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Abstract

In this paper, we describe the n-dimensional projective ap-
proach as a hierarchical and modular architecture with a
processing mechanism that underlies both spatial back-
tracking and multiple physical properties of entities. Also, it
is shown in Euclidean space how cognitive activities of an
agent are improved in terms of flexibili ty (e.g. alternative
solutions), reliabili ty (e.g. error recovery) and performance
using this approach.

1.  Introduction

Revisiting the spatial reasoning area some research work
concerned about one [1] and two dimensional spaces [2]
was done. But, with respect to three-dimensional [3] or
higher-dimensional spaces few work has been developed.
In qualitative spatial reasoning area some work has been
developed independently of space dimensionali ty [4] but its
effectiveness decreases exponentially in order to the number
of domain entities. Notwithstanding this drawback, some
reasoning techniques were developed to improve the
effectiveness of the reasoning process [5].
The n-dimensional projective representation is based on
simple geometrical concepts [6] that offer an effective
reasoning process in a constrained Euclidean space [7].
In this paper, section 2 describes the n-dimensional
projective approach. Section 3 provides how multiple
physical properties of entities and spatial backtracking can
be designed. Examples are shown in section 4. Finally,
section 5 describes the conclusions.

2. The N-Dimensional Projective Approach

This approach is a hierarchical and modular architecture,
where lower levels define the projective representation and
higher levels stablish the projective reasoning process.

Geometrical concepts

Unconstraint
Movement

Movement
of vertices

Coinstraint Spatial Movement

Sub-goal Generation

Derivable Positional
Operators

Verbal Knowledge

Change
/HYHOV

Pictoric
Levels

Ground
Level

Primitive Positional Operators

Spatial Relations Symbolic
Levels

Figure 1: The n-dimensional projective architecture.

2.1. Geometrical Concepts −−Ground Level

The ground level defines the projective representation
foundations that are based on both kinds of concepts the
topological li ke UHJLRQ and the geometrical l ike projective
axis, projective region vertex and projective axis vertex [6].
Each domain representation includes as many regions as
spatial entities that exist in real world { }krrrR ,,, 21 �= . A

n-dimensional space nS  is defined by an ordered set of n

projective axis { }Nn AAAS ,,, 21 �= . Each projective axis

is an ordered set of projective axis vertices
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2.2. Primitive Positional Operators

The primitive positional operators { <<, ≡} define a
minimal model of the world upon a projective axis iA  and

they have the following meaning:  i
s

i
s VV 2,1, <<   iff i

sV 1,  is

closer than i
sV 2,  from the projective axis origin; i

e
i

e VV 2,1, ≡

iff both end vertices of regions 1r  and 2r are equidistant

from the projective axis origin.

2.3. Derivable Positional Operators

The derivable positional operators define the first symbolic
level of our architecture. These operators must be
responsive to introducing spatial semantic to the projective
representation and they are asserted using the primitive
positional operators as described in [7].

2.4. Spatial Relations

This level includes the spatial relations set OutsideLeft,
OutsideRight, OutsideLeftCoincident, OutsideRightCoin-
cident, CompletelyCoincident, CompletelyInside, Inside-
LeftCoincident, InsideRightCoincident, OverlappedLeft,
OverlappedRight applied to a region which are presented
formally in [6]. One of the most important purposes of this
level is to provide a decoding from verbal knowledge into a
fairly projective geometrical concepts and the opposite.



2.5. Sub-Goal Generation

This level generates sub-goals reachable from the current
state respecting spatial constraints. The spatial constraints
are understood as physical properties of entities in the
environment. For example, an embodied system either
could acquire (e.g. high reflections on signal sonar could
signify an impenetrable entity, high temperature detection
could imply untouchable entities) or could integrate (e.g.
white color could mean an impenetrable wall , red color
could be an untouchable fire) this sort of knowledge. This
change level provides a real-time generation of consistent
sub-goals based on a method named projective sub-goal
generation (PSG). The PSG method classifies each
projective axis using three parameters, current state,
transition from current state to goal state and goal state.
Each one of these parameters could take two different
values for each physical property, violation(V) or non-
violation(N). The evaluation result for each projective axis
determines the set of sub-goals reachable from the current
state respecting spatial constraints as is shown in Table 1.

Current
State

Current
→ Goal

Goal
State

Sub-goal State for each Projective Axis

N N N Goal State
N N V Impossible
N V N Goal or Current State
N V V Goal or Current or a Non-Violation Goal
V N N Goal State
V N V Goal or Permutations of the Current State
V V N Goal State
V V V Goal or Permutations of the Current State

Table 1: The projective sub-goal generation (PSG) method.
A resumed description of the PSG method follows. The
conditions (N, N, N), (V, N, N) and (V, V, N) describe
topological configurations where the goal state must be the
next sub-goal. The condition (N, N, V) is an inconsistent
condition that never happens in a consistent domain
because it is impossible to go from a non-violating state to a
violating state without a property violation. With respect to
the (N, V, N) condition, the method evaluates the
topological configuration over all other projective axis. If
there exists at least one projective axis that does not happen
a property violation then the goal state is the next sub-goal.
Otherwise is the current state. The condition (N, V, V)
refers a ternary solution situation depending on the
projective axis topological configuration. If all other
projective axis violate the property then the solution is the
current configuration. If there exists at least another non-
violating axis the sub-goal is a non-violating goal state. It
means a topological configuration that respects the
distribution of regions in the goal state but without violating
the property. The third solution is when all axis share either
a non-violating goal state or a goal state then the next sub-
goal is the goal state. The critical conditions (V, N, V) and
(V, V, V) do not provide any clue to solve the property
violation. Thus, it can be solved using a complete sub-goal
generation based on permutations among the regions
responsible for the violation. And the combination between
each one of these permutations with the non-violating
regions. The generation of sub-goals based on permutations
might be interpreted as a breadth step into the changing
process that essentially should be based on depth steps to

find out solution paths with HIIHFWLYHQHVV. However,
breadth steps can be transformed in depth steps if the
system generates one permutation at a time and memorizes
these points on the changing process as backtracking points
to return to them later.
A property violation detection depends on geometrical
characteristics of the physical property. Two spatial
properties of entities are considered in our system,
untouchable and LPSHQHWUDEOH. All algorithms for
detecting the violation or the non-violation of these two
physical properties can be found in [7].

2.6. Movement of Vertices

Just two atomic movement operators generate change over
each projective region vertex along each projective axis:
MoveVertexLeft and MoveVertexRight. The algorithms of
these two operators were described in [7].

2.7. Unconstrained Movement

The one-dimensional unconstrained movement algorithm
takes advantage using levels, the spatial relations and the
movement vertices, defined on precedent sections. A
detailed description of this algorithm such as a study about
its complexity can be found in [7]. The n-dimensional
algorithm NDimProjectiveMove just requires executing the
one-dimensional algorithm so many times as the number of
projective axis existing on domain model.

2.8. Constraint Spatial Movement

This level uses both sub-goal generation level and
unconstraint spatial movement level. The key idea (see
figure 2) is to give to the sub-goal generation level a
postponing pair of states to get a complete sub-goal plan.
Starting with the initial and final states to get the first sub-
goal. After that, the process repeats with the first sub-goal
and the final state to get a second sub-goal and so on until
get the final state as sub-goal. This postponing generation
of sub-goals is done by the *HW3ODQ function that returns
either a complete sub-goal plan between two states or an
empty plan in case of fail . After that, this level provides
consecutive pairs of sub-goals to the XQFRQVWUDLQW
PRYHPHQW� OHYHO, which carry out simple vertex motions
using the NDimSpatialMove function..

ConstraintSpatialMove(InitialState, FinalState)
 Plan= GetPlan(InitialState, FinalState);
   WHILE (Plan≠∅) NDimSpatialMove(RemoveFirstSubGoal(Plan),
                                                                GetFirstSubGoal(Plan)); 

Figure 2: The algorithm of constraint spatial move.

3. New Spatial Mechanisms

3.1. Multiple Physical Properties

A physical property is respected using the PSG method but
when an entity shares distinct physical properties, a relevant
question emerges: how can an autonomous artificial system
solve the interaction among entities? To solve this problem,
we found out a practical and empirical solution that gives



topological shorter paths. Consider N physical properties,
represented as { }nPPP ,,, 21 � , the empirical solution goes

through applying the PSG method in cascade N times to
each one of those iP . To find out paths topologically

shorter is convenient to do a sort of all properties in terms
of spatial constraints such that 1−iP  is lesser constraint than

iP , represented as ii PP %1− . Then, considering this spatial

constraint relations among all properties such that

nn PPPP %%�%% 121 − , the system finds out the

topological closer sub-goal from the current description
cascading the PSG method as shown in Figure 3.
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Figure 3: The method to obtain a non-violating sub-goal.

3.2. Spatial Backtracking

Two questions arrive about this important issue. What is
spatial backtracking? How can an artificial system
implement it? Spatial backtracking could be defined as a
spatial reasoning technique that allows an artificial system
to obtain alternative solutions to the same topological
problem. Particularly, a complete spatial backtracking
system for one-dimensional space generates from k
violating entities a maximum of k factorial different
solutions, that is to say, all spatial possibili ties to distribute
k entities within the space. Generally, in a n-dimensional
space the dimensionali ty of the problem increases
exponentially in order to n, thus the resulting complexity is

( )nk!  that defines a very hard NP-complete problem.
The second question is much more complicated to solve
because it is a practical problem and in a n-dimensional
space any artificial system must not generate all solutions,
because all together are computationally impossible of
memorizing and manipulating at the same time. However, it
has a practical solution that consists in each computational
time manipulating and memorizing just one of all solutions
and postponing the process always that the user asks for
one different solution. This postponing process requires a
special architecture that supports a spatial deduction
mechanism. In Artificial Intelligence (A.I.) any architecture
able to give alternative solutions to the same problem
should be based either on a search-based mechanism or on
a deductive-based mechanism. The projective deduction
mechanism is essentially deductive and it is implemented
using two stacks (see figure 4). One stack is named the sub-
goal stack and it memorizes the sequence of sub-goals
generated by the successive application of the PSG method
to go from an initial state to a  final state. This stack
provides the system avoiding loops in terms of the sub-
goals plan. In each time that is generated a sub-goal, which
already exists in this stack, the system empties the stack
until it  finds out the sub-goal that generates the first

occurrence of the repeated sub-goal.
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Figure 4: Two stacks underly the spatial backtracking.

Generally, the first sub-goal remained in the sub-goal stack
has an entry in another stack that we call permutation stack.
The permutation stack is responsible for memorizing the
last permutation of the violating regions that are associated
to the sub-goal. This last permutation defines the
topological order that the violating-regions are placed in the
last generated sub-goal descendent. With this design,
considering k violating regions the system is able to
generate k!  topological descriptions that correspond each
one of them to one different sub-goal descendent. This
postponing process terminates for a sub-goal when its all
permutations had been generated. This end process is easily
implemented by checking the ordered of k violating
regions. If this set is ordered the permutation process is
complete and the system removes the sub-goal from the
sub-goal stack.
Another situation of backtracking is when the system by its
constraint spatial movement level gives one sub-goal
solution path and another solution will be required to this
level. In this case the sub-goal stack is empty until the
system finds out the first one sub-goal that are
simultaneously inside of two stacks because it identifies a
backtracking point and after that the reasoning process
starts again.

4.  Examples

Below are two examples from classical A.I.. In both cases,
the projective system is not provided with knowledge about
the domain. It does not know neither what kind of
operators are allowed in each domain nor it cares about
interpretations in the domain. Thus, the only information
given to the system is the initial and final topological
descriptions and the physical properties of entities.

4.1.  The Puzzle Problem

The puzzle problem here presented is characterized as
follows. It has four tiles and each tile is impenetrable by the
others and the initial and final spatial topologies are
ill ustrated in Figure 5.
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Figure 5: A puzzle problem.
The first sub-goal solution plan given by the architecture to
be executed is shown in figure 6. But the projective
architecture gives tens of different to this kind of problems.
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Figure 6: The first sub-goal plan solution.
Figure 6 depicts a sub-goal solution path enough elaborated
and complex considering that it does not have any
knowledge about the domain. However it is real and proves
the effective capabili ty of the projective reasoning system
in solving real-world spatial problems just using its
deductive spatial system.

4.2. The Monkey and Bananas Problem

Revisiting this classical A.I. problem but from a viewpoint
of an embodied system that could be an artificial monkey
that likes bananas. Thus, the problem is stated as the
monkey being in a closed room with a chair on the floor
and with a bunch of bananas hanging on to the ceil ing that
he wants to eat. If the monkey had a mapping system able
to translate from its perception to a spatial projective
representation then he could use the n-dimensional
projective approach to solve its problem.
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Figure 7: The monkey and bananas problem.

The left side of figure 7 ill ustrates the initial perceived
topology by the monkey and the right side il lustrates its
wish topology (getting the bunch of bananas).

Initial topology Final topology

Figure 8: The first sub-goal solution.

The projective approach gives two possible solutions. In

Figure 8, the monkey jump on the chair and after that trying
to pick the bananas jumping from the chair to the banana’s
place. For any practical problem, if this plan is not possible
to realize by the monkey another alternative solution is
shown in figure 9. It provides as monkey actions the
following sequential steps: i. It jumps on the chair; ii . It
remains on the chair until the plan is over; iii . It should
move both the chair and itself from the current place until
the place under bananas for the monkey picks them.

Initi al topology Final topology

Figure 9: The second and last solution.

These only two sub-goal solutions shown in figures 8 and 9
are not all possible solutions. From one point of view, it
demonstrates the incompleteness of the projective
architecture. But from another point of view, we prove the
usefulness of this architecture to getting real-time solutions
in solving  real-world problems.

5. Conclusions

This paper describes briefly the n-dimensional projective
approach as a hierarchical and modular architecture. Also,
it introduces two new spatial concepts in the approach –
multiple physical properties and spatial backtracking. From
these two spatial concepts emerge a very hard NP-complete
problem but a new deductive mechanism solves these
emerging difficulties preserving two important issues,
HIIHFWLYHQHVV and FRPSXWDWLRQDO� DGHTXDF\. Examples
in SX]]OH and in the monkey and bananas problems
ill ustrate promising results in solving real-world problems.
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