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tIn this paper, we introdu
e a novel pi
torial approa
hfor solving problems in n-dimensional Eu
lidean spa
es
alled the n-dimensional proje
tive approa
h. The pro-je
tive approa
h is based on a hierar
hi
al and modu-lar ar
hite
ture, where its ground module is rooted ongeometri
al 
on
epts. The result is an effe
tive and
onsistent spatial approa
h able to solve problems in n-dimensional spa
es with a quadrati
 
omputational 
ostin order to the number of domain entities and a linear
ost in order to the spa
e dimensionality. The proje
-tive approa
h has been used in simulation of physi
alreal-world problems, where physi
al properties of enti-ties exer
ise in�uen
e on results.Introdu
tionThe area of spatial reasoning is fruitful on resear
h work
on
erning one (Det
her et al. 1991) and two dimensionalspa
es (Retz-S
hmidt 1988). However, in what respe
ts tohigher dimensional spa
es (Coenen et al. 1988) few re-sear
h work has been developed. In fa
t, severe 
omputa-tional problems emerge when one or two-dimensional ap-proa
hes are s
aled up to higher dimensional spa
es be
ause
omputation time and resour
es grow exponentiallywith thenumber of topologi
al relations needed to representing a do-main. In qualitative spatial reasoning area some interestingresear
h work has been developed (Cui et al. 1992) (Gots1996), but the effe
tiveness of this approa
h de
reases ex-ponentially in order to the number of domain entities (Nebel1995). The authors had developed reasoning te
hniques toimprove the effe
tiveness of the qualitative spatial reason-ing pro
ess (Pais and Pinto-Ferreira 1998). The usual ap-proa
h to reasoning about spa
e starts to de�ne a symboli
language L (Cui et al. 1992) that in
ludes spatial relationsbetween pairs of domain entities based on 
onne
t relation-ship (Clarke 1981). Based on these symboli
 
on
epts, aspatial reasoning pro
ess should be developed, whi
h mustrespe
t fundamental spatial properties like 
ontinuitywithina prede�ned granularity. The proje
tive approa
h is a hier-ar
hi
al and modular ar
hite
ture, where its proje
tive rep-resentation is de�ned in low levels and the reasoning pro
essCopyright 
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is implemented by higher levels of the proje
tive ar
hite
-ture(see Figure 1).The remaining of this paper is stru
tured as follows. Inse
tion 2, we make a 
omplete level des
ription. Se
tion 3provides examples about a puzzle domain. Finally, se
tion 4des
ribes 
on
lusions and future work.The N-Dimensional Proje
tive Ar
hite
ture

Figure 1: The proje
tive ar
hite
ture.Geometri
al Con
epts �Ground Proje
tive LevelThe ground level de�nes the proje
tive representation foun-dations that are based on both kinds of 
on
epts the topo-logi
al like region and the geometri
al like proje
tive axis,proje
tive region vertex and proje
tive axis vertex (Pais andPinto-Ferreira 2000). A region results from a topologi
altransformation of the original shape of a body into a bound-ing box with edges parallel of all proje
tive axis. Ea
hdomain or world representation in
ludes as many regionsas spatial entities exist in real-world R = fr1; r2; :::; rkg.A n-dimensional spa
e Sn is de�ned by an ordered setof n proje
tive axis Sn = fA1; A2; :::; Ang. Ea
h pro-je
tive axis is an ordered set of proje
tive axis verti
esAi = f#i1; #i2; : : : ; #img. Given ea
h proje
tive axis mustbe a non-empty set of proje
tive region verti
es #id =fV is;1; V ie;2; : : :g. A region is identi�ed in ea
h proje
tiveaxis by a line segment delimited by a start vertex (e.g. thestart vertex V is;1 of r1 upon the proje
tive axis Ai) and anend vertex (e.g. the end vertex V ie;2 of r2 on Ai).



Primitive Positional Operators �Se
ond Proje
tiveLevelThe primitive positional operators f�;�g de�ne a minimalmodel of the world upon a proje
tive axis Ai and they havethe following meaning:V is;1 � V is;2 iff V is;1 is 
loser than V is;2 from the proje
tiveaxis origin.V ie;1 � V ie;2 iff both end verti
es of regions r1 and r2 areequidistant from the proje
tive axis origin.Derivable Positional Operators �First Symboli
LevelThe derivable positional operators de�ne the �rst symboli
level of the presented ar
hite
ture. These operators must beresponsible to introdu
e spatial semanti
s to the proje
tiverepresentation and they are asserted using the primitive po-sitional operators, as follows:left(V is;r) = 'is;r ) 8V ix;m 2 'is;r : V ix;m � V is;rright(V is;r) = Æis;r ) 8V ix;m 2 Æis;r : V is;r � V ix;m
oin
ident(V is;r) = 
is;r ) 8V ix;m 2 
is;r : V ix;m � V is;rSpatial Relations �Se
ond Symboli
 LevelThis level in
ludes the spatial relations set fOutsideLeft,OutsideRight, OutsideLeftCoin
ident, OutsideRightCoin
i-dent, CompletelyCoin
ident, CompletelyInside, InsideLeft-Coin
ident, InsideRightCoin
ident, OverlappedLeft, Over-lappedRightg applied to a region. These spatial relations arepresented formally in (Pais and Pinto-Ferreira 2000), whi
hare an extension set of the relations presented in (Clarke1981) about the 
al
ulus of individuals. One important pur-pose of this level is to provide a de
oding system fromverbalknowledge (symboli
 de�nitions) into proje
tive geometri-
al 
on
epts and vi
e-versa.Sub-Goal Generation �Third Symboli
 LevelThis level is responsible for the sub-goal generation (possi-ble future views) rea
hable from the 
urrent state (presentview world) respe
ting spatial 
onstraints. When we talkabout spatial 
onstraints we understand them as physi
alproperties of obsta
les or entities in system environment.For example, an embodied system either 
ould a
quire (e.g.high re�e
tions on signal sonar 
ould signify an impenetra-ble entity, high red dete
tion 
ould imply untou
hable enti-ties) or 
ould integrate (e.g. white 
olour 
ould mean an im-penetrable wall, red 
ould be an untou
hable �re) this sortof knowledge. This level provides a real-time generationof 
onsistent sub-goals based on a method named proje
tivesub-goal generation (PSG). The PSG method 
lassi�es ea
hproje
tive axis using three parameters, 
urrent state, transi-tion from 
urrent state to goal state and goal state. Ea
h oneof these parameters 
ould take two different values for ea
hphysi
al property, violation(V) or non-violation(N).The evaluation result for ea
h proje
tive axis determinesthe set of sub-goals rea
hable from the 
urrent state respe
t-ing spatial 
onstraints as is shown in Table 1. Conditions

Current Current Goal Sub-goal StateState ! Goal State for ea
hAiN N N Goal StateN N V ImpossibleN V N Goal or CurrentN V V Goal or CurrentV N N Goal StateV N V Permutations of CurrentV V N Goal StateV V V Permutations of CurrentTable 1: The proje
tive sub-goal generation(PSG) method.(N, N, N), (V, N, N) and (V, V, N) des
ribe topologi
al 
on-�gurations where the goal state is the next sub-goal. The
ondition (N, N, V) is an in
onsistent 
ondition that neverhappens in a 
onsistent domain. With respe
t to (N, V, N)and (N, V, V) the method provides an evaluation of the topo-logi
al 
on�guration over all other proje
tive axis. If thereexists at least one proje
tive axis that does not o
urr a prop-erty violation then the next sub-goal 
an be de�ned as thegoal state; otherwise, it is the 
urrent state. With regardsto the 
riti
al 
onditions (V, N, V) and (V, V, V), both 
on-ditions do not provide any 
lue to solve the property viola-tion. However, this problem 
an be solved using a 
ompletesub-goal generation that is based on both steps, the gener-ation of all permutations among regions responsible for theproperty violation and the 
ombination between ea
h oneof these permutations and the non-violating regions. Thesepermutations might be interpreted as a breadth step into thereasoning pro
ess that essentially should be based on depthsteps to �nd out solution paths with effe
tiveness. However,breadth steps 
an be transformed in depth steps if the systemgenerates one permutation at a time and memorizes thesepoints on the reasoning pro
ess as ba
ktra
king points. Twospatial properties of entities will be 
onsidered, untou
hableand impenetrable. These two properties 
reate spatial 
on-straints on the movement of spatial entities and 
onsequentlya proposed problem has different solutions to respe
t thespatial 
onstraint satisfa
tion.Untou
hViolationToState(Ai , LR)f FOR ea
h one rx of LR DOf IF (CompletelyInside(Ai; rx)SCompletelyCoin
ident(Ai; rx) 6= �) return V;IF (OutsideRight(Ai; rx)) return V;IF (OutsideLeft(Ai; rx)) return V;IF (OutsideRightCoin
ident(Ai; rx)) return V;IF (OutsideLeftCoin
ident(Ai; rx)) return V;g return N; gFigure 2: The untou
h property violation within a state.The untou
hable property violation algorithm applied to aproje
tive axis Ai under a domain with a list of untou
hableregions LR, is shown in Figure 2. Algorithm presented inFigure 2 handles both states 
urrent and goal addressed inPSG method.The algorithm shown in Figure 3 dete
ts the untou
hableproperty violation on a transition between two states. Notethat in Figure 3, CAi and FAi represent the same proje
tiveaxis Ai on 
urrent and goal times.Another physi
al 
hara
teristi
 addressed here is the im-penetrable property, whi
h makes a region in
apable of be-



Untou
hViolationToTransition(CAi , FAi, LR)f FOR ea
h one rx of LR DOf IF (OutsideRight(CAi; rx) 6= OutsideRight(FAi; rx))return V;IF (OutsideLeft(CAi; rx) 6= OutsideLeft(FAi; rx))return V;g return N; gFigure 3: The untou
h property violation on a transition.ImpenetrableViolationToState(Ai , LR)f FOR ea
h one rx of LR DOf IF (CompletelyInside(Ai; rx) 6= �) return V;IF (OutsideLeftCoin
ident(Ai; rx)\OutsideRightCoin
ident(Ai; rx) 6= �) return V;g return N; gFigure 4: The impenetrable violation within a state.ing pier
ed through another region. Assuming this de�ni-tion, the algorithms shown in Figures 4 and 5 dete
t thisproperty violation in both situations, within a state and on atransition between two states applied to the same proje
tiveaxis.ImpenetrableViolationToTransition(CAi , FAi, LR)f FOR ea
h one rx of LR DOf IF (OutsideLeftCoin
ident(CAi; rx) 6=OutsideLeftCoin
ident(FAi; rx)) return V;IF (OutsideRightCoin
ident(CAi; rx) 6=OutsideRightCoin
ident(FAi; rx)) return V;g return N; gFigure 5: The impenetrable violation on a transition.Note that, all algorithms are easily expanded to a n-dimensional spa
e for applying ea
h one of these algorithmsrepeatedly for all Ai in domain's model.A general topologi
al property that should be stressed isthat, physi
al properties like the pre
edent one's just are vi-olated in a n-dimensional proje
tive spa
e when for all pro-je
tive axis happen the property violation. Assuming that,the hierar
hi
al proje
tive ar
hite
ture behaves effe
tivelyand 
onsistently if the initial topologi
al world des
riptionguarantees a non-violation of properties.For example, 
onsidering the two dimensional problemillustrated in Figure 6. And also 
onsidering that none ofthose regions share any physi
al property. Then this prob-lem does not have spatial 
onstraints and 
onsequently thehigher level of our ar
hite
ture 
ould be applied without afun
tional intervention of this level. It means that the �nalstate is the only sub-goal's problem.However if we introdu
e spatial 
onstraints in the model,for example 
onsidering regions r1 and r2 untou
hable thenthis level is able to produ
e all sub-goals shown in Figure7. Ea
h sub-goal is given to higher levels when they ask byanother sub-goal in both 
ases of failure or ba
ktra
king. Atthe middle-left of Figure 7 we start to draw the initial stateand the evaluation result of the impenetrable property vio-lation in order to (Current state, Transition, Goal State) forea
h proje
tive axis. This evaluation is shown 
loser to ea
hproje
tive axis. After that, the PSG method gives as sub-goal results all topologi
al des
riptions presented at right ofthe initial state. The sequen
e of sub-goals that de�ne a sub-goal path from the initial state to the goal state are 
alled

Figure 6: A two-dimensional puzzle problem.
Figure 7: AND-OR sub-goals.AND sub-goals. As you 
an see in Figure 7, ea
h sub-goalpath guarantees spatial 
onstraint satisfa
tion. OR sub-goalsde�ne start points to alternative sub-goal path solutions forthe reasoning pro
ess.A 
areful analysis of the truth table presented in Table 1and the results shown in Figure 7 ensures empiri
ally that thePSG methodology generates sub-goals with two important
hara
teristi
s, they should be as 
lose as possible to the goalstate and the transitions among them never violate domainproperties.Movement of Verti
es �First Change LevelJust two atomi
 movement operators are able to generate
hange over ea
h proje
tive region vertex along ea
h pro-je
tive axis.MoveV ertexLeft(V ix;r; #in) moves a proje
tive regionvertex V ix;r from the 
urrent proje
tive axis vertex #in toits left proje
tive axis vertex.MoveV ertexRight(V ix;r; #in) 
hanges a proje
tive regionvertexV ix;r from the proje
tive axis vertex #in to the 
loserproje
tive axis vertex states on its right.These operators are blind in order to respe
ting spatial 
on-straints, be
ause they are just based on pi
torial levels ofknowledge(Pais and Pinto-Ferreira 2000).Un
onstrained Movement �Se
ond Change LevelThe one-dimensional un
onstrained movement algorithmtakes advantage of both level fun
tionality, the spatial re-lations and the movement verti
es de�ned on pre
edent se
-tions.ConsideringC1 and F1 as being the 
urrent and �nal pro-je
tions over the unique proje
tive axis A1 this algorithm isshown in Figure 8. A problemwithK regions then ea
h pro-je
tive axis in
ludes 2�K proje
tive region vertex. Then inworst 
ase, the number of steps of this algorithm that needsto move a proje
tive region vertex from one extreme to an-other extreme over the proje
tive axis are 2�K. As result,the worst 
ase 
omplexity values O(2 � K � 2 � K) thatis a quadrati
 value in order to the number of proje
tive re-gion vertex. The n-dimensional algorithm NDimProje
tive-Move just requires exe
uting the one-dimensional algorithm



OneDimensionalSpatialMove(C1 , F1)fWHILE (C1 6= F1)FOR 8�1j 2 C1FOR 8V 1x;r 2 �1jIF (V 1x;r 2 F1)fIF (Left(V 1x;r 2 C1)) � (Left(V 1x;r) 2 F1))MoveV ertexRight(V 1x;r; �1j );ELSEIF (Right(V 1x;r 2 C1)) � (Right(V 1x;r) 2 F1))MoveV ertexLeft(V 1x;r; �1j );ELSEf(x=s)? y=e: y=s;IF (Left(V 1y;r) 2 C1) � (Left(V 1y;r) 2 F1))MoveV ertexRight(V 1x;r; �1j );ELSEIF (Right(V 1y;r) 2 C1) � (Right(V 1y;r) 2 F1)MoveV ertexLeft(V 1x;r; �1j ); g g gFigure 8: The un
onstrained movement algorithm.so many times as the number of proje
tive axis existing ondomain model. Consequently the resulting 
omplexity ofthe n-dimensional algorithm is O(N � 22 �K2). Howeverthe 
omplexity of this approa
h in
reases linearly with thespatial dimension and it is quadrati
 in order to the numberof entities.Constraint Spatial Movement �Third ChangeLevelThe a
tion of this level is based on both fun
tions of sub-goal generation level and un
onstrained spatial movementlevel. The key idea is to give to the sub-goal generationlevel a postponing pair of states to get a 
omplete sub-goalplan. This fun
tionality is given by the GetPlan fun
tionthat returns either a 
omplete sub-goal plan between twostates or an empty plan in 
ase of failure. After that, thislevel provides 
onse
utive pairs of sub-goals to the un
on-strained movement level, whi
h 
arry out simple vertex mo-tions, thus making the spatial planning problem easier.ConstraintSpatialMove(InitialState, FinalState)f Plan= GetPlan(InitialState, FinalState);WHILE (Plan 6= Ø)NDimSpatialMove(RemoveFirstSubGoal(Plan),GetFirstSubGoal(Plan)); gFigure 9: The algorithm of 
onstraint spatial move.The algorithm that implements this sequen
e of ideas andunderlies this proje
tive level is shown in Figure 9. Notethat, RemoveFirstSubGoal fun
tion performs two a
tions,at �rst it updates the plan performing the elimination of its�rst sub-goal and at se
ond it returns this sub-goal. But,GetFirstSubGoal fun
tion just returns the �rst sub-goal of aplan. For example, 
onsider the upper sub-goal plan shownin Figure 7. The 
omplete spatial motion plan designed by
Figure 10: A plan solution for the puzzle problem.this level is illustrated in Figure 10. This Figure demon-

strates a 
omplete simulation solution for a pra
ti
al prob-lem with just two regions, for the sake of arti
le length.However, we simulate various problems with twenty or evena hundred of regions and the system effe
tiveness does notseem sensible to this in
rease. Thus, in pra
ti
e and froman empiri
al point of view we had 
on�rmed the theoreti
al
omplexity of the PSG method and in general the ar
hite
-ture effe
tiveness.Con
lusions and Future WorkThis paper provides a novel spatial approa
h just based onpi
torial 
on
epts and also introdu
es a new view of spa
egranularity � the proje
tive axis vertex. From the proje
tivear
hite
ture emerges the potential to solve problems into a
onstraint Eu
lidean spa
ewithout a generation of in
onsis-tent topologi
al des
riptions that implies effe
tiveness and
omputational adequa
y. Examples in puzzle problems do-main illustrate the �rst promising results of this approa
hto solving real problems with effe
tiveness and 
ontinuityon spatial 
hange. In the future, other physi
al propertiesshould be developed and in
orporated in order to rea
h amore ri
h representation, su
h as, the gravity, the dimen-sion, the shape, et
. When all of this resear
h work willbe 
on
luded, it 
ould be applied in broad areas that 
ango through roboti
s, spatial reasoning, assembly planning,s
heduling and vision.Referen
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