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Abstract

In this paper, we describe the n-dimensional projective ap-
proach as a hierarchical and modular architecture with a
processing mechanism that underlies both spatial back-
tracking and multiple physical properties of entities. Also, it
is shown in Euclidean space how cognitive activities of an
agent are improved in terms of flexibility (e.g. alternative
solutions), reliability (e.g. error recovery) and performance
using this approach.

1. Introduction

Revisiting the spatial reasoning area some reseach work
concerned about one [1] and two dmensional spaces [2]
was done. But, with resped to three-dimensional [3] or
higher-dimensional spaces few work has been developed.
In qualitative spatial reasoning area some work has been
developed independently of spacedimensionality [4] but its
effectiveness deaeases exponentially in order to the number
of domain entities. Notwithstanding this drawback, some
ressoning techniques were developed to improve the
eff ectivenessof the reasoning process[5].

The n-dimensional projective representation is based on
simple geometricd concepts [6] that offer an effedive
reasoning processin a constrained Euclidean space[7].

In this paper, sedion 2 describes the n-dimensional
projective approach. Sedion 3 provides how multiple
physicd properties of entities and spatial badktracking can
be designed. Examples are shown in sedion 4. Finaly,
sedion 5 describes the conclusions.

2.The N-Dimensional Projective Approach

This approach is a hierarchicd and modular architecure,
where lower levels define the projective representation and
higher levels stabli sh the projective reasoning process.
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Figure 1: The n-dimensional projective architecure.
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2.1. Geometrical Concepts-Ground L evel

The ground level defines the projedive representation
foundations that are based on both kinds of concepts the
topdogicd like region and the geometricd like projective
axis, projective region vertex and projective axis vertex [6].
Eadh domain representation includes as many regions as
spatial entitiesthat exist inred world R={ry,ro,...,rc}. A
n-dimensional space S, is defined by an ordered set of n
projective axis S, ={A, As,..., Ay} . Each projedive ais
is an ordered set of projective axis vertices
A :{3'13'28',71} Given eah projedive ais vertex
must be a nonempty set of projedive region vertices
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9 =Vl Vi,

2.2. Primitive Positional Operators

The primitive positional operators {<<, =} define a
minimal model of the world upon a projective ais A, and

they have the following meaning: Vi, <<V, iff Vi, is
closer than V{, from the projedive adis origin; Vi, =V,

iff both end vertices of regions r; and rpare eyuidistant
from the projedive aisorigin.

2.3. Derivable Positional Operators

The derivable positional operators define the first symbalic
level of our architedure. These operators must be
responsive to introducing spatial semantic to the projedive
representation and they are asserted using the primitive
positional operators as described in [7].

2.4. Spatial Relations

This level includes the spatial relations st [Dutsidel eft,
OutsideRight, OutsidelLeftCoincident, OutsideRightCoin-
cident, CompletelyCoincident, Completelylnside, Inside-
LeftCoincident, InsideRightCoincident, OverlappedLeft,
OverlappedRightU applied to a region which are presented
formally in [6]. One of the most important purpases of this
level isto provide adeaoding from verbal knowledge into a
fairly projedive geometrica concepts and the oppaite.



2.5. Sub-Goal Generation

This level generates aib-goals readable from the current
state respeding spatial constraints. The spatial constraints
are understood as physicd properties of entities in the
environment. For example, an emboded system either
could aaqquire (e.g. high refledions on signal sonar could
signify an impenetrable entity, high temperature detedion
could imply untouchable entities) or could integrate (e.g.
white mlor could mean an impenetrable wall, red color
could be an urtouchable fire) this rt of knowledge. This
change level provides a red-time generation of consistent
sub-goals based on a method named projective sub-goal
generation (PSG). The PSG method classfies eah
projedive ais using three parameters, current state,
transition from current state to goal state axd goal state.
Each one of these parameters could take two dfferent
values for ead physicd property, violation(\VV) or non-
violation(N). The evaluation result for ead projedive ais
determines the set of sub-goals reatable from the airrent
state respeding spatial constraints asis shownin Table 1.

Current| Current | Goal | Sub-goal State for each Projective Axis
State | - Goal | State

N N N Goal State

N \Y Impossible

N \% N Goal or Current State

N \% V | Goa or Current or aNon-Violation Goa
\% N N Goal State

\% N V | Goal or Permutations of the Current State
\% \% N Goa State

V \ V| Goal or Permutations of the Current State

Table 1: The projedive sub-goa generation (PSG) method.
A resumed description of the PSG method follows. The
conditions (N, N, N), (V, N, N) and (V, V, N) describe
topdogicd configurations where the goal state must be the
next sub-goal. The ondition (N, N, V) is an inconsistent
condition that never happens in a @nsistent domain
becaise it isimpossble to go from a non-violating state to a
violating state without a property violation. With resped to
the (N, V, N) condition, the method evaluates the
topdogicd configuration over al other projedive ais. If
there eists at least one projedive ais that does not happen
a property violation then the goal state is the next sub-goal.
Otherwise is the aurrent state. The cndition (N, V, V)
refers a ternary solution situation depending on the
projedive &is topdogicd configuration. If al other
projedive ais violate the property then the solution is the
current configuration. If there eists at least another non
violating axis the sub-goal is a non-violating goal state. It
means a topdogicd configuration that respeds the
distribution of regionsin the goal state but without violating
the property. The third solution is when all axis share dther
anonviolating goal state or a goal state then the next sub-
goad isthe goal state. The aiticd conditions (V, N, V) and
(V, V, V) do not provide avy clue to solve the property
violation. Thus, it can be solved using a complete sub-goal
generation based on permutations among the regions
responsible for the violation. And the combination between
ead one of these permutations with the non-violating
regions. The generation of sub-goals based on permutations
might be interpreted as a breadth step into the dhanging
processthat esentialy should be based on depth steps to

find out solution paths with effectiveness. However,
breadth steps can be transformed in depth steps if the
system generates one permutation at a time and memorizes
these points on the changing processas badktracking points
to return to them later.

A property violation detedion depends on geometricd
charaderistics of the physicd property. Two spatial
properties of entities are considered in our system,
untouchable and impenetrable. All agorithms for
deteding the violation or the nonviolation of these two
physicd properties can be found in [7].

2.6. Movement of Vertices

Just two atomic movement operators generate change over
ead projedive region vertex aong each projedive «is:
MoveVertexLeft and MoveVertexRight. The dgorithms of
these two operators were described in [7].

2.7. Unconstrained M ovement

The one-dimensiona unconstrained movement algorithm
takes advantage using levels, the spatial relations and the
movement vertices, defined on precalent sedions. A
detailed description of this algorithm such as a study about
its complexity can be found in [7]. The n-dimensional
algorithm NDimProjectiveMove just requires executing the
one-dimensional agorithm so many times as the number of
projedive ais existing on domain model.

2.8. Constraint Spatial M ovement

This level uses both sub-goa generation level and
unconstraint spatial movement level. The key idea (see
figure 2) is to give to the sub-goal generation level a
postponing pair of states to get a omplete sub-goa plan.
Starting with the initial and final states to get the first sub-
goal. After that, the process repeas with the first sub-goal
and the final state to get a second sub-goal and so on until
get the final state a sub-goal. This postponing generation
of sub-goals is done by the Get Plan function that returns
either a complete sub-goal plan between two states or an
empty plan in case of fail. After that, this level provides
conseautive pairs of sub-goals to the wunconstraint
movement level, which cary out simple vertex motions
using the NDimSpatialMove function..

ConstraintSpatial Move(I nitial State, Final State)
OPlan= GetPlan(Initial State, Fina State);
WHILE (Plan£00) NDimSpatial Move(RemoveFirstSubGoal (Plan),
GetFirstSubGoal (Plan)); O
Figure 2: The dgorithm of constraint spatial move.

3.New Spatial M echanisms
3.1. Multiple Physical Properties

A physicd property is respeded using the PSG method hut
when an entity shares distinct physical properties, arelevant
question emerges. how can an autonomous artificial system
solve the interadion among entities? To solve this problem,
we found out a pradicd and empiricd solution that gives



topdogicd shorter paths. Consider N physicd properties,
represented as {P,,P,,..., Py}, the empiricd solution goes
through applying the PSG method in cascade N times to
eah one of those R . To find out paths topdogicaly
shorter is convenient to doa sort of all properties in terms
of spatial constraints such that B_; islesser constraint than
R, represented as B_; < P, . Then, considering this Patial
congtraint relations among al properties guch that
PL<Py<...<Py1 <P,, the system finds out the
topdogicd closer sub-goal from the current description

cascading the PSG method as shown in Figure 3.
Current State Sub-goal that respeds P,

Final Goal b-goal that respeds P and P,
[ ]

[ ]
The resulting Sub-goal
respects all properties.
————>

Figure 3: The methodto oltain a non-violating sub-goal.

3.2. Spatial Backtracking

Two questions arrive éout this important issue. What is
gpatial  badktraking? How can an artificia system
implement it? Spatial badktradking could be defined as a
spatial reasoning technique that allows an artificial system
to ohktain aternative solutions to the same topdogicd
problem. Particularly, a cmplete spatial badktrading
system for one-dimensional space generates from k
violating entities a maximum of k factorial different
solutions, that isto say, all spatial posshilities to distribute
k entities within the space Generdly, in a n-dimensional
space the dimensiondity of the problem increases
exponentially in order to n, thus the resulting complexity is

(k)" that defines a very hard NP-complete problem.

The second question is much more complicated to solve
becaise it is a pradicd problem and in a n-dimensional
space ay artificial system must not generate dl solutions,
becaise dl together are computationaly impossible of
memorizing and manipulating at the same time. However, it
has a pradicd solution that consists in each computational
time manipulating and memorizing just one of all solutions
and pastponing the process always that the user asks for
one different solution. This pastponing process requires a
spedal architedure that suppats a spatial deduction
medhanism. In Artificial Intelligence (A.l.) any architecure
able to give dternative solutions to the same problem
should be based either on a seach-based mecdhanism or on
a deductive-based mechanism. The projedive deduction
medhanism is essentially deductive and it is implemented
using two stacks (seefigure 4). One stack is hamed the sub-
goal stack and it memorizes the sequence of sub-goals
generated by the successive gplication of the PSG method
to go from an initial state to a final state. This dack
provides the system avoiding loops in terms of the sub-
goas plan. In each time that is generated a sub-goal, which
aready exists in this gack, the system empties the stadk
until it finds out the sub-goa that generates the first

occurrence of the repeaed sub-goal.

Sub-goal Stackk
Empty Space Permutation Stadk
PS5 method Final State
metho
PS5 method (T oA 3 é%??% ey Space
metho %p, . | Permutationi of
Sub-Goal 2 |4igp
PSG method — é@%@ u sub-goal 3
PG method (T o0d 1 204y, [Permutationh of
Initial State sub-goal 2

Figure 4: Two stacks underly the spatial badktracking.

Generally, the first sub-goal remained in the sub-goal stack
has an entry in another stack that we cdl permutation stack.
The permutation stad is responsible for memorizing the
last permutation of the violating regions that are associated
to the sub-goal. This last permutation defines the
topdogicd order that the violating-regions are placed in the
last generated sub-goal descendent. With this design,
considering k violating regions the system is able to
generate k! topdogicd descriptions that correspond ead
one of them to one different sub-goal descendent. This
postponing process terminates for a sub-goal when its all
permutations had been generated. This end processis easily
implemented by cheding the ordered of k violating
regions. If this st is ordered the permutation process is
complete and the system removes the sub-goal from the
sub-goal stack.

Another situation of badktradking is when the system by its
constraint spatial movement level gives one sub-goal
solution path and another solution will be required to this
level. In this case the sub-goal stack is empty until the
system finds out the first one sub-goal that are
simultaneoudly inside of two stacks becaise it identifies a
badtracking point and after that the reasoning process
starts again.

4. Examples

Below are two examples from clasdcal A.l.. In both cases,
the projedive system is not provided with knowledge @out
the domain. It does not know neither what kind of
operators are dlowed in ead domain ror it cares about
interpretations in the domain. Thus, the only information
given to the system is the initia and final topdogicd
descriptions and the physica properties of entities.

4.1. The Puzzle Problem

The puzzde problem here presented is charaderized as
follows. It has four tiles and each til e is impenetrable by the
others and the initial and final spatial topdogies are
illustrated in Figure 5.
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Figure 5: A puzze problem.
The first sub-goal solution plan gven by the achitecure to
be eeauted is shown in figure 6. But the projedive
architedure gives tens of different to thiskind of problems.
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Figure 6: Thefirst sub-goal plan solution.
Figure 6 depicts a sub-goal solution path enough elaborated
and complex considering that it does not have aly
knowledge aout the domain. However it isred and proves
the dfedive caability of the projedive reasoning system
in solving red-world spatial problems just using its
deductive spatial system.

4.2. The Monkey and Bananas Problem

Revisiting this classicd A.l. problem but from a viewpoint
of an emboded system that could be an artificial monkey
that likes bananas. Thus, the problem is dated as the
monkey being in a dosed room with a chair on the floor
and with a bunch of bananas hanging on to the ceéling that
he wants to ea. If the monkey had a mapping system able
to trandate from its perception to a spatial projective
representation then he uld use the n-dimensional
projective approach to solveits problem.

Po Initial perceived topology Por i
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Figure 7: The monkey and bananas problem.

The left side of figure 7 illustrates the initial perceved

topdogy by the monkey and the right side illustrates its

wish topdogy (getting the bunch of bananas).
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The projedive gproach gves two passible solutions. In

Figure 8: The first sub-goal solution.

Figure 8, the monkey jump on the chair and after that trying
to pick the bananas jumping from the chair to the banana's
place For any pradicd problem, if this plan is not possble
to redize by the monkey another aternative solution is
shown in figure 9. It provides as monkey actions the
following sequential steps: i. It jumps on the chair; ii. It
remains on the dair urtil the plan is over; iii. It should
move both the dhair and itself from the current place until

the placeunder bananas for the monkey picks them.
Initial topology 4rinal topology

| | - |

I A

Figure 9: The second and last solution.

These only two sub-goal solutions iown in figures8 and 9
are not all possble solutions. From one point of view, it
demonstrates the incompleteness of the projedive
architedure. But from another point of view, we prove the
usefulnessof this architedure to getting red-time solutions
in solving red-world problems.

5.Conclusions

This paper describes briefly the n-dimensional projective
approach as a hierarchicd and moduar architecure. Also,
it introduces two new spatial concepts in the gproach —
multiple physicd properties and spatial badtracking. From
these two spatial concepts emerge avery hard NP-complete
problem but a new deductive mecdhanism solves these
emerging difficulties preserving two important issues,
effectiveness and computational adequacy. Examples
in puzzle and in the monkey and bananas problems
ill ustrate promising resultsin solving red-world problems.

References

[1] Allen, JF. 1991. Time aad Time Again: The Many Ways to
Represent Time. In International Journal of Intelligent Systems 6,
341-355.

[2] Hernandez D. 1991. Relative Representation of Spatial
Knowledge: The 2D Case. Cognitive and Linguistic Aspects of
Geographic Space, 373-385, Kluwer Publi shers, Netherlands.

[3] Coenen, F.; Bedtie, B.; Shave, M.; Bench-Capon, T.; Diaz, B.
1988. Spatial Reasoning Using the Quad Tesseral Representation.
Artificial Intelligence Review 12, 321-243, Netherlands.

[4] Cui, Z.; Cohn, A.; Randell, D. 1992. Qualitative Simulation
Based onaLogicd Formalism of Space ad Time. In Proceedings
of AAAI92, AAAI Press

[5] Pais, J; Pinto-Ferreira, C. 1998. Seach Strategies for
Reasoning about Spatial Ontologies. In Proceedings of 10" IEEE
International Conference On Tools with Artificial Intelligence
ICTAI98, pp. 418-422, Taiwan.

[6] Pais, J.; Pinto-Ferreira, C. 2000. Qualitative Spatial Reasoning
using a N-Dimensionad® Projedive Representation. In
Proceedings of 15" European Meeting on Cybernetics and
Systems Research EMCSR2000, pp. 769-774, Austria.

[7] Pais, J.; Pinto-Ferreira, C. 2000. Spatial Representation and
Reasoning using the N-Dimensional Projedive Approach. In
Tedhnicd Report WS-00-08 o the AAAI2000 Workshop on
Spatial and Temporal Granularity, pp. 79-82, Austin, USA.



