philosophy does not take into a

ount these biologi
al �nd-ings. In fa
t, philosophy has already taken emotions into a

ount, for instan
e in [20℄.13



Figure 2.5: Ar
hite
ture of the Papez 
ir
uit. (From [34℄ page 89, reprint by
ourtesy of the author.)downward to the blo
king of basi
 responses (triggered by the hypothalamus)by the means of the higher 
ortex [34℄.From this model two aspe
ts should be retained: �rst, the statementthat in the human brain external stimuli are subje
t to a double pro
essing,a basi
/qui
k and a 
omplex/slow, and se
ond, the bidire
tional in
uen
e ofthese two layers.It is relevant to add a note about biologi
al evolution, with respe
t tothis double pro
essing perspe
tive. The size of the brain of mammals hasbeen in
reasing along spe
ies evolution. The interesting aspe
t is that thebrain size does not in
rease uniformly. What happens is that the limbi
lobes (responsible for emotional behavior) remain relatively similar, whilethe 
ortex undergoes a signi�
ant growth. The growth of the 
ortex is themost distinguishing feature, when one observes the re
ent evolution of thebrain. Figure 2.6 shows the volume o

upied by the limbi
 system in relationto the 
ortex, in three animals. The limbi
 lobes, whi
h form the older (andinner) parts of the brain, are a heritage humans got from their an
estors. Butalthough the in
uen
e of the thalamus has been diminishing along the pathof evolution, it has not 
eased to exist! Evolution possibly determined that14



the existen
e of a qui
k, basi
, immediate path of pro
essing is still essentialeven in spe
ies with high 
ognitive abilities, like humans [34℄.

Figure 2.6: Areas o

upied by the limbi
 lobe (the evolutionary older part ofthe brain) of three animal spe
ies, along the path of evolution: rabbit, 
at,and monkey. (From [34℄ page 86, reprint by 
ourtesy of the author.)There still is a 
onsiderable amount of dis
ussion around the issue of basi
emotions. The idea of basi
 emotions is to pinpoint a basi
 set of emotions,from whi
h, by 
ombination, every emotion felt by humans 
an be des
ribed.One of the most prominent persons behind this theory is Paul Ekman [21℄.But besides this ongoing dis
ussion, it seems 
onsensual that fear is to anessential phenomenon, whether it is part of a set of basi
 emotions, or thereis no sense in de�ning su
h a set. Fear is known to exist in animals sin
eearly stages of evolution. The study of the way the human brain deals withfear provides important leads to the inner workings of emotion.Joseph LeDoux [34℄ has 
arried out an exhaustive resear
h on the brain
ir
uits of fear, mainly on rats. And on
e again a double pro
essing me
ha-nism was found:So we 
an begin to see the outline of a fear rea
tion system. It involvesparallel transmission to the amygdala from the sensory thalamus and sensory
ortex. The sub-
orti
al pathways provide a 
rude image of the externalworld, whereas more detailed and more a

urate representations 
ome fromthe 
ortex. While the pathway from the thalamus only involves one link,several links are required to a
tivate the amygdala by way of the 
ortex.Sin
e ea
h link adds time, the thalamus pathway is faster. [emphasis addedby the author℄ ([34℄, page 165) 15



And as far as response time is 
on
erned:Although the thalami
 system 
annot make �ne distin
tions, it has an im-portant advantage over the 
orti
al input pathway to the amygdala. Theadvantage is time. In a rat it takes about twelve millise
onds (...) for ana
ousti
 stimulus to rea
h the amygdala through the thalami
 pathway, andalmost twi
e as long through the 
orti
al pathway. ([34℄, page 163)These �ndings 
orroborate the double pro
essing model of a 
omplex/slowand a basi
/fast layers proposed here. In the next se
tion, the relationshipbetween these stru
tures and human rationality is explored.2.3 Rationality and EmotionAt the beginning of this 
hapter it was said that for a long time the dominantthought was that emotions were an undesirable byprodu
t of the humanrational mind, and that the less emotional a person was, the more (s)he wouldthink rationally. Antonio Damasio was one of the �rst resear
hers to openlystate otherwise. Daring 
laims require daring approa
hes, and Damasio wasable to 
ome up with experimental eviden
e that, in fa
t, emotions play akey-role in human reasoning.But what is really understood here about emotions? A di
tionary [39℄de�nition of \emotion" reads \the a�e
tive6 aspe
t of 
ons
iousness," andfurther ahead more pre
isely asA psy
hi
 and physi
al rea
tion (as anger or fear) subje
tively experien
edas strong feeling and physiologi
ally involving 
hanges that prepare the bodyfor immediate vigorous a
tion. ([39℄)This last de�nition is 
learly oriented towards the physiologi
al aspe
ts ofemotion, although it reje
ts any possibility of as
ribing emotions to ma
hines.Unless, of 
ourse, one 
ould as
ribe all the terms used (body, psy
hi
, sub-je
tively, feeling, and so on) to the same ma
hine. On the other hand, the�rst de�nition, although being deta
hed from any physiologi
al ground, istoo vague (and entangled in 
ir
ular de�nitions) to be useful, besides usingthe similarly \pre
arious" word \
ons
iousness."Most of Antonio Damasio's experimental data stems from patients withbrain lesions in the prefrontal 
orti
es, whi
h reside just behind the headfore bone, right above the eye balls. In his book [18℄, Antonio Damasiodevelops his argumentation around three 
ase-studies, whi
h will be brie
y6De�ned in a 
ir
ular fashion in the same di
tionary as \relating to, arising from, orin
uen
ing feelings or emotions". 16



des
ribed below (the material in this subse
tion is quoted from[18℄, unlessstated di�erently).In 1848 Phineas Gage su�ered an a

ident that destroyed a substantialpart of his prefrontal lobes. He survived; however even though he did notbe
ome physi
ally handi
apped in any way, but his life 
hanged forever. His
hara
ter, his personality was deeply modi�ed. He be
ame unable to behavein presen
e of others, was rude, a
ted like a 
hild, and he was unable toresume his previous job. Hopping from job to job, he even be
ame a 
ir
usattra
tion, showing his wounds and the iron sti
k that was responsible forthe a

ident.The se
ond 
ase is the one of a patient named Elliot. He su�ered froma brain tumor that 
ompressed the prefrontal 
orti
es, damaging them. Heunderwent surgery to remove the tumor as well as the damaged tissues of theprefrontal lobes. As a result, his behavior was also deeply a�e
ted. A

ordingto Damasio's words:On
e at work he was unable to manage his time properly; he 
ould not betrusted with a s
hedule. When a job 
alled for interrupting an a
tivity andturning to another, he might persist nonetheless, seemingly losing sight ofhis main goal. Or he might interrupt an a
tivity he had engaged, to turn tosomething he found more 
aptivating at that parti
ular moment.[...℄The 
ow of work was stopped. One might say that the parti
ular step of thetask at whi
h Elliot balked was a
tually being 
arried out too well, and atthe expense of the overall purpose. One might say that Elliot had be
omeirrational 
on
erning the larger frame of behavior, whi
h pertained to hismain priority, while within the smaller frames of behavior, whi
h pertainedto subsidiary tasks, his a
tions were unne
essarily detailed. ([18℄, page 36)As Damasio notes, these two 
ases have mu
h in 
ommon:In some respe
ts Elliot was a new Phineas Gage, fallen from so
ial gra
e,unable to reason and de
ide in ways 
ondu
ive to the maintenan
e and bet-terment of himself and his family, no longer 
apable of su

eeding as anindependent human being. ([18℄, page 38)Apparently, both 
ases showed no weakening of pure 
ognitive abilities (asthe ones measured by the traditional I.Q. rating7 Only Elliot was a
tuallyexamined, but it is supposed that Gage would obtain similar results.). Yet,they were unable to handle 
ommon-sense tasks, they la
ked the ability to
oordinate all these parti
ular 
ognitive abilities usually re
ognized as intel-ligen
e, into a 
oherent whole.7See [5℄ for a des
ription of the I.Q. test.17



Latter patients su�ering from similar lesions in the prefrontal 
orti
esshowed another 
ommon feature: they all had a strong impairment on theiremotional assessment of situations.There are two brain stru
tures that are essential to these me
hanisms.They are the amygdala8 and the prefrontal 
ortex. Damasio 
lassi�es emo-tions in two broad 
lasses: primary emotions, that are triggered by externalstimuli, originating body responses su
h as sweat, blood pressure, and so on;and se
ondary emotions whi
h are relative to re
alled images from \emotion-ally 
harged" past events. The primary emotions rely on the amygdala (olderpart of the brain in terms of evolution). Certain external stimuli trigger theamygdala to produ
e a body response. The se
ondary emotions are based onthe prefrontal 
ortex, but work on top of the amygdala: images of past eventsare a
tivated in the brain, and the prefrontal 
ortex responds by a
tivatingthe amygdala to produ
e a body response. In general, this response is milderthan the one dire
tly provoked by external stimuli.A

ording to Damasio, the same areas in the brain whose la
k deeplya�e
ts reason and long-term planning, are also responsible for the abilityto have an emotional response to 
ertain stimuli. This is more than a 
o-in
iden
e, and in fa
t, these two aspe
ts | rationality and emotion | aredeeply entangled. To explain this 
onne
tion, Damasio raises the somati
-marker hypothesis:When the bad out
ome 
onne
ted with a given response option 
omes intomind, however 
eetingly, you experien
e a gut feeling. Be
ause the feelingis about the body, I gave the phenomenon the te
hni
al term somati
 state(\soma" is Greek for body); and be
ause it \marks" an image, I 
alled it amarker. Note again that I use somati
 in the most general sense (that whi
hpertains to the body) and I in
lude both vis
eral and nonvis
eral sensationwhen I refer to somati
 markers. ([18℄, page 173)In other words, 
ertain images (re
all the previous dis
ussion about howthought is largely made out of images) are marked with a somati
 (as relativeto the body) representation. The body plays here a fundamental role as the\theater for the emotions," to quote Damasio. The e�e
ts of this somati
marker 
an either be properly vis
eral, in the sense that it modi�es 
ertainphysiologi
al 
hara
teristi
s (blood pressure, hormone balan
e, and so on),or short-
ir
uiting the body through an \as-if" me
hanism, but still holdingthe same 
hara
teristi
s.8The amygdala is not present in the Papez 
ir
uit des
ribed in the previous se
tion.It was later introdu
ed by Ma
Lean in 1952 (see [34℄ for further details). The role ofthe hypothalamus is related to body regulation issues, where the amygdala is in fa
tresponsible for its a
tivation. 18



To verify this hypothesis, Damasio des
ribes several examples, out ofwhi
h three will be reported here.� When a patient visiting Damasio's laboratory pulled out his appoint-ment book to s
hedule his next visit, with 
old posture, he startedenumerating reasons for this or that date, without being able to de-
ide. It took more than a half-hour, without neither being able tode
ide, nor showing any sign of frustration. He just kept analyzing,
omparing possible dates, endlessly.� Several patients with lesions in the prefrontal lobes were mat
hed againstnormal persons, in terms of skin 
ondu
tivity while wat
hing to thesame sequen
e of pi
tures. These pi
tures in
luded banal images, likelands
apes, as well as disturbing pi
tures (violen
e, blood, a

idents,sex, et
.). The results were very 
lear. While the disturbing pi
turesprodu
ed strong skin 
ondu
tivity response in the normal subje
ts,there was no noti
eable response from the ones with the prefrontal lobelesions. Although they were able to 
orre
tly understand the horror ofthese pi
tures, they did not show any emotional response. One of theimpaired patients showed a remarkable insight of what was happeningto him:He noted that after viewing all the pi
tures, in spite of realizing their
ontent ought to be disturbing, he himself was not disturbed. ([18℄,page 211)And Damasio further notes that:Here was a human being 
ognizant of both the manifest meaning ofthese pi
tures and their implied emotional signi�
an
e, but aware alsothat he did not \feel" as he knew he used to feel | and as he wasperhaps \supposed" to feel? | relative to su
h implied meaning. Thepatient was telling us, quite plainly, that his 
esh no longer respondedto these themes as it on
e had. ([18℄, page 211)� The third example is the setup of a 
ard game9, 
onsisting of four de
ks| A through D. The subje
t is asked to turn a 
ard, from a de
k of his
hoi
e, then the experimenter asserts whether that 
ard made him loseor gain a 
ertain amount of (fake) money (from a start loan of $2,000).Cards from any of the A or B de
ks o�er the subje
t $100, while 
ardsfrom de
ks C and D only give $50 ea
h. The tri
ky part of this game9Although the 
ited Damasio's book [18℄ des
ribes this game, detailed informationabout the results and 
ard sequen
es 
an be found in [3℄ and [4℄.19



is that 
ertain 
ards in de
ks A and B unexpe
tedly produ
e a loss ofhigh amounts (e.g., $1,250), but in de
ks C and D 
ertain 
ards only
ause a minor loss of less than $100. Ea
h game 
onsists of 100 turns,but players were not informed beforehand.Normal people usually started the game trying ea
h of the de
ks, butsoon would take noti
e of the high losses resulting from the A and Bde
ks, and 
onverge to taking 
ards from de
ks C and D only. However,patients with prefrontal lobes lesions, kept on taking 
ards from theapparently more pro�table de
ks A and B, insensitive to the o

asionalhigh losses (�gure 2.7). These patients were unable to re
all the riskof 
hoosing A or B de
k 
ards, and kept on 
hoosing the immediatelyapparent higher value of these de
ks. Damasio 
alls this phenomenon\myopia for the future".

Figure 2.7: Number of sele
tions from ea
h of the de
ks, in normal subje
tsand \frontal patients" (i.e., su�ering from frontal lobe damage). (From [18℄page 215, reprint by 
ourtesy of the author.)These results suggest that, when normal players are fa
ed with the fourde
ks, they perform a double assessment of ea
h de
k, while in the 
aseof the impaired patients, it is only a single one. The assessment that is
ommon to both of them 
orresponds to a 
rude low-term evaluation,based on the most re
ent 
ard values. The assessment missing in theimpaired patients is the ability to re
all a somati
 marker asso
iatedto a past event. In this 
ase, this would be the (sad) remembran
eof the high loss 
ards taken out from A and B de
ks. This me
ha-20



nism overrides the �rst 
rude assessment, and holds long-term bene�tsthroughout the game. Frontal patients (i.e., who su�er from frontallobe damage) are unable to foresee the high losses from the A andB de
ks. The distin
tion between these two kinds of assessment willfurther ahead be ni
ely mapped into our proposed double layer model.These results are in fa
t the major 
ontribution to this thesis | emo-tions play an essential role in human rationality. And this result is not anassumption, but rather a 
on
lusion supported by experimental data.

You [humans℄ are, after all, essentially irrational.Spo
k, \Metamorphosis," stardate 3220.3, \StarTrek."A 
ulpa foi minha, 
horava ela, e era verdade, n~aose podia negar, mas tamb�em �e 
erto, se isso lhe servede 
onsola�
~ao, que se antes de 
ada a
to nosso nospus�essemos a prever todas as 
onsequên
ias dele, a pen-sar nelas a s�erio, primeiro nas imediatas, depois nasprov�aveis, depois nas poss��veis, depois nas imagin�avias,n~ao 
hegar��amos sequer a mover-nos de onde o primeiropensamento nos tivesse feito parar.10Jos�e Saramago, \Ensaio sobre a Cegueira"(pg. 84, Editorial Caminho, 1995)10It was my fault, she 
ried, and it was true, it 
ould not be denied, but it also holds,if that 
an serve as a 
onsolation to her, that if we predi
ted all 
onsequen
es before ea
ha
t, 
onsidering them seriously, �rst the immediate ones, then the probable ones, then thepossible ones, then the imaginary ones, we would never get to move beyond where the �rstthought would have made us stop. [author's translation℄21



Chapter 3The Model
SummaryThe model hypothesized in this thesis is presented here in an in
remental fash-ion. But before starting the presentation, a set of basi
 assumptions is set. Aftersupporting the model in the double representation paradigm, the per
eptual layer ispresented, followed by the 
ognitive one. The desirability ve
tor 
on
ept is then in-trodu
ed. The way these two layers intera
t in order to produ
e a de
ision and/oran a
tion is then dis
ussed, followed by 
onsiderations on the role of the memory,that implements the 
apability of learning. Finally, the 
omplete pi
ture of thear
hite
ture, 
ontaining all the dis
ussed 
omponents, is presented. The way thisar
hite
ture fun
tions as a whole is also dis
ussed.3.1 Basi
 AssumptionsThe proposed model is built on top of the agent paradigm. The agent isin 
onta
t with the environment (whi
h may in
lude other agents, with orwithout similar ar
hite
tures) through its sensors, and a
ts upon it by themeans of its a
tuators. The 
ore of the agent | the internal entity thatgenerates a
tions based on per
epts (as well as the agent's internal state) [49℄| 
onstitutes the model that will be proposed, developed and dis
ussed.The agent 
on
eptual framework is for now 
onsidered as an individual. The
on
ept of multi-agent systems is an interesting prospe
t [64℄, but lies outsidethe s
ope of this thesis.The starting point of the model are the per
eptions, whi
h will be alsotermed stimuli. Ea
h stimulus models a per
eption event re
eived by theagent sensors. These per
eption events will also be 
alled images. The 
hoi
efor this term derives from the fa
t that in the brain, as was dis
ussed in22



se
tion 2.1, information is usually (if not always) represented by topographi
maps. The natural way of thinking about these maps is as visual images. Butin this 
ontext, the name image is meant to 
omprise not only visual images,but also other kinds of per
eptions that 
an be en
oded in a topographi
map: auditory, ta
tile, motor, and so on.In physi
al environments it seems natural to represent stimuli in thismanner. But when purely syntheti
 environments are to be 
onsidered, this
hoi
e may not seem as natural. The advantages of putting informationtogether in a topographi
 fashion have to be 
onsidered for ea
h 
ase. Thequestion is how to represent stimuli in su
h a way that the exploitationof topographi
 properties 
an be useful. These 
onsiderations, as well asthe usefulness of representing things in this fashion, are of 
ourse domain-dependent. Still, it will be assumed here that stimuli have this topographi
map form, i.e., images.3.2 Double Pro
essingIn 
hapter 2, it was shown that a double representation s
heme 
ould befound throughout many of the presented models. And this paradigm formsthe starting point of the proposed model.It is hypothesized that whenever the agent re
eives a stimulus (an image),it pro
esses it, in parallel, that is to say, simultaneously, under two di�erentperspe
tives: a 
ognitive and a per
eptual one. The 
ognitive pro
essinggets a 
omplete pi
ture of the stimulus, as 
lose to the original stimulusas possible. This results in a 
ognitive image. The per
eptual pro
essingextra
ts a minimal set of features, whi
h are 
onsidered as essential, basi
,built-in, by design. These features 
an be arranged in a stru
ture designatedby per
eptual image [62℄.This distin
tion requires some 
lari�
ation. Imagine an animal fa
ing afast moving obje
t: this triggers a \
ight or �ght" kind of rea
tion, whi
hderives from the assessment of the apparent threat. From this stimulus, thisanimal extra
ts a 
ognitive and a per
eptual image. While the former is
omplex, and is therefore takes time to pro
ess and analyze, the latter isextra
ted qui
kly, but tells the animal little more than whi
hever 
lass doesthe stimulus 
orresponds | the danger of a predator, or the desirabilityfor 
at
hing a prey. This is a basi
, built-in feature whi
h is innate to theanimal [62℄.Thus, while a 
ognitive image is 
omplex, of slow pro
essing, but rather
omplete1, the per
eptual image is simple, basi
, small, qui
kly extra
ted1The word \
omplete" is to be understood here with respe
t to the per
eived stimulus,23



representation of a stimulus that is but primitive and redu
ed.3.3 Per
eptual LayerIt is assumed here that, in order to assess how to 
ope with a given environ-ment, there must exist a minimal, basi
 set of features that 
an be extra
tedfrom stimuli. Without this built-in knowledge, as it will soon be
ome 
lear,the agent would be indi�erent to the world, i.e., all stimuli would look thesame. This representation 
an be said to provide relevan
e to external stim-ulus [61℄.When fa
ed with a spe
i�
 environment, the question of what shall be
onsidered per
eptual (that is to say, built-in) and what shall not, be
omesa 
ru
ial one. The behavior of the system when �rst exposed to the envi-ronment, as well as throughout its life, 
an be radi
ally di�erent dependingon these design 
hoi
es. What are the issues that de�ne these 
hoi
es? Aformal answer to this question has to be postponed until there is a betterunderstanding of this model. For now, it must be understood that this 
hoi
edepends, at a �rst sight, on what stimuli have to be 
onsidered as a minimal,basi
 set, in order to allow the agent to bootstrap. For instan
e, 
onsideringan animal, sights of predators and preys de�nitively belong to this set. Thesestimuli are also related to the needs of the agent in order to survive.Unveiling a bit of what will be dis
ussed ahead, these per
eptual assess-ments are going to be asso
iated with 
ognitive images. The agent will learn,in 
onta
t with the environment, to 
ope with it. To learn new asso
iationsmeans to evolve and to gain from experien
e. But in order to do that theagent must be able to assign a basi
 meaning to 
ertain stimuli | a minimalset on top of whi
h a mu
h larger and 
omplex set of stimuli 
an be learnedand re
ognized, by means of asso
iation. Given a 
ertain environment anda spe
i�
ation of the obje
tives to be a

omplished by the agent, a set ofper
eptual stimuli has to be de�ned.Consider the example of a robot moving in an human-inhabited oÆ
eroom. Some 
andidate per
eptual features are the ones provoked by: 
loseproximity to walls, namely qui
k movement towards them, proximity to mov-ing people (or other robots), dire
t exposure to sunlight (may overheat therobot, or on the 
ontrary may supply it with solar power), la
k of 
oor (su
has proximity to stairs running down), and so on. With these features, therobot would be able to move around, avoid disturbing people, avoid damag-ing environments, and so on. In order to provide the robot with means todo other things, additional per
eptual features are required. For instan
e,and not to the obje
t that originated that stimulus.24



imagine hardwiring the obligation to obey orders from humans | disobeyingorders 
ould result in \pain," to use a daring word.In addition to the existen
e of a built-in 
ore in the per
eptual layer totrigger the agent bootstrap, this layer is allowed to adapt to the environmentthrough time. As the agent intera
ts with the environment, it may �nd itne
essary to respond per
eptually to new 
lasses of stimuli. For instan
e, itmay �nd that whenever it approa
hes orange walls, it senses 
ollisions. Thus,the per
eptual layer 
an be allowed to learn, in a way that will be furtherdetailed later in this 
hapter.3.4 Cognitive LayerThe nature of the 
ognitive layer is de�ned in 
ounterpoint to the per
eptualone. A 
ognitive image 
ontains as mu
h information extra
ted from thesensors as feasible. It 
ontains mostly (un�ltered) raw information.Consider an example of a visual 
ognitive image in a robot with 
ameravision. First of all, every pixel gathered from the 
amera apparatus is re-trieved. Additional pro
essing 
an be a

omplished, su
h as edge dete
tion,segment extra
tion, displa
ement pro�le, and so on. A 
ognitive image in-
ludes not only the results of these algorithms, but also the raw input image.In the 
ase of hierar
hi
al pro
essing, where su

eeding algorithms are ap-plied to the results of former ones, the whole hierar
hy of images is 
ontainedin the 
ognitive image.The purpose of retaining the stimulus 
omplexity is to allow the agent toremember past events, and re-analyze them under the light of new knowledge.3.5 Desirability Ve
torThe desirability ve
tor (DV for short) is the me
hanism that supports the ba-si
 representation of the per
eptual layer [62℄. The per
eptual layer's majorrole is to map stimuli to the DV. It 
an be 
onsidered as the model's equiva-lent to the \body," in Damasio's terminology. Thus, it plays a fundamentalrole in the model.Ea
h one of the desirability ve
tor 
omponents represents a parti
ularkind of assessment of a stimulus. Ea
h 
omponent 
an be either a
tivatedor neutral (varying either dis
retely or 
ontinuously). Neutral 
omponentsmean no assessment. But when a 
ertain 
omponent is a
tivated, it meansthat the stimulus triggers a spe
i�
 assessment, e.g., is it good? is it bad?22The ethi
al terms \good" and \bad" should be taken here in their empiri
al sense.25



Going ba
k to the predator/prey metaphor, the animal sees a predator,it triggers a strong a
tivation of the DV fear 
omponent. If, on the otherhand, when the animal �nds a prey, it is now the \tasty" 
omponent thatis a
tivated. A minimal DV 
onsists of a positiveness and a negativeness
omponent. When a stimulus is 
onsidered as positive, from the agent's pointof view, the positiveness 
omponent is a
tivated. When on the 
ontrary,the stimulus is 
onsidered negative, it is the negativeness 
omponent thatis a
tivated. Otherwise, if both 
omponents are neutral, the stimulus is
onsidered to be irrelevant. If both 
omponents get a
tivated, it is not 
learwhat it means. It 
orresponds to an abnormal situation.Certain basi
 stimuli are able to trigger, at a �rst level, 
ertain 
ompo-nents of the DV. For instan
e, a threatening stimulus, may a
tivate a \fear"DV 
omponent, whi
h ultimately generates a fear behavior3. This path,starting in the agent sensors, through the DV, and leading to an immedi-ate a
tion is of an extreme importan
e. Note that all these mappings4 arebuilt-in. It means that agents, in the �rst steps of their 
onta
t with the en-vironment, are 
apable of behaving \appropriately," provided that some 
areis taken in 
hoosing those mappings. It is interestingly to 
onsider the use ageneti
 algorithm approa
h [28℄ to 
ome up with a working set of mappings,instead of designing them \by hand."For a given stimulus, the evaluation of the DV may not be hard-wired.Despite the fa
t that there must exist a built-in mapping, prior to the agent
onta
t with the environment, through this 
onta
t, the agent may learn toasso
iate new 
lasses of stimuli to DV instan
es. But this kind of learningis distin
t to the one performed in 
onjun
tion with the 
ognitive layer. Atthe level of the per
eptual layer, the kind of learning is very basi
, in thesense of a dire
t mapping between the stimulus and the DV. This mapping
an be updated through time. The major distin
tion from the 
ognitive kindof learning is that while the latter is expli
it, the former is impli
it. Expli
itlearning refers to the existen
e of a memory of events that 
an be individu-ally re
alled, while impli
it learning implies a monolithi
 adaptive stru
turethat simply maps inputs (stimulus) to outputs (DV). These designations areinspired by a 
lassi�
ation of memory5 
ited in [14℄ (page 244).For instan
e, a stimulus is asserted \good" by the agent if it is desirable in terms of itsobje
tives. The use of this empiri
al terminology is meant for the sake of 
larity.3As above, the term \fear" should also be taken in its empiri
al sense. Consider it asa threat to the agent's survival.4A dire
t mapping between the DV and the agent's a
tion is assumed here, before beingpresented below in se
tion 3.8.5In this 
lassi�
ation, expli
it memory is further divided in \fa
ts" and \events". Al-though these two 
lassi�
ations are found relevant in the 
ontext of this thesis, only the26



Cognitive images, when be
ome asso
iated with DV instan
es, 
an be
onsidered to provide meaning to this images. But more interesting thanestablishing asso
iations between 
ognitive images and DV instan
es ex-tra
ted from the per
eptual image of the same stimulus, is the idea of prop-agating these asso
iations, from memorized asso
iations to presently \non-per
eptual" (null DV) stimuli. Previously irrelevant stimuli be
ome relevant,due to past experien
e [63℄.Until now, there has been some intermixing of the terms per
eptual imageand DV. It is true that both 
on
epts result from the stimulus assessmentpro
ess in the per
eptual layer, but they have to be distinguished. The per-
eptual image is the result of the extra
tion of basi
 features from stimuli,while the DV 
omponents have expli
it meaning. Moreover, while the per
ep-tual image depends on the extra
ted features themselves, the DV 
omponentsare independent of the nature of the stimulus. For instan
e, when an animalis fa
ed with a qui
kly moving obje
t, the per
eptual image holds informa-tion whether it is a big obje
t, or it is approa
hing the animal, while the DVaddresses issues su
h as fear, attention, 
uriosity. The per
eptual image isgeared towards feature extra
tion from stimuli, while the DV holds its imme-diate meaning. Although the DV 
on
ept is essential to the de�nition of themodel, the per
eptual image is not. But this does not dis
ard the usefulnessof the 
on
ept. For instan
e, 
onsider using the redu
ed set of features toindex the memory, to narrow the sear
h for 
ognitive mat
hes [61, 60℄. Inthe implementations presented in 
hapter 4, some of them use per
eptualimages.3.6 Memory IssuesWhen the agent is fa
ed with a relevant stimulus, the 
ognitive and per
ep-tual images as well as the DV are asso
iated and stored in memory. Buthow 
an the agent know whether a stimulus is relevant or not? Of 
ourse it
annot store every stimulus it per
eives, 
ooding the memory with uselessdata. But it is not desirable to be too 
onservative, taking the risk of missinginformation that may later prove to be useful.At a �rst stage, strong per
eptual images are the only way to indi
aterelevant stimuli. The 
ognitive images asso
iated with these stimuli are tobe asso
iated with the respe
tive DV, and stored in the agent memory. Theidea behind this asso
iation is the somati
 marker hypothesis [18℄.latter was 
onsidered. But one may imagine the \fa
ts" kind of memory as asso
iationbetween 
ognitive images. These asso
iations must however support an additional repre-sentation to spe
ify how these two images are related.27



When later on the agent fa
es a similar stimulus, say, re
ognizes the 
og-nitive image, it is able to re
all a previous asso
iation, and a
t a

ordingly.Consider, for instan
e, the agent approa
hing an unknown obje
t. When
lose enough, the obje
t \bites" it, 
ausing a very \negatively" 
harged DV(meaning that the DV assessment indi
ates a \negative" stimulus). Theagent asso
iates the (
ognitive) image of the obje
t with the per
eptual im-age and the DV. When later on, it fa
es the same obje
t, it refrains fromapproa
hing the same obje
t, from a distan
e. Although the DV (dire
tlymapped from the stimulus) does not reveal immediately the danger of theapproa
h, the agent re
ognizes the 
ognitive image, and re
alls the \nega-tiveness" of the en
ounter.As 
ognitive images were de�ned as 
omplex representations, this mat
h-ing pro
ess 
an be rather slow. But keeping in mind that the per
eptuallayer works in parallel with this mat
hing me
hanism, it is able to dete
tsome stimuli deemed relevant, prior to the 
ompletion of the mat
hing pro-
ess. The per
eptual layer, due to its simpler and faster nature, is able todeliver a qui
k response. Furthermore, this response 
an indeed help the 
og-nitive mat
hing pro
ess, narrowing the possibilities, for instan
e. Be
ause ofthe adaptability of the per
eptual layer, as the agent intera
ts with the en-vironment, and �nds new stimuli that are 
onsidered essential, this guidan
eto the mat
hing pro
ess be
omes more and more re�ned. The DV and/orthe per
eptual image 
an provide a useful help in this pro
ess.3.7 LearningReiterating the learning issue, this model en
ompasses two distin
t learningme
hanisms: 
ognitive and per
eptual. Per
eptual learning is the adapta-tion that the immediate dire
t mapping between stimuli and DV undergoesthrough time. Cognitive learning also involves the per
eptual layer, in thesense that asso
iations also involve the DV. But unlike the per
eptual mem-ory, this memory is organized in events. Ea
h asso
iation stored in memory
orresponds to a single event, that led to the asso
iation. Furthermore, theseasso
iations may be related to one another by the means of other stru
tures,whi
h may for instan
e hold what 
ould be 
onsidered as 
ontext. The 
og-nitive layer may handle a 
omplex web of knowledge representation. But theway this web is 
onstru
ted and used, depends on per
eptual representations,namely the asso
iation of 
ognitive images with DV instan
es.Higher 
ognitive abilities, like reasoning and planning 
an be 
ondu
tedprimarily at this 
ognitive layer. The a
tivation and re
alling pro
ess is notrestri
ted to the mat
hing me
hanism. The pro
ess of sear
hing the memory28



for a mat
hing 
ognitive image is just a �rst level approa
h. Other pro
esses
ould trigger the intervention of stored asso
iations. And this suggests thathigh-level pro
esses 
an endorse more 
omplex 
ognitive abilities.3.8 De
ision and A
tionThe di�eren
e between \a
tion" and \de
ision" lies in the fa
t that while theformer is externally observable (in terms of the agent a
tuators operating onthe environment), the latter is not, being an internal phenomenon. However,the agent's a
tions are a 
onsequen
e of the agent's de
isions.From the double pro
essing paradigm, two kinds of de
isions have to be
ombined: there is an immediate de
ision provided by the per
eptual layer,resulting from the basi
 assessment delivered by the DV, and a de
isionresulting from the 
ognitive pro
essing. Although the DV 
an be mapped di-re
tly to a de
ision, the same does not happen with a 
ognitive image. Whenthe agent is �rst fa
ed with the environment there is no way to generate de
i-sions from 
ognitive images alone, be
ause the only built-in me
hanism ableto produ
e a
tions lies in the per
eptual layer. The DV plays an impor-tant role here, be
ause it is able to bridge the gap between the DV-de
isionmapping and the 
ognitive layer.Although the de
isions generated by the agent are mainly 
onsidered hereas resulting from a DV-de
ision mapping, this does not validate the existen
eof purely 
ognitively derived a
tions. Consider, for instan
e, the pro
ess ofsupervised learning. Several a
tions are shown to the agent (assume thatthey are 
orre
tly per
eived and represented as 
ognitive images), some areshown to be \good" and others to be \bad." This suggests that the agentasso
iates images of a
tions (in the 
ognitive layer) to 
ertain DV instan
es.In the future, when fa
ed with the ne
essity to plan a sequen
e of a
tions,the agent my re
all these learned a
tions, stored as 
ognitive images, andde
ide to a
t based upon them. In this s
enario it 
annot be said that aDV-de
ision/a
tion map suÆ
es. A me
hanism to store a
tion s
hemes andto generate a
tions through the 
ognitive layer is required.In fa
t, the fa
es implementation to be des
ribed in 
hapter 4 uses asimple 
haining me
hanism, from whi
h a
tions 
an be derived. This me
h-anism resides in the 
ognitive layer. Noti
e that this 
haining devi
e allowsthe agent to plan a sequen
e of a
tions, suggesting a way of implementingplanning with this model.
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3.9 The Complete Pi
tureThe purpose of this se
tion is to give a 
omplete pi
ture of the model to thereader. The above 
on
epts and me
hanisms are here gathered into a whole.A diagram of the model is presented in �gure 3.1.
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Figure 3.1: The 
omplete pi
ture of the proposed model, 
ontaining all the
omponents dis
ussed in the above se
tions. (see �gure 3.2 for memory stru
-ture details)Here follows a summary of how the model works: in response to an ex-ternal stimulus, the 
ognitive and the per
eptual layer pro
ess it in parallel.At the per
eptual layer, there is a dire
t map between stimuli and the DV.When the agent is built, a part of this mapping must already exist, in orderto allow it to bootstrap. Furthermore, this map is adaptive. This forms akind of impli
it memory, termed per
eptual memory. On the other hand,the 
ognitive pro
essor looks into the main memory for mat
hes of the 
og-nitive image. This memory 
ontains experien
ed asso
iations, but unlikethe per
eptual memory, these asso
iations are individually stored as repre-senting events6. These asso
iations 
ontain both the 
ognitive image, the
orresponding DV, and the per
eptual image (if implemented). The origin ofthis DV 
omes primarily from the per
eptual layer, but one 
an also 
onsiderpropagating DV instan
es from other asso
iations. This is a way to allowthe agent to asso
iate 
ognitive images to DV instan
es, even when fa
edwith a situation where the input stimulus does not deliver (in the per
eptualmapping) a signi�
ant DV. This memory is here termed main memory. Theworking memory holds the input 
ognitive image, the DV (and optionally theper
eptual image), as well as the results from the mat
hing pro
ess (or any6Note that in the future, other kinds of representations other than events may be pla
edin this memory. 30



other higher-level 
ognitive pro
esses). Figure 3.2 illustrates these memorystru
tures. The a
tion, in response to the stimulus (if any) 
omes primarilyfrom the DV, although there is provision for a
tions originating from the
ognitive layer. If the agent de
ides on any a
tion, it may produ
e alter-ations in the environment, whi
h 
an be per
eived by the agent as a feedba
kstimulus. This new stimulus tells the agent the result of its a
tion. It is fedinto the ar
hite
ture, in order to make the agent learn. This learning 
anbe a

omplished at several levels: at the per
eptual layer, it 
an adapt theper
eptual map to be sensible to new stimuli, and at the 
ognitive layer, it
an mark (one or more) 
ognitive images with the DV, along with the a
tionthat led to the environment feedba
k.
Cognitive Image (Ic) Perceptual Image (Ip)

Desirability Vector (DV)

Matching Results
Cognitive Image (Ic) Perceptual Image (Ip)

Main Memory Working Memory

Ip

DV

Ic

Desirability Vector (DV)Figure 3.2: Memory stru
ture of the main and working memory.Note that these des
riptions are deliberately vague on some issues. Thereare several degrees of freedom left. For instan
e, how the swit
h between
ognitive a
tions and per
eptual a
tions works | the former kind (whenpresent) may override the latter, but for strong DV instan
es, it may beimportant to ignore the 
ognitive out
ome. Or sin
e the per
eptual layer isable to deliver an a
tion prior to the 
ognitive layer, shall it a
t immediately,or shall it wait for a more pre
ise 
ognitive assessment? On
e again, it maydepend on the gravity of the situation. Another degree of freedom is the waynew asso
iations are established. They 
an be established as soon as stimulustriggering DV 
omponents rea
h the agent, and/or after the environmentfeedba
k.This se
tion tried to o�er a global des
ription of the model in as mu
hdetail as possible, but in the implementations that will be dis
ussed in thenext 
hapter, several simpli�
ations were made. These simpli�
ations weredone not only to narrow the issue under experimentation, but also to makethe interpretation of results 
learer.
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Life is like musi
; it must be 
omposed by ear, feeling,and instin
t, not by rule. Samuel ButlerArt is not a handi
raft, it is the transmission of feelingthe artist has experien
ed. Leo Tolstoy
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Chapter 4Experimentation
SummaryIn this 
hapter, three implementations are presented, as well as the obtained re-sults. These implementations 
orrespond to di�erent stages of the development ofthe model, so the early ones denote some divergen
es from the �nal pi
ture pre-sented in the last 
hapter. In the �rst one (termed damasio), a basi
 markingme
hanism is tested, while the se
ond one (fa
es) shows some 
onsequen
es fromthe intermixing of the 
ognitive and per
eptual pro
essing. The third implementa-tion (de
ks) is a simulation of the de
ks experiment des
ribed by Damasio ([18℄page 212), showing similar results to the ones obtained with the normal subje
tsand the patients with frontal lobe damage.This se
tion des
ribes three implementations that went along with thedevelopment of the model. Note that some issues in the early implementa-tions bore modi�
ations up to the latter ones. The following se
tions shouldbe understood as snapshots of three views of the model through its evolution.All implementations presented share the same exe
ution model. Theagent lives in an episodi
 environment. Ea
h episode starts with the pre-sentation of a stimulus, followed by the agent de
ision (and a
tion when sode
ided). Ex
ept for the �rst implementation, the environment respondsto this a
tion with another stimulus. This 
orresponds to the environmentfeedba
k for the agent a
tion.In ea
h episode, the agent performs the following sequen
e of steps:1. Double pro
essing of the in
oming stimulus S, extra
ting a 
ognitiveand a per
eptual image | IC and IP ;2. Use these extra
ted images to sear
h the agent memory, and 
opy the33



similar ones to the working memory. This task 
an be helped by theper
eptual image IP ;3. Using all the information gathered in the working memory, build anassessment of the stimulus;4. Form a de
ision, and possibly an a
tion to be taken;5. Re
eive the feedba
k from the environment;6. Update the agent memory.All these steps are not ne
essarily present in all implementations. But theyform the guidelines of what the agent is supposed to do.The following implementations were written in ANSI Common Lisp lan-guage [33, 29℄, using the CLISP implementation [30℄, running on the Linuxoperating system [41℄. The graphi
al interfa
e for the fa
es implementationused the T
l/Tk s
ripting language [43, 15℄, in addition to a Common Lisp
ore.4.1 Implementation: damasioThe �rst implementation, 
alled here damasio, was an attempt to experimentwith the somati
 marker me
hanism. The motivating idea was to obtainthe kind of behavior found when people asso
iate a thunder with the 
ashof lightning. In this metaphor, the thunder 
orresponds to the per
eptualimage, while the 
ash to the 
ognitive one. On
e the agent asso
iates thistwo images, when in the future it only sees a 
ash of lightning, it immediately\expe
ts" the thunder.
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Figure 4.1: Ar
hite
ture of the damasio implementation.34



The ar
hite
ture of this implementation is shown in �gure 4.1. The agentper
eives external stimuli through two 
hannels: the 
ognitive part of thestimulus (e.g., the 
ash of lightning), and the per
eptual one (e.g., the thun-der). For simpli
ity, these inputs are bidimensional ve
tors. There is a(short-term) working memory, where the present input is used to re
all pastasso
iations, and an output is obtained; and a (long-term) main memory,where asso
iations are stored throughout the agent life. The re
alled asso
i-ations are 
ombined with the environment input to derive a body response(labeled \somati
 mark"). This body response (labeled \somati
 response")is used to trigger a de
ision (positive or negative, for simpli
ity | \is itgood?" or \is it bad?"), and to update the asso
iation, depending on itssimilitude to the stimulus.The ar
hite
ture works as follows: ea
h stimulus 
orresponds to a pair(
ognitive, per
eptual) of ve
tors. The 
ognitive ve
tor is 
opied into theworking memory, and the main memory is browsed for similar ve
tors. Forsimpli
ity, all asso
iations from the main memory are 
onsidered, but onlya pre-de�ned number of them are 
opied into the working memory. Forea
h main memory asso
iation, the similarity between its 
ognitive ve
torand the in
oming one is 
omputed and registered. The *max-wm-images* (anumeri
al 
onstant) higher value asso
iations are 
hosen and 
opied to theworking memory. In the working memory, these asso
iations form frames.A frame 
ontains the re
alled asso
iation (the 
ognitive ve
tor and a markve
tor), and the similarity measure. Next, ea
h of these frames are 
ombinedwith the per
eptual input. Figure 4.2 shows this me
hanism in detail.
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Figure 4.2: Marking me
hanism in the damasio implementation. A bodyresponse (\somati
 response") and an updated mark is 
omputed, from theper
eptual input, the old mark, and a similarity measure.35



Using the per
eptual image, the mark, and the similarity measure (termed\relevan
e"), a body (\somati
") response and an updated mark are 
om-puted. This mark is asso
iated to the originating asso
iation, and supersedesthe 
orresponding asso
iation in the main memory. Note that the in
omingstimulus always forms a new frame in the working memory, and its mark isinitially put to zero (null ve
tor), and the similarity measure put to 1 (max-imum similarity). These operations are performed a

ording to the formulasR = �IP + (1� �)sM (4.1)M 0 = M + �sR (4.2)where IP stands for the per
eptual image, M and s for the 
urrent framemark and its similarity measure, R the body response, and M 0 for the up-dated mark value. The rationale behind equation (4.1) is to linearly interpo-late between the present per
eptual image and the body response marked onthe re
alled image, weighted by the similarity measure s (relevan
e), whi
hranges from 0 (not similar at all) and 1 (maximum similarity). This interpo-lation is 
ontrolled by the � 
oeÆ
ient (0 � � � 1). The role of s is to allowthe re
alled mark to in
uen
e the out
oming somati
 response R, dependingon the similarity found between the present stimulus and the re
alled one.Strong marks on very similar stimulus should provoke higher body responsesthan less similar ones. This similarity measure s a

ounts not only for the
ognitive image similarities, but also for the per
eptual image. With respe
tto (4.2), the idea is to update the new mark M 0 a

ording to two 
oeÆ
ients:the similarity measure (the more similar the stimulus is, the more it shouldbe updated), and a learning rate �.As it was previously noted, both the 
ognitive and per
eptual images arebidimensional ve
tors, as well as the referred marks. The similarity measureis evaluated using the following expression:d(u; v) = exp �tq(u1 � u2)2 + (v1 � v2)2� (4.3)where u = (u1; u2) and v = (v1; v2) are the 
onsidered images. The 
onstantt < 0 
onditions the de
ay rate as u and v be
ome apart. This 
onstant 
anbe interpreted as a toleran
e value | \how mu
h shall I 
onsider this (non-identi
al) image pair similar?". The expression used for measuring marksimilarities is the same. The total similarity, between the stimulus and there
alled frame is weighted by � (0 � � � 1) between these two measures:s = �d(IC; IMC ) + (1� �)d(IP ;M) (4.4)36



where IC and IMC denote the input and the re
alled 
ognitive images.In this implementation there is no per
eptual feedba
k. Asso
iations arebuilt dire
tly from the stimulus. Furthermore, there is no resulting a
tion.The mark ve
tor is interpreted as the �rst 
omponent being the amount ofpositiveness, and the se
ond being the amount of negativeness. The DV 
anbe understood in this implementation as being equal to the per
eptual im-age. A 
lassi�
ation is 
omputed for ea
h working memory frame, as beingthe di�eren
e between the �rst and se
ond 
omponents. Its purpose is tomeasure the assessment of the frame (\good" if positive, and \bad" if nega-tive) as well as how strong that assessment is (absolute value). The strongestframe (higher 
lassi�
ation, in absolute value) is pi
ked as the agent's �nalassessment of the stimulation.The experimental setup for this implementation 
omprises three phases.First, a set of four stimuli was presented, two of them strongly positive, andthe other two strongly negative. These stimuli are 
alled A1-, A2+, A3+,and A4-. The ending signal is + or - depending whether they are positiveor negative. The lo
ation of the stimuli in the Cartesian plane is shownin �gure 4.3 as bla
k �lled balls. Positive stimuli have per
eptual imageIP = (0:8; 0) while the negative ones have IP = (0; 0:8). The agent wassequentially stimulated with this set of four stimuli four times, in order toget them 
learly marked in the agent memory.
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Figure 4.3: Lo
ation of the stimulus 
ognitive image ve
tors in the damasioexperiment. The 
oordinates of ea
h point in the Cartesian plane denote thebidimensional ve
tor of the 
orresponding 
ognitive image. See text for theexperiment des
ription, as well as the used notation.37



Next, a series of four stimuli with null per
eptual image IP = (0; 0)were applied. These stimuli are denoted B1+, B2-, B3+, and B4-, wherethe signal now represents the agent's assessment, i.e., whether the strongest
lassi�
ation is positive or negative. As expe
ted, these results are 
onsistentwith the 
losest stimuli experien
ed in the �rst phase. This shows that afterthe agent being submitted to a set of \strong" stimuli, it learned, and whenstimulated with null per
eptual image stimuli, the agent was able to 
lassifythem a

ording to its previous experien
e. An abridged and annotated out-put of the implementation 
an be seen below, where for ea
h stimulus, the\strongest" frame is shown:> (per
ept-image '#(7 8) '#(0 0)) ; B1Strongest image:image= #(8 9)relevan
e= 0.3944934marker= #(0.9216685 0)response= #(0.2545145 0)
lassifi
ation= 0.2545145 ; +> (per
ept-image '#(10 9) '#(0 0)) ; B2Strongest image:image= #(10 8)relevan
e= 0.49430355marker= #(0 0.9216685)response= #(0 0.3189088)
lassifi
ation= -0.3189088 ; -> (per
ept-image '#(0 0) '#(0 0)) ; B3Strongest image:image= #(-2 2)relevan
e= 0.24728459marker= #(0.9216685 0)response= #(0.15954009 0)
lassifi
ation= 0.15954009 ; +> (per
ept-image '#(-1 -1) '#(0 0)) ; B4Strongest image:image= #(-2 -3)relevan
e= 0.2855023marker= #(0 0.9216685)response= #(0 0.18419695)
lassifi
ation= -0.18419695 ; -In this output dump, the presentation of a stimulus starts with the(per
ept-image ...) expression in the LISP intera
tion, followed by in-formation regarding the strongest image in the working memory. Note thesign of the 
lassifi
ation output.Finally, an experiment to test the \expert dis
rimination" 
apability ofthe agent followed. A stimulus C1- with null per
eptual image was applied,and as expe
ted, the agent answered with a negative assessment (
losest toA4-). Then, a positively marked stimulus C2+ was applied (IP = (0:8; 0)).Two \
olorless" (IP = (0; 0)) stimuli, C3+ and C4-, were applied, resultingin a positive response to the �rst and a negative to the se
ond. Given a new38



s
enario with the new stimulus C2+, the agent answered 
oherently, showingits ability to dis
riminate between C3+ and C4-:> (per
ept-image '#(0 -3) '#(0 0)) ; C1Strongest image:image= #(-2 -3)relevan
e= 0.30826822marker= #(0 0.8)response= #(0 0.1726302)
lassifi
ation= -0.1726302 ; -> (per
ept-image '#(0 -3) '#(.8 0)) ; C2+ <-- strong stimulusStrongest image:image= #(0 -3)relevan
e= 1marker= #(0.8 0)response= #(0.8 0)
lassifi
ation= 0.8> (per
ept-image '#(0 -2.5) '#(0 0)) ; C3Strongest image:image= #(0 -3)relevan
e= 0.68522453marker= #(0.8 0)response= #(0.38372573 0)
lassifi
ation= 0.38372573 ; +> (per
ept-image '#(-2 -2.5) '#(0 0)) ; C4Strongest image:image= #(-2 -3)relevan
e= 0.68522453marker= #(0 0.69274604)response= #(0 0.3322806)
lassifi
ation= -0.3322806 ; -These experiments were performed setting the parameters � = 0:3, � = 1,� = 0:8, t = �1, and the working memory was limited to 5 frames. These
onstants 
ondition the behavior of the agent in ways that allow some inter-esting 
onsiderations on possible interpretations. For instan
e, taking the �parameter, whi
h interpolates the somati
 response between the per
eptualimage and the re
alled mark, when signi�
antly redu
ed (say, � = 0:05),makes the agent less sensible to the per
eptual image, relying more on itspast experien
e than in present reality. Consider that right after the ini-tial sequen
e of stimuli A1{A4, is applied a stimulus with 
ognitive image(10; 9) (same as B2 ) and per
eptual image set to (0:4; 0) (mild positive).With � = 0:3 the agent a

epts the new stimulus, attributing a positive
lassi�
ation (it disregards the \negative experien
e" of A1-):Strongest image:image= #(10 9)relevan
e= 1marker= #(0.4 0)response= #(0.4 0)
lassifi
ation= 0.4 ; + 39



But when the � parameter is redu
ed to 0:05, the agent disregards now thepositive per
eptual image, assessing the stimulus as negative (due to thein
uen
e of A1-):Strongest image:image= #(10 8)relevan
e= 0.49430355marker= #(0 0.9216685)response= #(0.020000001 0.43280482)
lassifi
ation= -0.4128048 ; -How 
an this behavior be interpreted? The � parameter plays an interestingrole of making the agent more or less trusting of the per
eptual, when fa
edwith a 
ontradi
tory past experien
e. This result has some similarity with a\superstitious" behavior.This implementation deals only with the marking me
hanism. The stimuliare very basi
, not re
e
ting the 
omplex nature of the 
ognitive memory.Furthermore, there is no a
tion (and 
onsequently no per
eptual feedba
k).Asso
iations are always done, �lling the agent memory with data that maynot be relevant. But the results are interesting, in the sense of showing themarking and the memory retrieval me
hanisms.4.2 Implementation: fa
esThis implementation presents several sophisti
ations over the pre
eding one.The obje
tive is to experiment with more 
omplex stimuli models, as wellas the environment feedba
k. So, the stimuli (equal to the 
ognitive images)are a square set of poly
hromati
 pixels (16�16). The mapping between thestimulus and the DV is �xed by design. In fa
t, the per
eptual map dis
ussedin the se
tion 3.3 used the per
eptual image as an intermediate representa-tion. This per
eptual image 
ontains a set of basi
 features extra
ted fromthe stimulus. These features are then mapped to the DV. Both maps arehard-wired.The agent per
eption of the environment is limited to the 16 by 16 pixelimages. Ea
h pixel is one of blank (ba
kground), bla
k, green, or red. Theagent 
an take one of three de
isions: none (ina
tion), a

ept, or reje
t.The environment is episodi
. Ea
h episode starts with the presentation of astimulus, the agent is then allowed to produ
e an a
tion, and then the envi-ronment responds with another stimulus (feedba
k). The per
eptual featuresextra
ted are: number of red pixels (assessment of \redness"), number orgreen pixels (assessment of \greenness"), and total number of non-blank pix-els (measure of obje
t size). The DV has three 
omponents: three boolean40




omponents, indi
ating whether or not the stimulus is \good," \bad," or\deadly" (i.e., very dangerous). The per
eptual image is mapped into theDV using a set of thresholds. For instan
e, if the total number of pixels isabove a pre-determined threshold, and the number of green pixels is aboveanother threshold, the \good" 
omponents of the DV is a
tivated. In this im-plementation, the presen
e of green pixels 
orresponds to a \good" stimulus,while red pixels denote a \bad" one.The model of this implementation is depi
ted in �gure 4.4. The 
ognitivelayer uses both the 
ognitive and the per
eptual images to �nd for a memorymat
h. The per
eptual image is �rst used to sele
t a limited set of 
andidatememory asso
iations (termed memory frames)1. From those, the 
ognitiveimage sele
ts the best mat
h. If two 
onditions hold, the frame a
tion issele
ted. Otherwise, the dire
t per
eptual path is used to derive the a
tion.These 
onditions are: there is a mat
h, the di�eren
e measure between the
ognitive image and the memory frame is below a 
ertain threshold. Thisdi�eren
e measure is simply the Hamming distan
e between the two images2.
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Figure 4.4: Ar
hite
ture of the fa
es implementation.A memory frame 
ontains the 
ognitive and per
eptual images, the DV,and an a
tion list. This list 
onsists of pairs (a
tion, future frame), and isused to de
ide on the next a
tion, based on the past experien
e. When amemory frame is sele
ted as a mat
h for the 
urrent stimulus, its a
tion list isbrowsed, and the a
tion that leads to the most favorable s
enario is 
hosen.Ea
h s
enario is evaluated a

ording to its DV (the positive 
omponent means+1, the negative -1, and the \deadly" -10; the heuristi
 to be minimized isthe sum of the values of the 
orresponding a
tivated 
omponents). If nomat
h is found, or there is no a
tion list, the agent a
ts a

ordingly to a1Note that this is an implementation of an indexing me
hanism raised in the se
tion 3.5.2The Hamming distan
e is the number of pixels di�ering between the two images. See[54℄ for a de�nition and related issues. 41



built-in DV a
tion map (negative or \deadly" leads to a reje
t, positive toan a

ept, and none otherwise).After the agent a
tion, the feedba
k stimulus is applied to the ar
hite
-ture, and the resulting memory frame is stored in the main memory. Fur-thermore, the a
tion list of the original stimulus frame (before the a
tion beperformed) is updated/set, pointing to the feedba
k frame. Next time theagent fa
es a similar situation where this frame is re
alled, it will know whatto expe
t from the 
orresponding a
tion.An illustrative experiment will be presented below, 
onsisting on a se-quen
e of stimuli. In the following s
reenshots, green pixels are denotedby ( ), and red pixels by ( ). Prior to the agent �rst stimulus, the memoryis blank. The �rst stimulus (�gure 4.5) 
onsists in a smiling fa
e silhouettewith some green pixels (a per
eptually positive DV). The agent uses the per-
eptual assessment indi
ating an a

ept a
tion. The environment respondswith a all-green fa
e (i.e., positive DV). The 
orresponding asso
iation isformed and stored in memory.

Figure 4.5: S
reenshot of the fa
es implementation: a smiling fa
e withsome green pixels.Next, a 
olorless fa
e, whi
h is similar to the �rst one, is presented (�g-ure 4.6). The agent re
alls the previous asso
iation, and 
hooses to a

eptthe stimulus. However, if this stimulus were presented without the formerasso
iation, the a
tion would be none | the stimulus would be mapped bythe per
eptual layer to a null DV.An interesting result is obtained when now, a similar fa
e is shown, 
on-taining some red pixels (�gure 4.7). In this 
ase, the re
alled asso
iation is42



Figure 4.6: S
reenshot of the fa
es implementation: a similar smiling fa
eall in bla
k.used to override the per
eptual impulse to reje
t the stimulus. This 
aseillustrates the role of the 
ognitive layer in providing a more re�ned response,than the basi
 per
eptual one. Using the same line of reasoning, if this stim-ulus were shown prior to the �rst of the sequen
e, the agent would reje
tit.At last, a di�erent fa
e is shown (with some red pixels, �gure 4.8), and unlikethe previous stimulus, be
ause this fa
e is \unknown" to the 
ognitive layer,the a
tion is reje
t, following the per
eptual negative assessment.Other experiments were performed with the ar
hite
ture, showing furtherinteresting results. For instan
e, if the a

eptan
e of the stimulus of the �g-ure 4.5 had a negative response (e.g., a very \red" fa
e), next time that samestimulus were presented, the agent would 
hoose another a
tion. When thea
tion resulting from a given stimulus is answered with a negative response,the agent will not repeat the mistake | other a
tions are \tried" in a sear
hfor a better response. The frame that this a
tion points to has a negativeDV, making the agent to avoid it.The role of the built-in knowledge in this implementation stands out very
learly. The me
hanism that is behind the agent behavior fa
ing environmentstimuli, is en
oded in the per
eptual layer. Namely in the per
eptual mappingbetween stimuli and the DV. It is on top of this layer that the 
ognitivelayer works. When the simpli
ity of the per
eptual layer is not suÆ
ient to
ope with a 
omplex environment, the 
ognitive one jumps in, providing the\knowledge" gained from past experien
e.43



Figure 4.7: S
reenshot of the fa
es implementation: a similar smiling fa
ebut with some red pixels (the \eyes").4.3 Implementation: de
ksThe aim of the de
ks implementation is to reprodu
e the results of the de
kgame (se
tion 2.3, �gure 2.7) des
ribed by Damasio ([18℄ page 212), usingthe proposed model. In parti
ular, to obtain the two divergent results of thenormal and frontal patients (i.e., with damaged frontal lobes), allowing theagent to use or not the marking me
hanism (asso
iation).In a simpli�ed version of the original game [3, 4℄, de
ks A and B usuallygive $100 ex
ept for a few 
ards that make the player lose -$1250, while de
ksC and D usually give a lower value of $50 where there are more frequent lossesof -$250. The net pro�t of de
ks A and B is negative, while de
ks C and Dprovide a positive one.In terms of the implementation, the environment is episodi
, with anenvironment feedba
k phase. First, four stimuli are simultaneously presentedto the agent (four symbols, 
orresponding to the four de
ks: A, B, C, and D).The agent a
tion is simply the 
hoi
e of a de
k. The environment respondswith the amount of money gained/lost. Ea
h stimulus en
ompasses a pairof 
ard de
k symbol and money amount gained (negative, if lost). In the�rst phase, the se
ond 
omponents of all stimuli are null (the 
ard amountis obviously hidden). Only after the a
tion the reward asso
iated with the
hosen 
ard is revealed. The per
eptual layer only extra
ts the money amount(the per
eptual image), while the 
ognitive layer extra
ts the symbol. Thereis no point in in
luding more 
omplexity in the 
ognitive image, the symbol44



Figure 4.8: S
reenshot of the fa
es implementation: a distin
t fa
e withsome red pixels.suÆ
es to the proposed obje
tives. Furthermore, sin
e the environment isvery simple (only four distin
t de
ks), the symboli
 representation is enoughto identify ea
h de
k (however, the number of de
ks is not hardwired inthe agent program). The DV has only two (boolean) 
omponents, one forpositive and other for negative assessment of the de
k. The mapping betweenthe per
eptual image and the DV a
tivates the positive 
omponent if theamount greater than zero, or the negative 
omponent when it is less thanzero.The model of this implementation is identi
al the one represented in �g-ure 3.1. An important innovation with respe
t to the previous two imple-mentations is the adaptability of the per
eptual layer. Both kinds of learn-ing are implemented: the 
ognitive event-based learning, and the per
eptualmapping-based learning. When the agent is fa
ed with the four de
ks, theper
eptual layer is able to give an immediate assessment of the desirabilityof ea
h de
k, while the 
ognitive layer browses the memory for past eventsasso
iated with ea
h de
k. With all this information in the working memory,the agent de
ides whi
h de
k to 
hoose.The working memory is organized in 
lusters of frames. Ea
h 
luster
orresponds to a spe
i�
 de
k, and 
ontains the input stimulus (the de
ksymbol only), the per
eptual frame (the expe
ted per
eptual image and theexpe
ted DV, or in other words, the expe
ted amount of gain/loss), and theframes re
alled from memory (obtained by the 
ognitive layer). When ea
hframe is 
omplete, a representative frame is 
hosen for ea
h 
luster. Then, all45



the 
lusters with a negative DV are reje
ted, and a de
k is randomly 
hosenfrom the remaining ones. In fa
t, the per
eptual value is used to weight thisrandom 
hoi
e, in order to make the agent prefer higher value 
ards. Butif all 
lusters are reje
ted, then the a
tion is randomly 
hosen from all theavailable de
ks, also using a weight fa
tor.After 
hoosing the de
k, the environment responds with a feedba
k stim-ulus, now 
ontaining not only the symbol of the de
k, but also the amountof money gained/lost. This information is used to update the per
eptualmap (a

ording to a learning rate), and to add the frame to the main mem-ory, asso
iating the 
ognitive and the per
eptual images, along with the DV(mapped from the per
eptual image, i.e., the amount of money). This per-
eptual image 
an be interpreted here as the expe
ted gain. In the per
eptuallayer learning, the update rule of this expe
ted value is simply:V 0m = �Vp + (1� �)Vm (4.5)where the new memory frame expe
ted value V 0m is interpolated between itsformer value Vm and the feedba
k value Vp, using the learning rate �.In order to simulate the behavior of the frontal patients playing this game,the agent was prevented from re
alling memory frames. Then, the per
eptuallayer was left alone to de
ide whi
h de
k to 
hoose, preferring the de
ks Aand B, be
ause of the most frequent $100 
ards. As an example, settingthe learning rate parameter to � = 0:001, the obtained results, shown in�gure 4.9, are 
learly similar to the Damasio experiments results of �gure 2.7.
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Figure 4.9: Results from the de
ks implementation. The average number ofpi
ks for ea
h de
k is shown. The average was taken over 200 experiments of100 turns ea
h. The � parameter was set to 0:001.46



These results illustrate the distin
t natures of the learning pro
ess per-formed by ea
h layer. But they are not to be 
onsidered separately. Althoughthe per
eptual layer is able to work by itself, the same 
annot be said aboutthe 
ognitive layer. This is be
ause the 
ognitive layer uses the per
eptualrepresentation, in order to 
ontribute to an overall enri
hed behavior.

There 
an be no transforming of darkness into light andof apathy into movement without emotion.Carl Gustav JungThe heart has its reasons whi
h reason knows nothing of.Blaise Pas
al, \Pens�ees"47



Chapter 5Con
lusion
SummaryThe �rst se
tion of this 
hapter addresses the question of what the 
onsequen
esof this model are, both in the 
on
eptual and experimental sides. Next, a set ofopen issues is presented, whi
h 
ould not be answered in the 
ontext of resear
h.Finally, future dire
tions of this work are elaborated and dis
ussed.The goal of this thesis is twofold: the dis
ussion of a model for emotion-based agents, raised from neurophysiologi
al �ndings, and the presentationof some experimentation of the model. The formulation of the model is stillin an early development stage.5.1 Consequen
esFrom this thesis, some 
onsequen
es of the model 
an be dis
ussed. The �rst
onsequen
e is the ability to asso
iate two levels of representation: a 
omplex(
ognitive), and a basi
 (per
eptual) one.The built-in part of the per
eptual layer is essential to allow the agentto bootstrap. It 
an be said that the basi
, irredu
ible goals (obje
tives,motivations, desires, and so on) of the agent are impli
itly en
oded in thisbuilt-in. Of 
ourse it 
annot a

ount for all the goals that 
an be identi�edwith the agent behavior, they form only the basi
 ones.Another 
onsequen
e of the model is its ability to provide relevan
e. Onlythe stimuli that bring about (dire
tly, by memory mat
hing, or by otherhigher-level asso
iations) a non-null DV are relevant, in the sense that theymean something to the agent. The agent is insensitive to all others. Note that48



this does not dis
ard 
uriosity, sin
e an unknown stimulus may eli
it a DV
omponent that would make the agent \explore" it, i.e., to adopt a 
ourse ofa
tion that would allow the agent to intera
t with that origin of the stimulus.It just dis
ards uninteresting aspe
ts avoiding a 
ognitive saturation.Provided that the agent is able to de
ide appropriately about 
ertainstimuli through the per
eptual layer (i.e., the mapping from stimuli to theDV) alone, then these stimuli 
an be said to bemeaningful to the agent1. Butsin
e the model is able to asso
iate stimuli irrelevant for the per
eptual layerto 
ertain DV instan
es, these new asso
iations 
an be also said to providemeaning, and of a more sophisti
ated nature than the former. Re
alling JohnSearle's argument that ma
hines 
annot understand [51℄, raising the ChineseRoom metaphor, a 
onfrontation with the model 
an be attempted. Searle'sargument is that as long as he has a suÆ
iently 
omplete formal rule-book, heis able to answer any question formulated in Chinese about any given Chinesestory. From outside the room, it 
an be said that an understanding of Chineseis a

omplished, when the man inside the box does not understand a wordof Chinese at all. This is so be
ause the man inside the box just manipulatessymbols whi
h are meaningless to him, a

ording to the provided rule-book.But now, imagine that some symbols 
ease from being senseless, and 
an beidenti�ed with some basi
 built-in asso
iations. For instan
e, some symbolsbe
ome 
olored, where 
olors now do mean something to the man inside: redmeans bad, green means good, blue means important, and so on. Althoughthis is far from helping him to derive a syntax, some semanti
 
ontent 
analready be grasped, at least in a basi
 level, provided that the 
oloring s
hemeis 
oherent. At a �rst level, some symbols be
ome meaningful, even if fromsome point on, the 
oloring stops. The man is able to remember previous
olorings, and re
all them when fa
ed with mono
hromati
 writing. At ananother level, by asso
iation, the man be
omes able to assign meaning toother symbols, for instan
e, if some symbol always appears 
lose to a red-
olored one, in the stream of text. Applying the model to this metaphor, the
olors 
an be understood as the built-in part of the per
eptual layer, thata
tivates 
ertain DV 
omponents, depending on the 
olor of a symbol. A
omplex meaning s
heme 
an be ere
ted by the 
ognitive layer, driven byasso
iations with DV instan
es. In this sense, the model 
an be thought ofas a meaning engine [63℄.Fo
using now on the double-pro
essing paradigm, two 
onsequen
es 
anbe extra
ted. First, an eÆ
ient way of looking up 
ognitive mat
hes, by the1See [37℄ for a dis
ussion on whenever a stimulus is \meaningful" to a ma
hine. Inthis paper, M
Carthy states that when a 
hange in the room temperature makes thethermostat swit
h 
orre
tly, it 
an be said that the temperature 
hange was a meaningfulstimulus to it. 49



means of simpler representations provided by the per
eptual layer. Sin
e thislatter representation is assumed to be extra
ted very qui
kly, it 
an guidethe sear
h for 
ognitive mat
hes. Sin
e the 
ontent of the agent memory
an grow drasti
ally when fa
ing a 
omplex environment, this per
eptualguidan
e 
an help in narrowing the 
hoi
es and avoiding an exhaustive sear
hfor a mat
h. This s
heme was a
tually used in the fa
es implementation (seese
tion 4.2). A se
ond 
onsequen
e is the \expert dis
rimination" feature,resulting from the ability to di�erentiate subtle di�eren
es, using the �ner
ognitive mat
hing me
hanism. The dis
ussion of damasio implementation(se
tion 4.1) shows some illustrative experimentation.But does it make sense to state that the model provides \meaning," or\relevan
e," or \understands" whatsoever? Re
alling M
Carthy's argumenton as
ribing mental qualities to ma
hines [37℄, it does. One 
annot hopefor some invisible magi
 to attain su
h mental qualities. On
e they helpdes
ribing the model's proprieties, while it \expresses the same informationabout the ma
hine that it expresses about a person" [37℄, it seems reasonableto as
ribe them to this model.After all, does it make any sense to ask \where are the emotions andfeelings after all?" One 
an now resort to an analogous line of argumentationas in the previous paragraph. A

epting M
Carthy's argument to as
ribe toma
hines the mental qualities referred to by him2, why not extend the 
on
eptto the terms \emotion" and \feeling?" Damasio distinguishes emotion fromfeeling as the latter requiring 
ons
iousness. This model does not address
ons
iousness. The 
ons
iousness issue is far from being understood, eitherits physiologi
al roots or philosophi
al des
ription [31℄. There seems to be noagreement on this matter. So the dis
ussion whether an agent is 
ons
iousis put aside. Emotions however have a more 
on
rete grounding. And theanswer to the question \where are the emotions in this model?" is 
orrelatedwith the role of the per
eptual layer. The basi
 meanings provided by theDV are indeed the agent emotions.This follows not only from the model grounding in the way emotions aredes
ribed at a neurophysiologi
al level, but also from the behavior attainedby it: 
ertain stimuli are able to dire
tly eli
it a response from the DV,other stimuli eli
it it indire
tly by the means of stored asso
iations, and the
ognitive layer is able to blo
k some primary per
eptual layer responses. The�rst two are what Damasio 
alls primary, and se
ondary emotions [18℄, andthe latter what LeDoux refers to as regulation of the rage, when dis
ussinganimals with their 
ortex removed ([34℄ page 80)):2M
Carthy refers expli
itly to the terms beliefs, knowledge, free will, intentions, 
on-s
iousness, abilities, and wants [37℄. 50



Yet, the emotional behavior of de
orti
ate animals (animals in whom the
erebral 
ortex was removed) was not 
ompletely normal. These 
reatureswere very easily provoked into emotional rea
tions by the slightest events.They seemed to be la
king any regulation of their rage, whi
h suggested the
orti
al areas (like Plato's 
harioteer) normally rein in these wild emotionalrea
tions and prevent their expression in inappropriate situations.Although the implementations presented in this thesis do not yet showa behavior 
learly identi�able with su
h proprieties as emotions and un-derstanding, they do implement some aspe
ts of the model and show someinteresting results. Namely, the damasio implementation showed the basi
asso
iation me
hanism and how the 
ognitive representation 
an help pro-viding expert dis
rimination. The fa
es implementation presented some ex-periments on assigning meaning to 
omplex representation as visual images,being able to remember past asso
iations. Finally, the de
ks implementa-tion proposed itself to repli
ate a Damasio experiment to show the role ofthe somati
 marker, essential to the se
ondary emotions.5.2 Open IssuesThe presentation of the model still leaves several open issues. Namely, aformalization of the model 
omponents and the way they intera
t should beperformed.For instan
e, the la
k of a 
learer de�nition of the per
eptual layer,namely what the DV 
omponents shall address, given an environment anda purpose to the agent. Of 
ourse the 
hara
terization of the environmentdoes not suÆ
e to spe
ify the per
eptual layer. The goals and motivationsof the agent 
an be viewed as being en
oded in the stimulus-DV mapping.But the nature of this en
oding has to be explored.Many issues pertaining to the manipulation of the working memory, aswell as the pro
ess of deriving a de
ision from there remain to be resear
hed.The possibility of generating a
tions from the 
ognitive layer, and theway they are or
hestrated with the per
eptual generated ones is also open tofurther development.There are some barriers that stand between the model and a real-worldimplementation. It is ne
essary to bring the model out from the simpleepisodi
 environments used in the presented implementations. A major stepwould be to put the model working in a real robot, moving around a lab,intera
ting with the obje
ts it �nds. But when trying to bridge this gap,one fa
es the problem of representation. The model needs to have a spatialrepresentation, right in the basi
 and built-in per
eptual layer. It needs to51



have me
hanisms to isolate obje
ts (assuming vision as its primary sensor),and to assign meaning to them.5.3 Resear
h Dire
tionsIt is important to stress that this thesis presents a snapshot of the resear
hon this model. There are several ways this resear
h 
an evolve. The openissues outlined in the above se
tion give some ideas. In this se
tion, threemain resear
h dire
tions are presented.First, the appli
ation of the model to a physi
al robot is a very promisingpath for a number of reasons. First, to for
e the development of the model tohandle non-episodi
 real-world environments. This does not mean that theinternal workings of the model will not be episodi
. The 
hallenge is to adaptits stru
ture to an environment that is not presented in an episodi
 fashion.Furthermore, the roboti
 platform raises a myriad of issues: there are sev-eral things happening at the same time, unexpe
ted events (e.g., 
ollisions),en
ounters with unknown obje
ts, robustness to me
hani
al failures, and soon. In parti
ular, the RoboCup [48℄ may provide an ideal environment toput these ideas into pra
ti
e [59℄.As it was said in the last se
tion, su
h environments raise questions ofrepresentation. The model is spe
ially suited to handle image-like represen-tations. Although symboli
 systems have rea
hed a high degree of sophis-ti
ation, the same 
annot be said about spatial representations. The areaof diagrammati
 reasoning [27℄ 
an have a lot to o�er to this model. Andin the 
ase of the roboti
 platform, this means spatial representation of thesurrounding environment. This is essential in order the model to be ableto isolate obje
ts of interest (visually per
eived), to 
onsider their spatialrelationships, and to intera
t with them in the physi
al environment.Finally, after gaining a more mature understanding of the model, providedfor instan
e the rea
hing of the above goals, it is essential to make a steptowards a formalization of the model: to de�ne pre
isely ea
h 
omponent,and the way they all intera
t to form a whole. As well as gather formaltools to assert what aspe
ts shall be 
ognitive and per
eptual, the minimalri
hness that the DV shall provide, and so on. The ultimate obje
tive of su
hresear
h would be to formalize a framework that would allow, in a systemati
way, to apply the model to a given spe
i�ed environment, and to evaluateits performan
e.
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A topi
 of world-shaking importan
e, yet dealt with fa
e-tiously; an android trait, possibly, he thought. No emo-tional awareness, no feeling-sense of the a
tual meaningof what she said. Only the hollow, formal, intelle
tualde�nitions of the separate terms. [author's emphasis℄Philip K. Di
k, \Do Androids Dream of Ele
tri
 Sheep?"Dave, my mind is going! I 
an feel it! I 
an feel it!\2001: A Spa
e Odyssey"
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