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RESUMO

Resultados recentes da neurofisiologia tém mostrado alguns aspectos inte-
ressantes da inteligéncia humana: os processos mentais do pensamento sao
guiados pelas emocoes. Inclusive o pensamento racional requere emogoes pa-
ra funcionar apropriadamente. Esta tese propoe um modelo para um agente
cujo funcionamento baseia-se em emocoes. Este modelo é suportado pelo
trabalho de Antonio Damasio [18] em por a descoberto o papel das emogoes
na racionalidade humana. O modelo proposto é baseado numa paradigma
de dupla representacao: uma representacao complexa, nao-tratada, estrutu-
rada denominada de imagem cognitiva, e uma representacao simples, basica,
built-in denominada de imagem perceptual. Apds a discussao do modelo, trés
implementacoes sao descritas, tal como alguns resultados experimentais. Fi-
nalmente, algumas consequéncias da abordagem sao discutidas, tais como a
emergencia de relevancia e significado, terminando com uma enumeracao de
possiveis futuras direcgoes de investigacao, nomeadamente a integracao deste
modelo num ambiente robético.

Palavras-chave: Emocoes, Agentes, Arquitecturas, Inteligéncia Artificial,
Neurociéncia, Sistemas.



ABSTRACT

Recent neurophysiologic findings have uncovered some interesting aspects of
human intelligence: the mind’s thought processes are driven by emotions.
Even rational thinking does require emotion to function properly. This the-
sis proposes a model for an agent whose functioning is based on emotion.
This model is supported by the work of Antonio Damasio [18] on unveiling
the role of emotion in human rationality. The proposed model is based on
a double-representation paradigm: a complex, unfiltered, structured repre-
sentation termed cognitive image, and a simple, basic, built-in one termed
perceptual image. After the discussion of the model, three implementations
are described, as well as some experimental results. Finally, some conse-
quences of the approach are discussed, such as the emergence of relevance
and meaning, ending with the enumeration of possible future research direc-
tions, namely the integration of the model in a robotic environment.

Key Words: Emotions, Agents, Architectures, Artificial Intelligence, Neu-
roscience, Systems.
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Chapter 1

Introduction

Summary

This thesis begins with some considerations prior to the presentation of the de-
veloped work. First, the motivation of this work is presented. Then the objectives
of this thesis objectives are enumerated. Finally, some representative work in this
research area is briefly summarized.

1.1 Motivation

Through the reading of this thesis, its ideological epicenter can be clearly
identified: the ideas presented in Damasio’s seminal book “Descartes’ Er-
ror” [18]. What he proposes is that rationality cannot be understood sepa-
rately from emotion.

Since the Greek philosophers the phenomenon of reason has been divided
from emotion. Scientific knowledge has been described in rational terms,
logically sound, cleared of any emotional consideration. And therefore, it
seemed natural that emotions were a regretful heritage humans shared with
their ancestors. This suggested an assumption that has (almost) always been
present when attempting to build intelligent machines: they require no more
than pure rationality in order to “think.” In other words, there is no sense
in taking emotions into account when designing intelligent machines. It is
important to stress that this is an empirical assumption, supported by the
observation (mostly introspection) that humans reason rationally without
any emotional feeling.

But the contribution of Damasio’s work is precisely to challenge that
assumption. As far as humans are concerned, even rational thought does
involve emotions. And he was able to find neurophysiological evidence that



supports his thesis. And one can argue that no one is closer to understanding
intelligence than the ones that study how the human brain works.

However, it should be noticed that this model developed by Damasio is
descriptive, i.e., it is supposed to provide an explanation of how the human
mind works. There is still a step to be taken when one considers to implement
those ideas. In other words, a prescriptive model is required. A possible step
to bridge this gap is what this thesis proposes. The reader is invited through
the following pages to assess on what degree that endeavor was accomplished.

1.2 Objectives

This thesis proposes the accomplishment of two objectives: first, to present
a prescriptive model based on neurophysiological grounds of the emotion
machinery in the brain, and second, to implement the model and to do some
experimentation.

But prior to the presentation of the model, a set of findings from neu-
roscience that were taken into account is gathered in chapter 2. No prior
knowledge of neuroscience is required to understand this chapter.

Then, the conceptual issues of the model are presented and discussed in
chapter 3. Chapter 4 presents three implementations of the model, along
with some experimental results.

This thesis ends with a chapter discussing some of the consequences of
this approach, and some future direction that this research can take.

1.3 Overview

There is no agreement on a methodological foundation for building intelligent
machines. In the antipodes of the broad spectrum of possibilities, lie the logic
approach proposed by McCarthy [36], and the robotic insects approach from
Brooks [8, 9]. The former is based on a logical approach — failing to cope
with the complexity of the real world — whereas the latter, detached from
reasoning models, lacks the ability of handling more difficult tasks.

The first question that pops into mind, when implementing emotions in
machines, is whether or not it is legitimate to ascribe emotions to them — “is
this machine feeling?” In a broader sense, John McCarthy has discussed the
problem of ascribing mental qualities to machines:

To ascribe certain beliefs, knowledge, free will, intentions, consciousness,
abilities or wants to a machine or computer program is legitimate when
such an ascription expresses the same information about the machine that
it expresses about a person. ([37])



Although McCarthy was almost surely not thinking about emotions and
feelings when he wrote this, an attempt to apply this concept to emotions
looks interesting. But while the mental qualities referred by McCarthy can
be identified with a purely rational perspective of the mind, the same cannot
be said about emotions. According to Damasio [18], emotions involve the
body, a physical part of a person, as it will be discussed in chapter 2.

From a philosophical foundations viewpoint, Al is divided in the useful-
ness of emotions in machines. On the one hand, John McCarthy sustains that
“Robots Should Not be Equipped with Human-like Emotions” [38], defend-
ing the idea that rational thought can be detached from emotions, and that
emotions only disturb pure rationality. However neuroscience contradicts
this detachment [18]. On the other hand, Aaron Sloman [52] and Marvin
Minsky [40] are quite confident that, besides being useful, emotions will be
essential, at least as far as an human-like intelligent machine is pursued.
Quoting Minsky from his seminal book “Society of Mind”:

The question is not whether intelligent machines can have any emotions, but
whether machines can be intelligent without emotions. ([40])

In a different perspective, Sloman sustains that emotions are essential to in-
telligent robots, arguing its close relationship to the origin of motivations [52].

Applying emotions in artificial intelligence does not imply a unique path.
The new-born field has already branched since its very beginning. A first
major division can be established between ezternal emotions and internal
emotions. In other words, does one want to relate to computers on an emo-
tional basis, or to enable the machine to use emotions internally? Of course
these two perspectives are not mutually exclusive, but usually one of them is
emphasized. In the former case, the central question is “how can a machine
express emotions?” and “how can a machine detect an emotion expressed
by a human !?” While in the latter, the question is “how can emotions
contribute to the decision making process?”.

According to Rosalind Picard, emotions can play an essential role in the
way people deal with computers. They define a line of research she calls
“affective computing” [46, 45] — “computing that relates to, arises from,
or deliberately influences emotions.” For instance, facial expressions are a
medium through which emotions are expressed between people. One aspect
of this research area is to detect human facial expressions, as well as how to
synthesize a facial expression to show a given emotional state. The applica-
tions of this scientific area are immense: they can drastically change the way

'Or by another machine.



people relate with computers. If people got personally caught by conversa-
tions with the ELIZA program, imagine when computers start detecting and
expressing emotions in a convincing way.

In 1988, Andrew Ortony et. al. published the book “The Cognitive
Structure of Emotions” [42], which presents a systematic categorization of
emotions. Based on this work, the Oz Project on believable agents, integrated
a module (Em) implementing emotions [47] in one of their agent architec-
tures [2]. This module provides a representation of the agent’s emotional
state which conditions the agent’s behavior.

Another publication worth reporting is Tan Paul Wright’s PhD thesis on
emotional agents [66]. This work provides some interesting perspectives on
the implementation of emotions in agents. Its foundations are based on rein-
forcement learning and an economic view of the society of mind principle [40].

The field has been more or less lethargic, with sparse publications, until a
SAB-98 workshop [12], and a 1998 AAAT Fall Symposium session [11] events,
both centered on emotions, putting together a large number of papers and
approaches. The publication of the Picard’s book “Affective Computing” [45]
has certainly contributed to the attention shift onto the field of several Al
researchers. At the present stage, there is little convergence on the approach
to be taken. Almost every paper proposes a different approach. But it can
be expected that in the future the field will decide on smaller number of
approaches, resulting from the failure of some to further development, and
possibly the merger of others.

Inside the emotions (in AI) field, several sub-areas of research can be
identified.

Regarding what was termed above as external emotions, there is research
on interaction with a robotic face, responding with an “emotional” expression
to certain visual stimuli, like waving objects in front of it [22, 23]. Another
example is the interaction with a software GUI, using Bayesian networks
to model the user (emotional) personality [7]. In a more specific context,
the recognition of affective states [65] and the expression of emotions using
motion, through gestual primitives [13], are also interesting.

In an internal emotions approach, several perspectives can be identi-
fied. The architectural one views emotions as a fundamental component in a
broader architecture, such as the already cited Em module (Oz Project) [47],
the TABASCO layered architecture [53], or a rule-based approach for con-
trolling the agent behavior of Botelho et al. [6]. These approaches make use
of the appraisal theory (see [24, 50] for further information), which is based
on cognitive assessments of situations. The appraisal has strongly influenced
the field (and still does). But in the author’s opinion, it fails to capture some
relevant neurophysiological aspects of emotions (e.g., the nature of Damasio’s
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somatic marker [18]).

There are further attempts to build models of emotions from its very
foundations. A reinforcement learning approach is taken by the work of
Gadanho [26, 25]. Taking the agent society paradigm from Minsky [40] as a
starting point, Veldsquez has reached some interesting results [56, 57, 55, 58|.
This thesis is viewed by the author as belonging to this perspective [62, 60,
63, 61]. Interestingly, all these researchers share in common the inspiration
from Damasio’s work [18].

Some tentative formalization of emotions have also been attempted, tak-
ing a more abstract mathematical approach in some cases [1, 10, 35], or a
neurophysiological one in [16, 17]. These contributions are interesting, but
in the author’s opinion, while the former lack neurophysiological grounding,
the latter have a strong descriptive content, rather than a prescriptive one.

The robot had no feelings, only positronic surges that
mimicked those feelings. (And perhaps human beings
had no feelings, only neuronic surges that were inter-
preted as feelings.)

Isaac Asimov, “The Robots of Dawn”
(Harper-Collins, 1994)

The robot is going to lose. Not by much. But when the
final score is tallied, flesh and blood is going to beat the
damn monster.

Adam Smith



Chapter 2

Foundations

Summary

This chapter opens with a section presenting the foundations of this thesis. These
foundations are mostly biological, and come from experimental data. Some fun-
damental data about the brain is presented. Several structures of the brain are
discussed, stressing the concept of the topological map. Then, a brief overview of
models of the brain structures directly involved with emotions is presented. From
these models, the double processing paradigm is extracted, which underlies the pro-
posed model. Finally, the relationship of emotions with rationality is discussed,
reaching the supporting pillar of this work — Antonio Damasio’s findings of how
human rationality depends on emotions to work properly [18].

The main inspiration and motivation for the ideas presented in this thesis
lie primarily on findings from biology (namely neuroscience, neurobiology and
related fields). This section describes some of these findings, that underpin
many choices taken during the development of the presented model.

It is not free from controversy that the construction of artificial intel-
ligence models has to take into consideration the way nature implements
intelligence in biological beings. It has been advocated by some parties that,
as the human brain works in a distinctly different way than the machines to
which we are targeting our models, Al research should be detached from any
biological inspiration. Moreover, as the sole evidence of verbal, sophisticated
intelligence comes from human beings no one really has a complete model
of it (i.e., reverse engineering). To derive a model of an intelligent machine,
regardless of the inner workings of the instances humans are, can be expected
to be extremely difficult, to say the least.

This debate is by itself discardable, since it does not seem fruitful. This



thesis is about a way of implementing emotions on artificial machines. There
is yet no clear case of emotions outside the biological sphere. Therefore,
an independent approach to artificial emotions has to be based on the way
nature “implements” emotions.

In the following sections, it will be presented a set of findings from neuro-
science (and biology in general) that are behind the model proposed in this
thesis. The starting point will be a brief description of the overall brain orga-
nization in terms of microstructures such as neurons and synapses, upwards
toward major brain zones. Next, a brief overview of some biological emotion
models are presented, and finally — the cornerstone of this thesis — Antonio
Damasio’s work on the relationship between emotions and rationality.

Much of the data referred in the following sections was taken from [14],
unless otherwise noted. This book constitutes an excellent overview to the
broad spectrum of neuroscience issues.

2.1 Brain Organization

Such a complex mechanism as the human brain cannot be explained, not even
studied, as a whole at once. Some kind of “divide and conquer” principle
has to be applied to separate more or less interconnected areas of research.
The approach taken here was to divide it in terms of levels of granularity of
the structures involved. These levels are presented in figure 2.1.

The smallest unit — atomic element — which may still be identified
with the brain, is the brain cell, i.e., the neuron. The human brain is made
out of approximately 10'? neurons. These neurons are connected to other
neurons by synapses, which count up to the order of magnitude of 10'®. The
information exchange between the neurons is electrical in nature, making use
of complex chemical mechanisms (yet to be fully understood). The synapses
connect unidirectionally neurons outputs to inputs of others, conditioning
(among many other factors) the way the activation of the former affects the
latter.

Although the inputs of one neuron are analog signals, its output is digital,
forming a firing pattern. A spike in this firing patterns lasts about 1 msec,
and the transmission delay up to another neuron takes about 5 msec.

In terms of density, there are about 10° neurons and 10° synapses per
cubic millimeter. Each of these neurons is connected to approximately 3%
of the neurons in the same amount of surrounding volume. However, the
majority of the synapses of a single neuron are connected to other neurons
far from the neighborhood, forming what are called projections.

Despite an apparent randomness in the neuron interconnections (which
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Figure 2.1: Levels of the brain in terms of granularity, from molecules up to
the central nervous system (CNS). (From [14] page 11, reprint by courtesy
of the author.)

seems to exist, since there is no way the genetic coding could hold enough
information to determine every connection), some structure can be noticed.
One kind of these is the topographic map. A topographic map is a zone
of the brain where the placement of single neurons with respect to others is
topographically organized. The most significant example of such a map, is the
projection of the retina into V1 — an area in the back of the head (occipital
lobe, see figure 2.2) which forms the primary visual cortices. Receptive units
which are close in the retina, are projected into close neurons into V1. This
way, the pattern of activation in V1 resembles the image seen by the eyes.
This mapping does not preserve proportion, as it is severely distorted. This
distortion can be interpreted as some areas having higher resolution than
others. Figure 2.3 shows how a sample picture activates these early visual
cortices, in an experimental setup.

Topographic maps can be found associated with nearly every sensory
system, namely the auditory and the tactile systems, as well as in motor
cortices. There is evidence that the topographic map is a device frequently
used by the brain, not only in these most visible examples, but also in less
evident and more abstract levels.

Interestingly enough, the early visual cortices, not only hold topograph-
ically mapped images from the retina, but also hold images recalled from
memory. As Damasio notes ([18], page 101), “Preliminary studies of visual
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Figure 2.2: Identification of the zones where the optic nerves connect to the
brain, by the means of topographic maps. Note the connections from the
retina to the nuclei of the thalamus (see below the role of the thalamus in
the Papez circuit model), relaying the visual map to the hypothalamus (part
of the limbic system, the emotion center), and to the visual cortex, in the
back of the brain. (From [14] page 151, reprint by courtesy of the author.)

recall using positron emission tomography (PET),” have shown that “the
recollection of visual images activates the early visual cortices, among other
areas.” These recalled images are not sparse phenomena, but rather some-
thing that seems to underly the whole process of thinking. Damasio devotes
a section to this fact, with the suggestive title “Thought is made largely of
images”:

It is often said that thought is made of much more than just images, that
it is made also of words and nonimages abstract symbols. Surely nobody
will deny that thought includes words and arbitrary symbols. But what
the statement misses is the fact that both words and arbitrary symbols are
based on topographically organized representations and can become images.
Most of the words we use in our inner speech, before speaking or writing a
sentence, exist as auditory or visual images in our consciousness. If they did
not become images, however fleetingly, they would not be anything we could
know. ([18], page 106)

And many instances of this phenomenon are experienced by the reader (al-
though introspection is a dangerously misleading tool): when a sentence is
spoken by someone, out of our attention, it can be later “re-heard” in the
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Figure 2.3: At the bottom it is shown the shape of the neural activity pattern,
at the early visual cortices of an animal, that is looking to the picture shown
at the top. Although deformed, the neural activity pattern shows that the to-
pographic characteristics of the stimulus are preserved. (From [18] page 104,
reprint by courtesy of the author.)

brain and only then understood; the pictorial nature of the mathematic no-
tation, that is much easier to manipulate than some horizontal non-intuitive
representation (e.g., in a LISP expression); arithmetic calculation make ex-
tensive use of graphic disposition of numerals; European traffic signs are
mainly based on schematic shapes (they are supposed to be sighted and
understood swiftly and clearly, and do not require the knowledge of a spe-
cific written language); primitive writing is based on icons rather than on
abstract symbols!; the easy memorization of corporate wordless logos; and
more examples can easily be found in everyday life.

This suggests that the way the brain represents and manipulates knowl-
edge is primarily pictorial in nature, rather than symbolic. This is a rather
astonishing finding, which has not received the deserved attention within Al
mainstream (but is has been actively researched as a small subfield of AT,
under the name “diagrammatic reasoning”, see for instance [27]). But in
psychology it is well studied for many years. In [32] for instance, “images”

'Tn the sense that icons represented objects and persons in scenes, and symbols implied
a syntactic and semantic structure.
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are defined as:

Any thought representation that has a sensory quality we call an image.
Images can involve the senses of seeing, hearing, smell, taste, touch, and
movement; but since my focus is on visual images, I use the word “image”
for mental contents that have a visual sensory quality (unless otherwise in-
dicated). ([32], page 3)

In the course of this thesis, the term image is used in this broad sense, of a
pictorial representation, as the one that can be found in topographic maps
in the human brain.

Piaget makes reference to a set of abilities that children show, long before
being able to verbalize words, called sensorimotor intelligence [44]. These
abilities are, for instance, reaching objects with hands, manipulating objects,
spatial understanding, and learning in the process. It seems clear that the
processes involved in the brain deal with the world in terms of topographic
maps. And these abilities appear before spoken language.

As we go up in the level of organization of the brain, the major top level
brain zones can be found. The idea of classifying of the brain in zones came
about with the advent of “phrenology” in the eighteenth century. The phre-
nologists used to classify bumps in certain areas of the head as indicators of
specific abilities (such as sensing, feeling, speech, memory, intelligence, and
so on). These ideas inspired the search for the location of functional centers
on the brain. Nowadays there exists a much more refined map of the brain
zones, with strong scientific foundations, rather than on empirical methods.
Many of these results came from the study of the effects of certain brain
lesions in the patient behavior. Neurologists usually are able to pinpoint the
region of a lesion just by the means of the study of the way the patient be-
comes impaired. Located brains centers are identified with capabilities such
as vision, language comprehension, touch, voluntary movement, reasoning,
speech, memory, hearing, and so on (see figure 2.4). As brain lesion reports
are collected and analyzed, and with the aid of apparatus able to trace brain
activity (e.g., PET?), this map of the brain has been refined. For instance,
Hanna Damasio has recently reported that memories associated with per-
son names, tools and utensils names, and animal names, have distinct brain
locations [19]. She was able to obtain this result by the means of the sys-
tematic and comparative study of patients impaired with very well located
brain lesions in the memory region.

2Positron Emission Tomography.
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Figure 2.4: Location of several brain centers. (From [34] page 77, reprint by
courtesy of the author.)

2.2 Emotion Circuitry

Since Aristotle emotions have been considered a spurious phenomenon that
stubbornly stands between mind and body. In the field of AI, it has al-
ways seemed obvious that emotions and feelings® have nothing to do with
intelligence and the domain of pure reason. No proof of any formal theorem
has ever required emotions to stand valid. Scientific knowledge has never
needed emotions to support itself (in the sense of exact sciences). But what
remains arguable is that, because of these facts, it should be possible to
attain human-like machine intelligence without ever considering the role of
emotional mechanisms in humans. The idea of artificial intelligence with-
out emotions seems to originate from the introspective idea that one person
can endorse a rational (and then intelligent) line of thought, without the
intervention of emotions. As we will show in this section, this is not so. At
least in humans, any rational thought uses the human emotional circuitry
intensively.

In 1884, William James was the first to attempt to model emotional
processes in human beings?. Until then, it was well established that an
emotional reaction (such as faster heart beat rate, sweaty hands, and so on)

3For the time being, the terms “emotions” and “feelings” are taken by their common-
sense meaning. This chapter will not provide an exact definition, but describe approaches
to understand and distinguish these concepts.

4The description of models here described can be found in [34], unless otherwise noted.
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to an external stimulus, came from a mental assessment of that stimulus.
The proposal by James went the other way round:

Our natural way of thinking about [...] emotions is that the mental percep-
tions of some fact excites the mental affection called emotion, and that this
latter state of mind gives rise to the bodily expression. My thesis on the
contrary is that the bodily changes follow directly the PERCEPTION of the
exciting facts and that our feeling of the same changes as they occur IS the
emotion. [Original emphasis] (cited in [34])

Notice that the word “emotion” is used in this thesis in a slightly different
sense than in the above quotation. William James used the word “emotion”
to name the act of internally perceiving the emotional response by the brain.

Essentially, what William James proposed was a radical statement that
contradicted everything that had been said in the subject before. But there
is much more to follow. As emotion models are developed and refined, a
clearer picture becomes visible. It is important to stress the fact that the
methodology to develop these models is experimental. They are not purely
philosophical models — the rough tool of introspection is very much ruled
out?

Another relevant model is Papez’ circuit theory [34], proposed in 1937
(figure 2.5). The components of this model can be directly identified with
areas in the brain, but to the present discussion, their names are irrelevant.
However it is important to understand that its architecture is grounded on
actual brain structures.

According to this model, following the path taken by an external stimu-
lus, the perception layer is projected into a center (the thalamus) from where
it bifurcates in two separate paths. One of them follows to the hypothalamus
that is able to directly generate a bodily response (affecting blood pressure,
stress hormones, provoking a freeze reaction, and so on). This path that
goes from perception to action is called stream of feeling. The response to
a stimulus through this path is very quick, but it is unable to discriminate
subtle differences. A second path goes from the thalamus, up through the
sensory cortex, until reaching the cingulate cortex — the stream of thought.
This latter path corresponds to higher cognitive abilities, such as reasoning,
memories, and so on. The processing at this level is considerably slower than
the former. The terminal centers of these two paths are connected in both
directions, via the hippocampus (downwards) and the anterior thalamus (up-
wards). The upward connection relates to the feeling of an emotion, and the

5This does not mean that philosophy does not take into account these biological find-
ings. In fact, philosophy has already taken emotions into account, for instance in [20].
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Figure 2.5: Architecture of the Papez circuit. (From [34] page 89, reprint by
courtesy of the author.)

downward to the blocking of basic responses (triggered by the hypothalamus)
by the means of the higher cortex [34].

From this model two aspects should be retained: first, the statement
that in the human brain external stimuli are subject to a double processing,
a basic/quick and a complex/slow, and second, the bidirectional influence of
these two layers.

It is relevant to add a note about biological evolution, with respect to
this double processing perspective. The size of the brain of mammals has
been increasing along species evolution. The interesting aspect is that the
brain size does not increase uniformly. What happens is that the limbic
lobes (responsible for emotional behavior) remain relatively similar, while
the cortex undergoes a significant growth. The growth of the cortex is the
most distinguishing feature, when one observes the recent evolution of the
brain. Figure 2.6 shows the volume occupied by the limbic system in relation
to the cortex, in three animals. The limbic lobes, which form the older (and
inner) parts of the brain, are a heritage humans got from their ancestors. But
although the influence of the thalamus has been diminishing along the path
of evolution, it has not ceased to exist! Evolution possibly determined that
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the existence of a quick, basic, immediate path of processing is still essential
even in species with high cognitive abilities, like humans [34].

-~
VQ

Fanbit Cat hankey

Figure 2.6: Areas occupied by the limbic lobe (the evolutionary older part of
the brain) of three animal species, along the path of evolution: rabbit, cat,
and monkey. (From [34] page 86, reprint by courtesy of the author.)

There still is a considerable amount of discussion around the issue of basic
emotions. The idea of basic emotions is to pinpoint a basic set of emotions,
from which, by combination, every emotion felt by humans can be described.
One of the most prominent persons behind this theory is Paul Ekman [21].
But besides this ongoing discussion, it seems consensual that fear is to an
essential phenomenon, whether it is part of a set of basic emotions, or there
is no sense in defining such a set. Fear is known to exist in animals since
early stages of evolution. The study of the way the human brain deals with
fear provides important leads to the inner workings of emotion.

Joseph LeDoux [34] has carried out an exhaustive research on the brain
circuits of fear, mainly on rats. And once again a double processing mecha-
nism was found:

So we can begin to see the outline of a fear reaction system. It involves
parallel transmission to the amygdala from the sensory thalamus and sensory
cortex. The sub-cortical pathways provide a crude image of the external
world, whereas more detailed and more accurate representations come from
the cortex. While the pathway from the thalamus only involves one link,
several links are required to activate the amygdala by way of the cortex.
Since each link adds time, the thalamus pathway is faster. [emphasis added
by the author] ([34], page 165)
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And as far as response time is concerned:

Although the thalamic system cannot make fine distinctions, it has an im-
portant advantage over the cortical input pathway to the amygdala. The
advantage is time. In a rat it takes about twelve milliseconds (...) for an
acoustic stimulus to reach the amygdala through the thalamic pathway, and
almost twice as long through the cortical pathway. ([34], page 163)

These findings corroborate the double processing model of a complex/slow
and a basic/fast layers proposed here. In the next section, the relationship
between these structures and human rationality is explored.

2.3 Rationality and Emotion

At the beginning of this chapter it was said that for a long time the dominant
thought was that emotions were an undesirable byproduct of the human
rational mind, and that the less emotional a person was, the more (s)he would
think rationally. Antonio Damasio was one of the first researchers to openly
state otherwise. Daring claims require daring approaches, and Damasio was
able to come up with experimental evidence that, in fact, emotions play a
key-role in human reasoning.

But what is really understood here about emotions? A dictionary [39]
definition of “emotion” reads “the affective® aspect of consciousness,” and
further ahead more precisely as

A psychic and physical reaction (as anger or fear) subjectively experienced
as strong feeling and physiologically involving changes that prepare the body
for immediate vigorous action. ([39])

This last definition is clearly oriented towards the physiological aspects of
emotion, although it rejects any possibility of ascribing emotions to machines.
Unless, of course, one could ascribe all the terms used (body, psychic, sub-
jectively, feeling, and so on) to the same machine. On the other hand, the
first definition, although being detached from any physiological ground, is
too vague (and entangled in circular definitions) to be useful, besides using
the similarly “precarious” word “consciousness.”

Most of Antonio Damasio’s experimental data stems from patients with
brain lesions in the prefrontal cortices, which reside just behind the head
fore bone, right above the eye balls. In his book [18], Antonio Damasio
develops his argumentation around three case-studies, which will be briefly

6Defined in a circular fashion in the same dictionary as “relating to, arising from, or
influencing feelings or emotions”.
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described below (the material in this subsection is quoted from[18], unless
stated differently).

In 1848 Phineas Gage suffered an accident that destroyed a substantial
part of his prefrontal lobes. He survived; however even though he did not
become physically handicapped in any way, but his life changed forever. His
character, his personality was deeply modified. He became unable to behave
in presence of others, was rude, acted like a child, and he was unable to
resume his previous job. Hopping from job to job, he even became a circus
attraction, showing his wounds and the iron stick that was responsible for
the accident.

The second case is the one of a patient named Elliot. He suffered from
a brain tumor that compressed the prefrontal cortices, damaging them. He
underwent surgery to remove the tumor as well as the damaged tissues of the
prefrontal lobes. As a result, his behavior was also deeply affected. According
to Damasio’s words:

Once at work he was unable to manage his time properly; he could not be
trusted with a schedule. When a job called for interrupting an activity and
turning to another, he might persist nonetheless, seemingly losing sight of
his main goal. Or he might interrupt an activity he had engaged, to turn to
something he found more captivating at that particular moment.

]

The flow of work was stopped. One might say that the particular step of the
task at which Elliot balked was actually being carried out too well, and at
the expense of the overall purpose. One might say that Elliot had become
irrational concerning the larger frame of behavior, which pertained to his
main priority, while within the smaller frames of behavior, which pertained
to subsidiary tasks, his actions were unnecessarily detailed. ([18], page 36)

As Damasio notes, these two cases have much in common:

In some respects Elliot was a new Phineas Gage, fallen from social grace,
unable to reason and decide in ways conducive to the maintenance and bet-
terment of himself and his family, no longer capable of succeeding as an
independent human being. ([18], page 38)

Apparently, both cases showed no weakening of pure cognitive abilities (as
the ones measured by the traditional 1.QQ. rating” Only Elliot was actually
examined, but it is supposed that Gage would obtain similar results.). Yet,
they were unable to handle common-sense tasks, they lacked the ability to
coordinate all these particular cognitive abilities usually recognized as intel-
ligence, into a coherent whole.

"See [5] for a description of the 1.Q. test.
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Latter patients suffering from similar lesions in the prefrontal cortices
showed another common feature: they all had a strong impairment on their
emotional assessment of situations.

There are two brain structures that are essential to these mechanisms.
They are the amygdala® and the prefrontal cortex. Damasio classifies emo-
tions in two broad classes: primary emotions, that are triggered by external
stimuli, originating body responses such as sweat, blood pressure, and so on;
and secondary emotions which are relative to recalled images from “emotion-
ally charged” past events. The primary emotions rely on the amygdala (older
part of the brain in terms of evolution). Certain external stimuli trigger the
amygdala to produce a body response. The secondary emotions are based on
the prefrontal cortex, but work on top of the amygdala: images of past events
are activated in the brain, and the prefrontal cortex responds by activating
the amygdala to produce a body response. In general, this response is milder
than the one directly provoked by external stimuli.

According to Damasio, the same areas in the brain whose lack deeply
affects reason and long-term planning, are also responsible for the ability
to have an emotional response to certain stimuli. This is more than a co-
incidence, and in fact, these two aspects — rationality and emotion — are
deeply entangled. To explain this connection, Damasio raises the somatic-
marker hypothesis:

When the bad outcome connected with a given response option comes into
mind, however fleetingly, you experience a gut feeling. Because the feeling
is about the body, I gave the phenomenon the technical term somatic state
(“soma” is Greek for body); and because it “marks” an image, I called it a
marker. Note again that I use somatic in the most general sense (that which
pertains to the body) and I include both visceral and nonvisceral sensation
when I refer to somatic markers. ([18], page 173)

In other words, certain images (recall the previous discussion about how
thought is largely made out of images) are marked with a somatic (as relative
to the body) representation. The body plays here a fundamental role as the
“theater for the emotions,” to quote Damasio. The effects of this somatic
marker can either be properly visceral, in the sense that it modifies certain
physiological characteristics (blood pressure, hormone balance, and so on),
or short-circuiting the body through an “as-if” mechanism, but still holding
the same characteristics.

8The amygdala is not present in the Papez circuit described in the previous section.
It was later introduced by MacLean in 1952 (see [34] for further details). The role of
the hypothalamus is related to body regulation issues, where the amygdala is in fact
responsible for its activation.
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To verify this hypothesis, Damasio describes several examples, out of
which three will be reported here.

e When a patient visiting Damasio’s laboratory pulled out his appoint-
ment book to schedule his next visit, with cold posture, he started
enumerating reasons for this or that date, without being able to de-
cide. It took more than a half-hour, without neither being able to
decide, nor showing any sign of frustration. He just kept analyzing,
comparing possible dates, endlessly.

e Several patients with lesions in the prefrontal lobes were matched against
normal persons, in terms of skin conductivity while watching to the
same sequence of pictures. These pictures included banal images, like
landscapes, as well as disturbing pictures (violence, blood, accidents,
sex, etc.). The results were very clear. While the disturbing pictures
produced strong skin conductivity response in the normal subjects,
there was no noticeable response from the ones with the prefrontal lobe
lesions. Although they were able to correctly understand the horror of
these pictures, they did not show any emotional response. One of the
impaired patients showed a remarkable insight of what was happening
to him:

He noted that after viewing all the pictures, in spite of realizing their
content ought to be disturbing, he himself was not disturbed. ([18],
page 211)

And Damasio further notes that:

Here was a human being cognizant of both the manifest meaning of
these pictures and their implied emotional significance, but aware also
that he did not “feel” as he knew he used to feel — and as he was
perhaps “supposed” to feel? — relative to such implied meaning. The
patient was telling us, quite plainly, that his flesh no longer responded
to these themes as it once had. ([18], page 211)

e The third example is the setup of a card game?, consisting of four decks
— A through D. The subject is asked to turn a card, from a deck of his
choice, then the experimenter asserts whether that card made him lose
or gain a certain amount of (fake) money (from a start loan of $2,000).
Cards from any of the A or B decks offer the subject $100, while cards
from decks C and D only give $50 each. The tricky part of this game

Although the cited Damasio’s book [18] describes this game, detailed information
about the results and card sequences can be found in [3] and [4].
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is that certain cards in decks A and B unexpectedly produce a loss of
high amounts (e.g., $1,250), but in decks C and D certain cards only
cause a minor loss of less than $100. Each game consists of 100 turns,
but players were not informed beforehand.

Normal people usually started the game trying each of the decks, but
soon would take notice of the high losses resulting from the A and B
decks, and converge to taking cards from decks C and D only. However,
patients with prefrontal lobes lesions, kept on taking cards from the
apparently more profitable decks A and B, insensitive to the occasional
high losses (figure 2.7). These patients were unable to recall the risk
of choosing A or B deck cards, and kept on choosing the immediately
apparent higher value of these decks. Damasio calls this phenomenon
“myopia for the future”.

NOBMAL CONTROLS

Mumber of Selections
Cher 100 Trials

FRONTAL PATIENTS

Mumbser of Selections
Ower §06 Trials

Figure 2.7: Number of selections from each of the decks, in normal subjects
and “frontal patients” (i.e., suffering from frontal lobe damage). (From [18]
page 215, reprint by courtesy of the author.)

These results suggest that, when normal players are faced with the four
decks, they perform a double assessment of each deck, while in the case
of the impaired patients, it is only a single one. The assessment that is
common to both of them corresponds to a crude low-term evaluation,
based on the most recent card values. The assessment missing in the
impaired patients is the ability to recall a somatic marker associated
to a past event. In this case, this would be the (sad) remembrance
of the high loss cards taken out from A and B decks. This mecha-
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nism overrides the first crude assessment, and holds long-term benefits
throughout the game. Frontal patients (i.e., who suffer from frontal
lobe damage) are unable to foresee the high losses from the A and
B decks. The distinction between these two kinds of assessment will
further ahead be nicely mapped into our proposed double layer model.

These results are in fact the major contribution to this thesis — emo-
tions play an essential role in human rationality. And this result is not an
assumption, but rather a conclusion supported by experimental data.

You [humans] are, after all, essentially irrational.

Spock, “Metamorphosis,” stardate 3220.3, “StarTrek.”

A culpa foi minha, chorava ela, e era verdade, ndao
se podia negar, mas também é certo, se isso lhe serve
de consolacao, que se antes de cada acto nosso nos
puséssemos a prever todas as consequéncias dele, a pen-
sar nelas a sério, primeiro nas imediatas, depois nas
provdveis, depois nas possiveis, depois nas 1magindvias,
nao chegariamos sequer a mover-nos de onde o primeiro
pensamento nos tivesse feito parar.'®

José Saramago, “Ensaio sobre a Cegueira”
(pg. 84, Editorial Caminho, 1995)

10Tt was my fault, she cried, and it was true, it could not be denied, but it also holds,
if that can serve as a consolation to her, that if we predicted all consequences before each
act, considering them seriously, first the immediate ones, then the probable ones, then the
possible ones, then the imaginary ones, we would never get to move beyond where the first
thought would have made us stop. [author’s translation]
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Chapter 3
The Model

Summary

The model hypothesized in this thesis is presented here in an incremental fash-
ion. But before starting the presentation, a set of basic assumptions is set. After
supporting the model in the double representation paradigm, the perceptual layer is
presented, followed by the cognitive one. The desirability vector concept is then in-
troduced. The way these two layers interact in order to produce a decision and/or
an action is then discussed, followed by considerations on the role of the memory,
that implements the capability of learning. Finally, the complete picture of the
architecture, containing all the discussed components, is presented. The way this
architecture functions as a whole is also discussed.

3.1 Basic Assumptions

The proposed model is built on top of the agent paradigm. The agent is
in contact with the environment (which may include other agents, with or
without similar architectures) through its sensors, and acts upon it by the
means of its actuators. The core of the agent — the internal entity that
generates actions based on percepts (as well as the agent’s internal state) [49]
— constitutes the model that will be proposed, developed and discussed.
The agent conceptual framework is for now considered as an individual. The
concept of multi-agent systems is an interesting prospect [64], but lies outside
the scope of this thesis.

The starting point of the model are the perceptions, which will be also
termed stimuli. Each stimulus models a perception event received by the
agent sensors. These perception events will also be called 1mages. The choice
for this term derives from the fact that in the brain, as was discussed in
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section 2.1, information is usually (if not always) represented by topographic
maps. The natural way of thinking about these maps is as visual images. But
in this context, the name image is meant to comprise not only visual images,
but also other kinds of perceptions that can be encoded in a topographic
map: auditory, tactile, motor, and so on.

In physical environments it seems natural to represent stimuli in this
manner. But when purely synthetic environments are to be considered, this
choice may not seem as natural. The advantages of putting information
together in a topographic fashion have to be considered for each case. The
question is how to represent stimuli in such a way that the exploitation
of topographic properties can be useful. These considerations, as well as
the usefulness of representing things in this fashion, are of course domain-
dependent. Still, it will be assumed here that stimuli have this topographic
map form, i.e., images.

3.2 Double Processing

In chapter 2, it was shown that a double representation scheme could be
found throughout many of the presented models. And this paradigm forms
the starting point of the proposed model.

It is hypothesized that whenever the agent receives a stimulus (an image),
it processes it, in parallel, that is to say, simultaneously, under two different
perspectives: a cognitive and a perceptual one. The cognitive processing
gets a complete picture of the stimulus, as close to the original stimulus
as possible. This results in a cognitive image. The perceptual processing
extracts a minimal set of features, which are considered as essential, basic,
built-in, by design. These features can be arranged in a structure designated
by perceptual image [62].

This distinction requires some clarification. Imagine an animal facing a
fast moving object: this triggers a “flight or fight” kind of reaction, which
derives from the assessment of the apparent threat. From this stimulus, this
animal extracts a cognitive and a perceptual image. While the former is
complex, and is therefore takes time to process and analyze, the latter is
extracted quickly, but tells the animal little more than whichever class does
the stimulus corresponds — the danger of a predator, or the desirability
for catching a prey. This is a basic, built-in feature which is innate to the
animal [62].

Thus, while a cognitive image is complex, of slow processing, but rather
complete!, the perceptual image is simple, basic, small, quickly extracted

IThe word “complete” is to be understood here with respect to the perceived stimulus,
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representation of a stimulus that is but primitive and reduced.

3.3 Perceptual Layer

It is assumed here that, in order to assess how to cope with a given environ-
ment, there must exist a minimal, basic set of features that can be extracted
from stimuli. Without this built-in knowledge, as it will soon become clear,
the agent would be indifferent to the world, ¢.e., all stimuli would look the
same. This representation can be said to provide relevance to external stim-
ulus [61].

When faced with a specific environment, the question of what shall be
considered perceptual (that is to say, built-in) and what shall not, becomes
a crucial one. The behavior of the system when first exposed to the envi-
ronment, as well as throughout its life, can be radically different depending
on these design choices. What are the issues that define these choices? A
formal answer to this question has to be postponed until there is a better
understanding of this model. For now, it must be understood that this choice
depends, at a first sight, on what stimuli have to be considered as a minimal,
basic set, in order to allow the agent to bootstrap. For instance, considering
an animal, sights of predators and preys definitively belong to this set. These
stimuli are also related to the needs of the agent in order to survive.

Unveiling a bit of what will be discussed ahead, these perceptual assess-
ments are going to be associated with cognitive images. The agent will learn,
in contact with the environment, to cope with it. To learn new associations
means to evolve and to gain from experience. But in order to do that the
agent must be able to assign a basic meaning to certain stimuli — a minimal
set on top of which a much larger and complex set of stimuli can be learned
and recognized, by means of association. Given a certain environment and
a specification of the objectives to be accomplished by the agent, a set of
perceptual stimuli has to be defined.

Consider the example of a robot moving in an human-inhabited office
room. Some candidate perceptual features are the ones provoked by: close
proximity to walls, namely quick movement towards them, proximity to mov-
ing people (or other robots), direct exposure to sunlight (may overheat the
robot, or on the contrary may supply it with solar power), lack of floor (such
as proximity to stairs running down), and so on. With these features, the
robot would be able to move around, avoid disturbing people, avoid damag-
ing environments, and so on. In order to provide the robot with means to
do other things, additional perceptual features are required. For instance,

and not to the object that originated that stimulus.
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imagine hardwiring the obligation to obey orders from humans — disobeying
orders could result in “pain,” to use a daring word.

In addition to the existence of a built-in core in the perceptual layer to
trigger the agent bootstrap, this layer is allowed to adapt to the environment
through time. As the agent interacts with the environment, it may find it
necessary to respond perceptually to new classes of stimuli. For instance, it
may find that whenever it approaches orange walls, it senses collisions. Thus,
the perceptual layer can be allowed to learn, in a way that will be further
detailed later in this chapter.

3.4 Cognitive Layer

The nature of the cognitive layer is defined in counterpoint to the perceptual
one. A cognitive image contains as much information extracted from the
sensors as feasible. It contains mostly (unfiltered) raw information.

Consider an example of a visual cognitive image in a robot with camera
vision. First of all, every pixel gathered from the camera apparatus is re-
trieved. Additional processing can be accomplished, such as edge detection,
segment extraction, displacement profile, and so on. A cognitive image in-
cludes not only the results of these algorithms, but also the raw input image.
In the case of hierarchical processing, where succeeding algorithms are ap-
plied to the results of former ones, the whole hierarchy of images is contained
in the cognitive image.

The purpose of retaining the stimulus complexity is to allow the agent to
remember past events, and re-analyze them under the light of new knowledge.

3.5 Desirability Vector

The desirability vector (DV for short) is the mechanism that supports the ba-
sic representation of the perceptual layer [62]. The perceptual layer’s major
role is to map stimuli to the DV. It can be considered as the model’s equiva-
lent to the “body,” in Damasio’s terminology. Thus, it plays a fundamental
role in the model.

Each one of the desirability vector components represents a particular
kind of assessment of a stimulus. Each component can be either activated
or neutral (varying either discretely or continuously). Neutral components
mean no assessment. But when a certain component is activated, it means
that the stimulus triggers a specific assessment, e.g., is it good? is it bad??

2The ethical terms “good” and “bad” should be taken here in their empirical sense.
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Going back to the predator/prey metaphor, the animal sees a predator,
it triggers a strong activation of the DV fear component. If, on the other
hand, when the animal finds a prey, it is now the “tasty” component that
is activated. A minimal DV consists of a positiveness and a negativeness
component. When a stimulus is considered as positive, from the agent’s point
of view, the positiveness component is activated. When on the contrary,
the stimulus is considered negative, it is the negativeness component that
is activated. Otherwise, if both components are neutral, the stimulus is
considered to be irrelevant. If both components get activated, it is not clear
what it means. It corresponds to an abnormal situation.

Certain basic stimuli are able to trigger, at a first level, certain compo-
nents of the DV. For instance, a threatening stimulus, may activate a “fear”
DV component, which ultimately generates a fear behavior®. This path,
starting in the agent sensors, through the DV, and leading to an immedi-
ate action is of an extreme importance. Note that all these mappings* are
built-in. It means that agents, in the first steps of their contact with the en-
vironment, are capable of behaving “appropriately,” provided that some care
is taken in choosing those mappings. It is interestingly to consider the use a
genetic algorithm approach [28] to come up with a working set of mappings,
instead of designing them “by hand.”

For a given stimulus, the evaluation of the DV may not be hard-wired.
Despite the fact that there must exist a built-in mapping, prior to the agent
contact with the environment, through this contact, the agent may learn to
associate new classes of stimuli to DV instances. But this kind of learning
is distinct to the one performed in conjunction with the cognitive layer. At
the level of the perceptual layer, the kind of learning is very basic, in the
sense of a direct mapping between the stimulus and the DV. This mapping
can be updated through time. The major distinction from the cognitive kind
of learning is that while the latter is explicit, the former is implicit. Explicit
learning refers to the existence of a memory of events that can be individu-
ally recalled, while implicit learning implies a monolithic adaptive structure
that simply maps inputs (stimulus) to outputs (DV). These designations are
inspired by a classification of memory® cited in [14] (page 244).

For instance, a stimulus is asserted “good” by the agent if it is desirable in terms of its
objectives. The use of this empirical terminology is meant for the sake of clarity.

3As above, the term “fear” should also be taken in its empirical sense. Consider it as
a threat to the agent’s survival.

4A direct mapping between the DV and the agent’s action is assumed here, before being
presented below in section 3.8.

5In this classification, explicit memory is further divided in “facts” and “events”. Al-
though these two classifications are found relevant in the context of this thesis, only the
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Cognitive images, when become associated with DV instances, can be
considered to provide meaning to this images. But more interesting than
establishing associations between cognitive images and DV instances ex-
tracted from the perceptual image of the same stimulus, is the idea of prop-
agating these associations, from memorized associations to presently “non-
perceptual” (null DV) stimuli. Previously irrelevant stimuli become relevant,
due to past experience [63].

Until now, there has been some intermixing of the terms perceptual image
and DV. It is true that both concepts result from the stimulus assessment
process in the perceptual layer, but they have to be distinguished. The per-
ceptual image is the result of the extraction of basic features from stimuli,
while the DV components have explicit meaning. Moreover, while the percep-
tual image depends on the extracted features themselves, the DV components
are independent of the nature of the stimulus. For instance, when an animal
is faced with a quickly moving object, the perceptual image holds informa-
tion whether it is a big object, or it is approaching the animal, while the DV
addresses issues such as fear, attention, curiosity. The perceptual image is
geared towards feature extraction from stimuli, while the DV holds its imme-
diate meaning. Although the DV concept is essential to the definition of the
model, the perceptual image is not. But this does not discard the usefulness
of the concept. For instance, consider using the reduced set of features to
indez the memory, to narrow the search for cognitive matches [61, 60]. In
the implementations presented in chapter 4, some of them use perceptual
images.

3.6 Memory Issues

When the agent is faced with a relevant stimulus, the cognitive and percep-
tual images as well as the DV are associated and stored in memory. But
how can the agent know whether a stimulus is relevant or not? Of course it
cannot store every stimulus it perceives, flooding the memory with useless
data. But it is not desirable to be too conservative, taking the risk of missing
information that may later prove to be useful.

At a first stage, strong perceptual images are the only way to indicate
relevant stimuli. The cognitive images associated with these stimuli are to
be associated with the respective DV, and stored in the agent memory. The
idea behind this association is the somatic marker hypothesis [18].

latter was considered. But one may imagine the “facts” kind of memory as association
between cognitive images. These associations must however support an additional repre-
sentation to specify how these two images are related.
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When later on the agent faces a similar stimulus, say, recognizes the cog-
nitive image, it is able to recall a previous association, and act accordingly.
Consider, for instance, the agent approaching an unknown object. When
close enough, the object “bites” it, causing a very “negatively” charged DV
(meaning that the DV assessment indicates a “negative” stimulus). The
agent associates the (cognitive) image of the object with the perceptual im-
age and the DV. When later on, it faces the same object, it refrains from
approaching the same object, from a distance. Although the DV (directly
mapped from the stimulus) does not reveal immediately the danger of the
approach, the agent recognizes the cognitive image, and recalls the “nega-
tiveness” of the encounter.

As cognitive images were defined as complex representations, this match-
ing process can be rather slow. But keeping in mind that the perceptual
layer works in parallel with this matching mechanism, it is able to detect
some stimuli deemed relevant, prior to the completion of the matching pro-
cess. The perceptual layer, due to its simpler and faster nature, is able to
deliver a quick response. Furthermore, this response can indeed help the cog-
nitive matching process, narrowing the possibilities, for instance. Because of
the adaptability of the perceptual layer, as the agent interacts with the en-
vironment, and finds new stimuli that are considered essential, this guidance
to the matching process becomes more and more refined. The DV and/or
the perceptual image can provide a useful help in this process.

3.7 Learning

Reiterating the learning issue, this model encompasses two distinct learning
mechanisms: cognitive and perceptual. Perceptual learning is the adapta-
tion that the immediate direct mapping between stimuli and DV undergoes
through time. Cognitive learning also involves the perceptual layer, in the
sense that associations also involve the DV. But unlike the perceptual mem-
ory, this memory is organized in events. Each association stored in memory
corresponds to a single event, that led to the association. Furthermore, these
associations may be related to one another by the means of other structures,
which may for instance hold what could be considered as context. The cog-
nitive layer may handle a complex web of knowledge representation. But the
way this web is constructed and used, depends on perceptual representations,
namely the association of cognitive images with DV instances.

Higher cognitive abilities, like reasoning and planning can be conducted
primarily at this cognitive layer. The activation and recalling process is not
restricted to the matching mechanism. The process of searching the memory
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for a matching cognitive image is just a first level approach. Other processes
could trigger the intervention of stored associations. And this suggests that
high-level processes can endorse more complex cognitive abilities.

3.8 Decision and Action

The difference between “action” and “decision” lies in the fact that while the
former is externally observable (in terms of the agent actuators operating on
the environment), the latter is not, being an internal phenomenon. However,
the agent’s actions are a consequence of the agent’s decisions.

From the double processing paradigm, two kinds of decisions have to be
combined: there is an immediate decision provided by the perceptual layer,
resulting from the basic assessment delivered by the DV, and a decision
resulting from the cognitive processing. Although the DV can be mapped di-
rectly to a decision, the same does not happen with a cognitive image. When
the agent is first faced with the environment there is no way to generate deci-
sions from cognitive images alone, because the only built-in mechanism able
to produce actions lies in the perceptual layer. The DV plays an impor-
tant role here, because it is able to bridge the gap between the DV-decision
mapping and the cognitive layer.

Although the decisions generated by the agent are mainly considered here
as resulting from a DV-decision mapping, this does not validate the existence
of purely cognitively derived actions. Consider, for instance, the process of
supervised learning. Several actions are shown to the agent (assume that
they are correctly perceived and represented as cognitive images), some are
shown to be “good” and others to be “bad.” This suggests that the agent
associates images of actions (in the cognitive layer) to certain DV instances.
In the future, when faced with the necessity to plan a sequence of actions,
the agent my recall these learned actions, stored as cognitive images, and
decide to act based upon them. In this scenario it cannot be said that a
DV-decision/action map suffices. A mechanism to store action schemes and
to generate actions through the cognitive layer is required.

In fact, the faces implementation to be described in chapter 4 uses a
simple chaining mechanism, from which actions can be derived. This mech-
anism resides in the cognitive layer. Notice that this chaining device allows
the agent to plan a sequence of actions, suggesting a way of implementing
planning with this model.
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3.9 The Complete Picture

The purpose of this section is to give a complete picture of the model to the
reader. The above concepts and mechanisms are here gathered into a whole.
A diagram of the model is presented in figure 3.1.

Cognitive Layer
memory

Ic <

Simuus \ )

| P HDV - HQ —~ Action

Perceptual Layer

Figure 3.1: The complete picture of the proposed model, containing all the
components discussed in the above sections. (see figure 3.2 for memory struc-
ture details)

Here follows a summary of how the model works: in response to an ex-
ternal stimulus, the cognitive and the perceptual layer process it in parallel.
At the perceptual layer, there is a direct map between stimuli and the DV.
When the agent is built, a part of this mapping must already exist, in order
to allow it to bootstrap. Furthermore, this map is adaptive. This forms a
kind of implicit memory, termed perceptual memory. On the other hand,
the cognitive processor looks into the main memory for matches of the cog-
nitive image. This memory contains experienced associations, but unlike
the perceptual memory, these associations are individually stored as repre-
senting events®. These associations contain both the cognitive image, the
corresponding DV, and the perceptual image (if implemented). The origin of
this DV comes primarily from the perceptual layer, but one can also consider
propagating DV instances from other associations. This is a way to allow
the agent to associate cognitive images to DV instances, even when faced
with a situation where the input stimulus does not deliver (in the perceptual
mapping) a significant DV. This memory is here termed main memory. The
working memory holds the input cognitive image, the DV (and optionally the
perceptual image), as well as the results from the matching process (or any

6Note that in the future, other kinds of representations other than events may be placed
in this memory.
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other higher-level cognitive processes). Figure 3.2 illustrates these memory
structures. The action, in response to the stimulus (if any) comes primarily
from the DV, although there is provision for actions originating from the
cognitive layer. If the agent decides on any action, it may produce alter-
ations in the environment, which can be perceived by the agent as a feedback
stimulus. This new stimulus tells the agent the result of its action. It is fed
into the architecture, in order to make the agent learn. This learning can
be accomplished at several levels: at the perceptual layer, it can adapt the
perceptual map to be sensible to new stimuli, and at the cognitive layer, it
can mark (one or more) cognitive images with the DV, along with the action
that led to the environment feedback.

Main Memory Working Memory
!
‘ yos Matching Results
Cognitive Image (Ic) Perceptual 1mage (1p) e / ‘
I
(ITTTTTT] SRR —T—
/? 7 EREEREEE]
Desirability Vector (DV) Ip [TTTTTTT] Desirability Vector (DV)
CITTTT] oV

Figure 3.2: Memory structure of the main and working memory.

Note that these descriptions are deliberately vague on some issues. There
are several degrees of freedom left. For instance, how the switch between
cognitive actions and perceptual actions works — the former kind (when
present) may override the latter, but for strong DV instances, it may be
important to ignore the cognitive outcome. Or since the perceptual layer is
able to deliver an action prior to the cognitive layer, shall it act immediately,
or shall it wait for a more precise cognitive assessment? Once again, it may
depend on the gravity of the situation. Another degree of freedom is the way
new associations are established. They can be established as soon as stimulus
triggering DV components reach the agent, and/or after the environment
feedback.

This section tried to offer a global description of the model in as much
detail as possible, but in the implementations that will be discussed in the
next chapter, several simplifications were made. These simplifications were
done not only to narrow the issue under experimentation, but also to make
the interpretation of results clearer.
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Life is like music; it must be composed by ear, feeling,
and instinct, not by rule.

Samuel Butler

Art is not a handicraft, it is the transmission of feeling
the artist has experienced.

Leo Tolstoy
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Chapter 4

Experimentation

Summary

In this chapter, three implementations are presented, as well as the obtained re-
sults. These implementations correspond to different stages of the development of
the model, so the early ones denote some divergences from the final picture pre-
sented in the last chapter. In the first one (termed damasio), a basic marking
mechanism is tested, while the second one (faces) shows some consequences from
the intermizing of the cognitive and perceptual processing. The third implementa-
tion (decks) is a simulation of the decks experiment described by Damasio ([18]
page 212), showing similar results to the ones obtained with the normal subjects
and the patients with frontal lobe damage.

This section describes three implementations that went along with the
development of the model. Note that some issues in the early implementa-
tions bore modifications up to the latter ones. The following sections should
be understood as snapshots of three views of the model through its evolution.

All implementations presented share the same execution model. The
agent lives in an episodic environment. Each episode starts with the pre-
sentation of a stimulus, followed by the agent decision (and action when so
decided). Except for the first implementation, the environment responds
to this action with another stimulus. This corresponds to the environment
feedback for the agent action.

In each episode, the agent performs the following sequence of steps:

1. Double processing of the incoming stimulus S, extracting a cognitive
and a perceptual image — I and Ip;

2. Use these extracted images to search the agent memory, and copy the
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similar ones to the working memory. This task can be helped by the
perceptual image Ip;

3. Using all the information gathered in the working memory, build an
assessment of the stimulus;

4. Form a decision, and possibly an action to be taken;
5. Receive the feedback from the environment;
6. Update the agent memory.

All these steps are not necessarily present in all implementations. But they
form the guidelines of what the agent is supposed to do.

The following implementations were written in ANSI Common Lisp lan-
guage [33, 29|, using the CLISP implementation [30], running on the Linux
operating system [41]. The graphical interface for the faces implementation
used the Tcl/Tk scripting language [43, 15], in addition to a Common Lisp
core.

4.1 Implementation: damasio

The first implementation, called here damasio, was an attempt to experiment
with the somatic marker mechanism. The motivating idea was to obtain
the kind of behavior found when people associate a thunder with the flash
of lightning. In this metaphor, the thunder corresponds to the perceptual
image, while the flash to the cognitive one. Once the agent associates this
two images, when in the future it only sees a flash of lightning, it immediately
“expects” the thunder.

Working Memory

Cognitive

Learnt Mark
Image

Main Memory Decoder Decision

Somatic Mark Somatic Response

Perceptual |:“>
o

Figure 4.1: Architecture of the damasio implementation.
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The architecture of this implementation is shown in figure 4.1. The agent
perceives external stimuli through two channels: the cognitive part of the
stimulus (e.g., the flash of lightning), and the perceptual one (e.g., the thun-
der). For simplicity, these inputs are bidimensional vectors. There is a
(short-term) working memory, where the present input is used to recall past
associations, and an output is obtained; and a (long-term) main memory,
where associations are stored throughout the agent life. The recalled associ-
ations are combined with the environment input to derive a body response
(labeled “somatic mark”). This body response (labeled “somatic response”)
is used to trigger a decision (positive or negative, for simplicity — “is it
good?” or “is it bad?”), and to update the association, depending on its
similitude to the stimulus.

The architecture works as follows: each stimulus corresponds to a pair
(cognitive, perceptual) of vectors. The cognitive vector is copied into the
working memory, and the main memory is browsed for similar vectors. For
simplicity, all associations from the main memory are considered, but only
a pre-defined number of them are copied into the working memory. For
each main memory association, the similarity between its cognitive vector
and the incoming one is computed and registered. The *max-wm-images* (a
numerical constant) higher value associations are chosen and copied to the
working memory. In the working memory, these associations form frames.
A frame contains the recalled association (the cognitive vector and a mark
vector), and the similarity measure. Next, each of these frames are combined
with the perceptual input. Figure 4.2 shows this mechanism in detail.

Marker

Relevance —v—nﬁ

1-A Learning

Parepua :%%Ej@ﬁ@*@ﬁ

Somatic Response
New Marker

Figure 4.2: Marking mechanism in the damasio implementation. A body
response (“somatic response”) and an updated mark is computed, from the
perceptual input, the old mark, and a similarity measure.
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Using the perceptual image, the mark, and the similarity measure (termed
“relevance”), a body (“somatic”) response and an updated mark are com-
puted. This mark is associated to the originating association, and supersedes
the corresponding association in the main memory. Note that the incoming
stimulus always forms a new frame in the working memory, and its mark is
initially put to zero (null vector), and the similarity measure put to 1 (max-
imum similarity). These operations are performed according to the formulas

R=Mp+(1—\)sM (4.1)

M'= M +nsR (4.2)

where Ip stands for the perceptual image, M and s for the current frame
mark and its similarity measure, R the body response, and M’ for the up-
dated mark value. The rationale behind equation (4.1) is to linearly interpo-
late between the present perceptual image and the body response marked on
the recalled image, weighted by the similarity measure s (relevance), which
ranges from 0 (not similar at all) and 1 (maximum similarity). This interpo-
lation is controlled by the A coefficient (0 < A < 1). The role of s is to allow
the recalled mark to influence the outcoming somatic response R, depending
on the similarity found between the present stimulus and the recalled one.
Strong marks on very similar stimulus should provoke higher body responses
than less similar ones. This similarity measure s accounts not only for the
cognitive image similarities, but also for the perceptual image. With respect
to (4.2), the idea is to update the new mark M’ according to two coefficients:
the similarity measure (the more similar the stimulus is, the more it should
be updated), and a learning rate 7.

As it was previously noted, both the cognitive and perceptual images are
bidimensional vectors, as well as the referred marks. The similarity measure
is evaluated using the following expression:

d(u,v) = exp [t\/(ul — u3)” + (v — vp)° (4.3)

where u = (u1,us) and v = (v1, ve) are the considered images. The constant
t < 0 conditions the decay rate as u and v become apart. This constant can
be interpreted as a tolerance value — “how much shall T consider this (non-
identical) image pair similar?”. The expression used for measuring mark
similarities is the same. The total similarity, between the stimulus and the
recalled frame is weighted by £ (0 < £ < 1) between these two measures:

s = &d(Io, 1¢') + (1= €)d(Ip, M) (4.4)
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where I and IY denote the input and the recalled cognitive images.

In this implementation there is no perceptual feedback. Associations are
built directly from the stimulus. Furthermore, there is no resulting action.
The mark vector is interpreted as the first component being the amount of
positiveness, and the second being the amount of negativeness. The DV can
be understood in this implementation as being equal to the perceptual im-
age. A classification is computed for each working memory frame, as being
the difference between the first and second components. Its purpose is to
measure the assessment of the frame (“good” if positive, and “bad” if nega-
tive) as well as how strong that assessment is (absolute value). The strongest
frame (higher classification, in absolute value) is picked as the agent’s final
assessment of the stimulation.

The experimental setup for this implementation comprises three phases.
First, a set of four stimuli was presented, two of them strongly positive, and
the other two strongly negative. These stimuli are called A1-, A2+, A5+,
and A4-. The ending signal is + or - depending whether they are positive
or negative. The location of the stimuli in the Cartesian plane is shown
in figure 4.3 as black filled balls. Positive stimuli have perceptual image
Ip = (0.8,0) while the negative ones have Ip = (0,0.8). The agent was
sequentially stimulated with this set of four stimuli four times, in order to
get them clearly marked in the agent memory.

A2+ B2
9 ® O
8 g1l LINE
A3+
L2
-1 | B3+
-2 601 78 10
C4___ B4| “ca+
s -
Ad- c1-,co+

Figure 4.3: Location of the stimulus cognitive image vectors in the damasio
experiment. The coordinates of each point in the Cartesian plane denote the
bidimensional vector of the corresponding cognitive image. See text for the
experiment description, as well as the used notation.
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Next, a series of four stimuli with null perceptual image Ip = (0,0)
were applied. These stimuli are denoted B1+, B2-, B3+, and B4-, where
the signal now represents the agent’s assessment, i.e., whether the strongest
classification is positive or negative. As expected, these results are consistent
with the closest stimuli experienced in the first phase. This shows that after
the agent being submitted to a set of “strong” stimuli, it learned, and when
stimulated with null perceptual image stimuli, the agent was able to classify
them according to its previous experience. An abridged and annotated out-
put of the implementation can be seen below, where for each stimulus, the
“strongest” frame is shown:

> (percept-image ’#(7 8) ’#(0 0)) ; Bl
Strongest image:
image= #(8 9)
relevance= 0.3944934
marker= #(0.9216685 0)
response= #(0.2545145 0)
classification= 0.2545145 ; +
> (percept-image ’#(10 9) ’#(0 0)) ; B2
Strongest image:
image= #(10 8)
relevance= 0.49430355
marker= #(0 0.9216685)
response= #(0 0.3189088)
classification= -0.3189088 ; -
> (percept-image ’'#(0 0) ’#(0 0)) ; B3
Strongest image:
image= #(-2 2)
relevance= 0.24728459
marker= #(0.9216685 0)
response= #(0.15954009 0)
classification= 0.15954009 ; +
> (percept-image ’#(-1 -1) ’#(0 0)) ; B4
Strongest image:
image= #(-2 -3)
relevance= 0.2855023
marker= #(0 0.9216685)
response= #(0 0.18419695)
classification= -0.18419695 ; -

In this output dump, the presentation of a stimulus starts with the
(percept-image ...) expression in the LISP interaction, followed by in-
formation regarding the strongest image in the working memory. Note the
sign of the classification output.

Finally, an experiment to test the “expert discrimination” capability of
the agent followed. A stimulus C1- with null perceptual image was applied,
and as expected, the agent answered with a negative assessment (closest to
A4-). Then, a positively marked stimulus C2+ was applied (Ip = (0.8,0)).
Two “colorless” (Ip = (0,0)) stimuli, C3+ and C4-, were applied, resulting
in a positive response to the first and a negative to the second. Given a new
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scenario with the new stimulus C2+, the agent answered coherently, showing
its ability to discriminate between C3+ and C4-:

> (percept-image ’#(0 -3) ’#(0 0)) ; Ci
Strongest image:
image= #(-2 -3)
relevance= 0.30826822
marker= #(0 0.8)
response= #(0 0.1726302)
classification= -0.1726302 ; -
> (percept-image ’#(0 -3) ’#(.8 0)) ; C2+ <-- strong stimulus
Strongest image:
image= #(0 -3)
relevance= 1
marker= #(0.8 0)
response= #(0.8 0)
classification= 0.8
> (percept-image ’#(0 -2.5) ’#(0 0)) ; C3
Strongest image:
image= #(0 -3)
relevance= 0.68522453
marker= #(0.8 0)
response= #(0.38372573 0)
classification= 0.38372573 ; +
> (percept-image ’#(-2 -2.5) ’#(0 0)) ; C4
Strongest image:
image= #(-2 -3)
relevance= 0.68522453
marker= #(0 0.69274604)
response= #(0 0.3322806)
classification= -0.3322806 ; -

These experiments were performed setting the parameters A = 0.3, n = 1,
¢ =028, ¢t = —1, and the working memory was limited to 5 frames. These
constants condition the behavior of the agent in ways that allow some inter-
esting considerations on possible interpretations. For instance, taking the A
parameter, which interpolates the somatic response between the perceptual
image and the recalled mark, when significantly reduced (say, A = 0.05),
makes the agent less sensible to the perceptual image, relying more on its
past experience than in present reality. Consider that right after the ini-
tial sequence of stimuli A7-A4, is applied a stimulus with cognitive image
(10,9) (same as B2) and perceptual image set to (0.4,0) (mild positive).
With A = 0.3 the agent accepts the new stimulus, attributing a positive
classification (it disregards the “negative experience” of A1-):

Strongest image:

image= #(10 9)
relevance= 1
marker= #(0.4 0)
response= #(0.4 0)
classification= 0.4 ; +
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But when the A parameter is reduced to 0.05, the agent disregards now the
positive perceptual image, assessing the stimulus as negative (due to the
influence of A1-):

Strongest image:
image= #(10 8)
relevance= 0.49430355
marker= #(0 0.9216685)
response= #(0.020000001 0.43280482)
classification= -0.4128048 ; -

How can this behavior be interpreted? The A parameter plays an interesting
role of making the agent more or less trusting of the perceptual, when faced
with a contradictory past experience. This result has some similarity with a
“superstitious” behavior.

This implementation deals only with the marking mechanism. The stimuli
are very basic, not reflecting the complex nature of the cognitive memory.
Furthermore, there is no action (and consequently no perceptual feedback).
Associations are always done, filling the agent memory with data that may
not be relevant. But the results are interesting, in the sense of showing the
marking and the memory retrieval mechanisms.

4.2 Implementation: faces

This implementation presents several sophistications over the preceding one.
The objective is to experiment with more complex stimuli models, as well
as the environment feedback. So, the stimuli (equal to the cognitive images)
are a square set of polychromatic pixels (16 x 16). The mapping between the
stimulus and the DV is fixed by design. In fact, the perceptual map discussed
in the section 3.3 used the perceptual image as an intermediate representa-
tion. This perceptual image contains a set of basic features extracted from
the stimulus. These features are then mapped to the DV. Both maps are
hard-wired.

The agent perception of the environment is limited to the 16 by 16 pixel
images. Each pixel is one of blank (background), black, green, or red. The
agent can take one of three decisions: none (inaction), accept, or reject.
The environment is episodic. Each episode starts with the presentation of a
stimulus, the agent is then allowed to produce an action, and then the envi-
ronment responds with another stimulus (feedback). The perceptual features
extracted are: number of red pixels (assessment of “redness”), number or
green pixels (assessment of “greenness”), and total number of non-blank pix-
els (measure of object size). The DV has three components: three boolean
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components, indicating whether or not the stimulus is “good,” “bad,” or
“deadly” (i.e., very dangerous). The perceptual image is mapped into the
DV using a set of thresholds. For instance, if the total number of pixels is
above a pre-determined threshold, and the number of green pixels is above
another threshold, the “good” components of the DV is activated. In this im-
plementation, the presence of green pixels corresponds to a “good” stimulus,
while red pixels denote a “bad” one.

The model of this implementation is depicted in figure 4.4. The cognitive
layer uses both the cognitive and the perceptual images to find for a memory
match. The perceptual image is first used to select a limited set of candidate
memory associations (termed memory frames)!. From those, the cognitive
image selects the best match. If two conditions hold, the frame action is
selected. Otherwise, the direct perceptual path is used to derive the action.
These conditions are: there is a match, the difference measure between the
cognitive image and the memory frame is below a certain threshold. This
difference measure is simply the Hamming distance between the two images®.

Memory Structure

matching ‘
/ o o [IGl]
learning P
| Ic
Simulus I ov [ 15]
(Acton]Frame
v - e
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Figure 4.4: Architecture of the faces implementation.

A memory frame contains the cognitive and perceptual images, the DV,
and an action list. This list consists of pairs (action, future frame), and is
used to decide on the next action, based on the past experience. When a
memory frame is selected as a match for the current stimulus, its action list is
browsed, and the action that leads to the most favorable scenario is chosen.
Each scenario is evaluated according to its DV (the positive component means
+1, the negative -1, and the “deadly” -10; the heuristic to be minimized is
the sum of the values of the corresponding activated components). If no
match is found, or there is no action list, the agent acts accordingly to a

!Note that this is an implementation of an indexing mechanism raised in the section 3.5.
2The Hamming distance is the number of pixels differing between the two images. See
[54] for a definition and related issues.
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built-in DV action map (negative or “deadly” leads to a reject, positive to
an accept, and none otherwise).

After the agent action, the feedback stimulus is applied to the architec-
ture, and the resulting memory frame is stored in the main memory. Fur-
thermore, the action list of the original stimulus frame (before the action be
performed) is updated/set, pointing to the feedback frame. Next time the
agent faces a similar situation where this frame is recalled, it will know what
to expect from the corresponding action.

An illustrative experiment will be presented below, consisting on a se-
quence of stimuli. In the following screenshots, green pixels are denoted
by (8), and red pixels by (#). Prior to the agent first stimulus, the memory
is blank. The first stimulus (figure 4.5) consists in a smiling face silhouette
with some green pixels (a perceptually positive DV). The agent uses the per-
ceptual assessment indicating an accept action. The environment responds
with a all-green face (i.e., positive DV). The corresponding association is
formed and stored in memory.

[m] Faces [X|
HAPPYZ (REJECT ACCEPT) ||  Stimulus Action Feedhack
HAPPY3 (ACCEPT REJECT) I ACCEPT
HAPPY (REJECT ACCEFT) |
WEIRD {REJECT) & 2 i &
" —" B <oxonoxy
Agent Log
Created agent WEIRD. S
Created agent HAPPY.
Created agent HAPPYI.
Created agent HAPPYZ.
Presenting agent HAPPY to EmoSys
recall-memory: nothing found. ..
[1] Generate new frame
[2] new frame
] 4
i =

Present Stimulus | Load Environment | Save Log | Quit |

Figure 4.5: Screenshot of the faces implementation: a smiling face with
some green pixels.

Next, a colorless face, which is similar to the first one, is presented (fig-
ure 4.6). The agent recalls the previous association, and chooses to accept
the stimulus. However, if this stimulus were presented without the former
association, the action would be none — the stimulus would be mapped by
the perceptual layer to a null DV.

An interesting result is obtained when now, a similar face is shown, con-
taining some red pixels (figure 4.7). In this case, the recalled association is
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" —" B coscoxom
Agent Log
Presenting agent HAPEY to EmoSys S

recall-memory: nothing found. ..
[1] Generate new frame

[2] new frame

Presenting agent HAPPYZ to EmoSys

recall-memory: from 1 got 1 frames w/ min=8

[1] Got the hest diff/wvalue match
[2] replace next-frame

{

i =
Present Stimulus | Load Environment | Save Log | Quit |

Figure 4.6: Screenshot of the faces implementation: a similar smiling face
all in black.

used to override the perceptual impulse to reject the stimulus. This case
illustrates the role of the cognitive layer in providing a more refined response,
than the basic perceptual one. Using the same line of reasoning, if this stim-
ulus were shown prior to the first of the sequence, the agent would reject
it.

At last, a different face is shown (with some red pixels, figure 4.8), and unlike
the previous stimulus, because this face is “unknown” to the cognitive layer,
the action is reject, following the perceptual negative assessment.

Other experiments were performed with the architecture, showing further
interesting results. For instance, if the acceptance of the stimulus of the fig-
ure 4.5 had a negative response (e.g., a very “red” face), next time that same
stimulus were presented, the agent would choose another action. When the
action resulting from a given stimulus is answered with a negative response,
the agent will not repeat the mistake — other actions are “tried” in a search
for a better response. The frame that this action points to has a negative
DV, making the agent to avoid it.

The role of the built-in knowledge in this implementation stands out very
clearly. The mechanism that is behind the agent behavior facing environment
stimuli, is encoded in the perceptual layer. Namely in the perceptual mapping
between stimuli and the DV. It is on top of this layer that the cognitive
layer works. When the simplicity of the perceptual layer is not sufficient to
cope with a complex environment, the cognitive one jumps in, providing the
“knowledge” gained from past experience.
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Figure 4.7: Screenshot of the faces implementation: a similar smiling face
but with some red pixels (the “eyes”).

4.3 Implementation: decks

The aim of the decks implementation is to reproduce the results of the deck
game (section 2.3, figure 2.7) described by Damasio ([18] page 212), using
the proposed model. In particular, to obtain the two divergent results of the
normal and frontal patients (i.e., with damaged frontal lobes), allowing the
agent to use or not the marking mechanism (association).

In a simplified version of the original game [3, 4], decks A and B usually
give $100 except for a few cards that make the player lose -$1250, while decks
C and D usually give a lower value of $50 where there are more frequent losses
of -$250. The net profit of decks A and B is negative, while decks C and D
provide a positive one.

In terms of the implementation, the environment is episodic, with an
environment feedback phase. First, four stimuli are simultaneously presented
to the agent (four symbols, corresponding to the four decks: A, B, C, and D).
The agent action is simply the choice of a deck. The environment responds
with the amount of money gained/lost. FEach stimulus encompasses a pair
of card deck symbol and money amount gained (negative, if lost). In the
first phase, the second components of all stimuli are null (the card amount
is obviously hidden). Only after the action the reward associated with the
chosen card is revealed. The perceptual layer only extracts the money amount
(the perceptual image), while the cognitive layer extracts the symbol. There
is no point in including more complexity in the cognitive image, the symbol
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Figure 4.8: Screenshot of the faces implementation: a distinct face with
some red pixels.

suffices to the proposed objectives. Furthermore, since the environment is
very simple (only four distinct decks), the symbolic representation is enough
to identify each deck (however, the number of decks is not hardwired in
the agent program). The DV has only two (boolean) components, one for
positive and other for negative assessment of the deck. The mapping between
the perceptual image and the DV activates the positive component if the
amount greater than zero, or the negative component when it is less than
zZero.

The model of this implementation is identical the one represented in fig-
ure 3.1. An important innovation with respect to the previous two imple-
mentations is the adaptability of the perceptual layer. Both kinds of learn-
ing are implemented: the cognitive event-based learning, and the perceptual
mapping-based learning. When the agent is faced with the four decks, the
perceptual layer is able to give an immediate assessment of the desirability
of each deck, while the cognitive layer browses the memory for past events
associated with each deck. With all this information in the working memory,
the agent decides which deck to choose.

The working memory is organized in clusters of frames. Each cluster
corresponds to a specific deck, and contains the input stimulus (the deck
symbol only), the perceptual frame (the expected perceptual image and the
expected DV, or in other words, the expected amount of gain/loss), and the
frames recalled from memory (obtained by the cognitive layer). When each
frame is complete, a representative frame is chosen for each cluster. Then, all

45



the clusters with a negative DV are rejected, and a deck is randomly chosen
from the remaining ones. In fact, the perceptual value is used to weight this
random choice, in order to make the agent prefer higher value cards. But
if all clusters are rejected, then the action is randomly chosen from all the
available decks, also using a weight factor.

After choosing the deck, the environment responds with a feedback stim-
ulus, now containing not only the symbol of the deck, but also the amount
of money gained/lost. This information is used to update the perceptual
map (according to a learning rate), and to add the frame to the main mem-
ory, associating the cognitive and the perceptual images, along with the DV
(mapped from the perceptual image, i.e., the amount of money). This per-
ceptual image can be interpreted here as the expected gain. In the perceptual
layer learning, the update rule of this expected value is simply:

Vi=0V,+ (1—0)V, (4.5)

where the new memory frame expected value V! is interpolated between its
former value V;,, and the feedback value V},, using the learning rate 0.

In order to simulate the behavior of the frontal patients playing this game,
the agent was prevented from recalling memory frames. Then, the perceptual
layer was left alone to decide which deck to choose, preferring the decks A
and B, because of the most frequent $100 cards. As an example, setting
the learning rate parameter to # = 0.001, the obtained results, shown in
figure 4.9, are clearly similar to the Damasio experiments results of figure 2.7.

45 T T T :I
Normal
403 =
Impaired
30 3

Picks

204

104

Figure 4.9: Results from the decks implementation. The average number of
picks for each deck is shown. The average was taken over 200 experiments of
100 turns each. The # parameter was set to 0.001.
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These results illustrate the distinct natures of the learning process per-
formed by each layer. But they are not to be considered separately. Although
the perceptual layer is able to work by itself, the same cannot be said about
the cognitive layer. This is because the cognitive layer uses the perceptual
representation, in order to contribute to an overall enriched behavior.

There can be no transforming of darkness into light and
of apathy into movement without emotion.

Carl Gustav Jung

The heart has its reasons which reason knows nothing of.

Blaise Pascal, “Pensées”

47



Chapter 5

Conclusion

Summary

The first section of this chapter addresses the question of what the consequences
of this model are, both in the conceptual and experimental sides. Next, a set of
open issues is presented, which could not be answered in the context of research.
Finally, future directions of this work are elaborated and discussed.

The goal of this thesis is twofold: the discussion of a model for emotion-
based agents, raised from neurophysiological findings, and the presentation
of some experimentation of the model. The formulation of the model is still
in an early development stage.

5.1 Consequences

From this thesis, some consequences of the model can be discussed. The first
consequence is the ability to associate two levels of representation: a complex
(cognitive), and a basic (perceptual) one.

The built-in part of the perceptual layer is essential to allow the agent
to bootstrap. It can be said that the basic, irreducible goals (objectives,
motivations, desires, and so on) of the agent are implicitly encoded in this
built-in. Of course it cannot account for all the goals that can be identified
with the agent behavior, they form only the basic ones.

Another consequence of the model is its ability to provide relevance. Only
the stimuli that bring about (directly, by memory matching, or by other
higher-level associations) a non-null DV are relevant, in the sense that they
mean something to the agent. The agent is insensitive to all others. Note that
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this does not discard curiosity, since an unknown stimulus may elicit a DV
component that would make the agent “explore” it, i.e., to adopt a course of
action that would allow the agent to interact with that origin of the stimulus.
It just discards uninteresting aspects avoiding a cognitive saturation.

Provided that the agent is able to decide appropriately about certain
stimuli through the perceptual layer (i.e., the mapping from stimuli to the
DV) alone, then these stimuli can be said to be meaningful to the agent!. But
since the model is able to associate stimuli irrelevant for the perceptual layer
to certain DV instances, these new associations can be also said to provide
meaning, and of a more sophisticated nature than the former. Recalling John
Searle’s argument that machines cannot understand [51], raising the Chinese
Room metaphor, a confrontation with the model can be attempted. Searle’s
argument is that as long as he has a sufficiently complete formal rule-book, he
is able to answer any question formulated in Chinese about any given Chinese
story. From outside the room, it can be said that an understanding of Chinese
is accomplished, when the man inside the box does not understand a word
of Chinese at all. This is so because the man inside the box just manipulates
symbols which are meaningless to him, according to the provided rule-book.
But now, imagine that some symbols cease from being senseless, and can be
identified with some basic built-in associations. For instance, some symbols
become colored, where colors now do mean something to the man inside: red
means bad, green means good, blue means important, and so on. Although
this is far from helping him to derive a syntax, some semantic content can
already be grasped, at least in a basic level, provided that the coloring scheme
is coherent. At a first level, some symbols become meaningful, even if from
some point on, the coloring stops. The man is able to remember previous
colorings, and recall them when faced with monochromatic writing. At an
another level, by association, the man becomes able to assign meaning to
other symbols, for instance, if some symbol always appears close to a red-
colored one, in the stream of text. Applying the model to this metaphor, the
colors can be understood as the built-in part of the perceptual layer, that
activates certain DV components, depending on the color of a symbol. A
complex meaning scheme can be erected by the cognitive layer, driven by
associations with DV instances. In this sense, the model can be thought of
as a meaning engine [63].

Focusing now on the double-processing paradigm, two consequences can
be extracted. First, an efficient way of looking up cognitive matches, by the

'See [37] for a discussion on whenever a stimulus is “meaningful” to a machine. In
this paper, McCarthy states that when a change in the room temperature makes the
thermostat switch correctly, it can be said that the temperature change was a meaningful
stimulus to it.
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means of simpler representations provided by the perceptual layer. Since this
latter representation is assumed to be extracted very quickly, it can guide
the search for cognitive matches. Since the content of the agent memory
can grow drastically when facing a complex environment, this perceptual
guidance can help in narrowing the choices and avoiding an exhaustive search
for a match. This scheme was actually used in the faces implementation (see
section 4.2). A second consequence is the “expert discrimination” feature,
resulting from the ability to differentiate subtle differences, using the finer
cognitive matching mechanism. The discussion of damasio implementation
(section 4.1) shows some illustrative experimentation.

But does it make sense to state that the model provides “meaning,” or
“relevance,” or “understands” whatsoever? Recalling McCarthy’s argument
on ascribing mental qualities to machines [37], it does. One cannot hope
for some invisible magic to attain such mental qualities. Once they help
describing the model’s proprieties, while it “expresses the same information
about the machine that it expresses about a person” [37], it seems reasonable
to ascribe them to this model.

After all, does it make any sense to ask “where are the emotions and
feelings after all?” One can now resort to an analogous line of argumentation
as in the previous paragraph. Accepting McCarthy’s argument to ascribe to
machines the mental qualities referred to by him?, why not extend the concept
to the terms “emotion” and “feeling?” Damasio distinguishes emotion from
feeling as the latter requiring consciousness. This model does not address
consciousness. The consciousness issue is far from being understood, either
its physiological roots or philosophical description [31]. There seems to be no
agreement on this matter. So the discussion whether an agent is conscious
is put aside. Emotions however have a more concrete grounding. And the
answer to the question “where are the emotions in this model?” is correlated
with the role of the perceptual layer. The basic meanings provided by the
DV are indeed the agent emotions.

This follows not only from the model grounding in the way emotions are
described at a neurophysiological level, but also from the behavior attained
by it: certain stimuli are able to directly elicit a response from the DV,
other stimuli elicit it indirectly by the means of stored associations, and the
cognitive layer is able to block some primary perceptual layer responses. The
first two are what Damasio calls primary, and secondary emotions [18], and
the latter what LeDoux refers to as regulation of the rage, when discussing
animals with their cortex removed ([34] page 80)):

2McCarthy refers explicitly to the terms beliefs, knowledge, free will, intentions, con-
sciousness, abilities, and wants [37].
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Yet, the emotional behavior of decorticate animals (animals in whom the
cerebral cortex was removed) was not completely normal. These creatures
were very easily provoked into emotional reactions by the slightest events.
They seemed to be lacking any regulation of their rage, which suggested the
cortical areas (like Plato’s charioteer) normally rein in these wild emotional
reactions and prevent their expression in inappropriate situations.

Although the implementations presented in this thesis do not yet show
a behavior clearly identifiable with such proprieties as emotions and un-
derstanding, they do implement some aspects of the model and show some
interesting results. Namely, the damasio implementation showed the basic
association mechanism and how the cognitive representation can help pro-
viding expert discrimination. The faces implementation presented some ex-
periments on assigning meaning to complex representation as visual images,
being able to remember past associations. Finally, the decks implementa-
tion proposed itself to replicate a Damasio experiment to show the role of
the somatic marker, essential to the secondary emotions.

5.2 Open Issues

The presentation of the model still leaves several open issues. Namely, a
formalization of the model components and the way they interact should be
performed.

For instance, the lack of a clearer definition of the perceptual layer,
namely what the DV components shall address, given an environment and
a purpose to the agent. Of course the characterization of the environment
does not suffice to specify the perceptual layer. The goals and motivations
of the agent can be viewed as being encoded in the stimulus-DV mapping.
But the nature of this encoding has to be explored.

Many issues pertaining to the manipulation of the working memory, as
well as the process of deriving a decision from there remain to be researched.

The possibility of generating actions from the cognitive layer, and the
way they are orchestrated with the perceptual generated ones is also open to
further development.

There are some barriers that stand between the model and a real-world
implementation. It is necessary to bring the model out from the simple
episodic environments used in the presented implementations. A major step
would be to put the model working in a real robot, moving around a lab,
interacting with the objects it finds. But when trying to bridge this gap,
one faces the problem of representation. The model needs to have a spatial
representation, right in the basic and built-in perceptual layer. It needs to
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have mechanisms to isolate objects (assuming vision as its primary sensor),
and to assign meaning to them.

5.3 Research Directions

It is important to stress that this thesis presents a snapshot of the research
on this model. There are several ways this research can evolve. The open
issues outlined in the above section give some ideas. In this section, three
main research directions are presented.

First, the application of the model to a physical robot is a very promising
path for a number of reasons. First, to force the development of the model to
handle non-episodic real-world environments. This does not mean that the
internal workings of the model will not be episodic. The challenge is to adapt
its structure to an environment that is not presented in an episodic fashion.
Furthermore, the robotic platform raises a myriad of issues: there are sev-
eral things happening at the same time, unexpected events (e.g., collisions),
encounters with unknown objects, robustness to mechanical failures, and so
on. In particular, the RoboCup [48] may provide an ideal environment to
put these ideas into practice [59].

As it was said in the last section, such environments raise questions of
representation. The model is specially suited to handle image-like represen-
tations. Although symbolic systems have reached a high degree of sophis-
tication, the same cannot be said about spatial representations. The area
of diagrammatic reasoning [27] can have a lot to offer to this model. And
in the case of the robotic platform, this means spatial representation of the
surrounding environment. This is essential in order the model to be able
to isolate objects of interest (visually perceived), to consider their spatial
relationships, and to interact with them in the physical environment.

Finally, after gaining a more mature understanding of the model, provided
for instance the reaching of the above goals, it is essential to make a step
towards a formalization of the model: to define precisely each component,
and the way they all interact to form a whole. As well as gather formal
tools to assert what aspects shall be cognitive and perceptual, the minimal
richness that the DV shall provide, and so on. The ultimate objective of such
research would be to formalize a framework that would allow, in a systematic
way, to apply the model to a given specified environment, and to evaluate
its performance.
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A topic of world-shaking importance, yet dealt with face-
tiously; an android trait, possibly, he thought. No emo-
tional awareness, no feeling-sense of the actual meaning
of what she said. Only the hollow, formal, intellectual
definitions of the separate terms. [author’s emphasis]

Philip K. Dick, “Do Androids Dream of Electric Sheep?”

Dave, my mind is going! I can feel it! I can feel it!

“2001: A Space Odyssey”
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