
Measuring Complexity of Intelligent MachinesPedro Lima, George SaridisElectrical, Computer and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroy, NY 12180-3590AbstractIn this paper we introduce a formalism whichcombines reliability and complexity as performancemeasures for Intelligent Machines.For a given desired reliability, di�erent algorithmsmay be available which are reliable enough. Hence itis important to have a means of choosing the algorithmof least cost among the reliable ones. By cost we do notmean CPU time only but other features such as mem-ory space. Information-Based Complexity provides asolid formalism to deal with di�erent sources of infor-mation, thus with distinct algorithms at all levels ofthe machine.A case study related to image processing illustratesthe method.1 IntroductionThe analytic approach to the theory of Intelli-gent Machines (IM) [4] has developed in the past fewyears a formalism for the architecture of an IntelligentMachine[5, 3, 7, 8] which is now well established. Ef-forts looking towards a practical implementation ofthe formalism expressed in those works took placerecently[1] and are currently being pursued.The closer one gets to the implementation prob-lems, the stronger is the need for performance mea-sures. However, an approach somewhat di�erent fromtraditional control cost functionals is needed, since amyriad of di�erent sources of information is presentin such a machine. This is what we call a wide-sensecontrol problem. The �nal stage of execution of a highlevel task includes vision, control and path planningalgorithms, to name just the most relevant.A �rst attempt to deal with this problem is de-scribed in [2], where a reliability-based measure isstudied for pose-estimation problems. Since it is neverpossible to overpass all the uncertainty associated tothe controlled system, it is important to study, for

a given set of algorithms, the probability of successof the problem-solving task implemented by those al-gorithms. This allows an entropy-based measure toguide the system in its choice of the most reliable al-gorithm for a given task.In this paper a complementary approach to the useof reliability as a performance measure is introduced.For a given desired reliability, di�erent algorithmsmaybe available which are reliable enough. Hence it is im-portant to have a means of choosing the algorithm ofleast computational cost among the reliable ones. In-formation Based Theory of Complexity [6] provides asolid formalism to deal with di�erent sources of infor-mation, thus with distinct algorithms at all levels ofthe machine.The paper is organized as follows: after this intro-duction, section 2 brie
y describes the formalism ofInformation-Based Complexity. The core of the pa-per is section 3 where the application of the theoryto the 3-levels hierarchy (Organization, Coordinationand Execution) of the Intelligent Machine is formal-ized. A simple case study using image processing algo-rithms is presented in section 4 to show how to applythe techniques described below, and �nally section 5concludes the paper.2 Information-Based ComplexityThe computational complexity of a problem maybe de�ned as \its intrinsic di�culty as measured bythe time, space or other quantity required for its so-lution" [6]. More formally this is equivalent to thecost of the optimal algorithm for the solution of theproblem in the sense de�ned below.We brie
y summarize below the general formula-tion of information-based complexity [6]. Hopefullythe details will be clari�ed by the formulation of thecase study.



2.1 Problem formulationFor each f 2 F , where F is a set and f is calleda problem element, the problem is to compute an ap-proximationU (f) of S(f), where S : F ! G is calleda problem solution and G is a normed linear space overthe scalar �eld of real or complex numbers. In this in-terpretation, G is the feature space of the problem,S(f) represents a vector of desired features for f andU (f) computes the actual corresponding features fromf . To measure the distance between S(f) and U (f)we use an absolute error criterion, kS(f) � U (f)k.U (f) is an �-approximation of S(f) i� kS(f) �U (f)k � � � 0. We wish a computed element U (f)which is an �-approximation in one of three settings:worst-case, average and probabilistic.2.2 InformationIt is assumed that the only initial knowledge wehave about f is that it belongs to the set F , and alsothat we may gather more knowledge about f usingcomputations of the form L(f); L : F ! H for someset H.The information I(f) is then de�ned asI(f) = [L1(f); L2(f); : : : ; Ln(f)]; 8f 2 F:. In the above sense, we may say that U (f) com-putes the feature vector obtained when algorithm� : I(f) ! G is used. � is an algorithm which com-putes an approximation of S(f) given the informationI(f).2.3 Model of computationThe initial assumptions are: i) a sequentialmodel of computation and ii) all information and com-binatorial operations are performed with in�nite pre-cision and �nite cost.The model postulates a constant cost c for each in-formation operation L(f) and unit cost for each com-binatory operation performed by � over I(f).Cost is de�ned ascost(�) = supf2Ffci(f) + cp(f)g (1)where ci(f) is the cost of getting information aboutf and cp(f) is the cost of processing that informationby algorithm �.The error associated to � is, in a probabilistic set-tinge(U) = supf2FfkS(f)�U(f)k : P (kS(f)�U(f)k< �) � 1��g (2)

In simple words, this means that we control theerror of estimating S(f), keeping it below �, except ina subset of G with measure �. The cost is obtainedfrom the constraints imposed to the error.Finally, �-complexity (complexity for short) of aproblem is the minimal cost among all algorithmswhich solve the problem with error at most �:comp(�) = inf�fcost(U ) : e(U ) � �gThe algorithm �� that achieves the minimal cost iscalled an optimal algorithm.3 A Performance measure for Intelli-gent MachinesA major concern of a control system designer isthe performance measure for the controlled system.The design goal is such that the controlled systemshould maximize that measure.When dealing with very large systems, someamount of uncertainty must be assumed in the modelof the system to be controlled. Hence there is alwaysuncertainty about the result of a given command sentto the controlled system.Uncertainty is present at all levels of the IntelligentMachine [4]: at the execution level, there is uncer-tainty in terms of features like rise-time or overshoot,since mathematical models never match exactly thereal controlled system. Zames [9] suggests that feed-back reduces this uncertainty in conventional controlproblems; at the coordination level, there is uncer-tainty in terms of the success of each of the primitiveevents (e. g. strut grabbed, path planned, manipulatordidn't move) composing a task [7]; at the organiza-tion level, there is uncertainty in terms of the successof the task executed.Thus, if we reduce the uncertainty about the ac-tions taken by the Intelligent Machine, we are improv-ing performance, since each of the actions at all levelswill have a broader chance of success. This can beinterpreted as a problem of improving reliability, bychoosing at the coordination/execution levels themost reliable low-level algorithms for each primitiveevent [2], and at the organization level the mostreliable ordered sequence of primitive events (task).However, the price to pay when a high reliability isrequired may be unacceptable, either in terms of com-putational time or resources such as memory, numberof image frames or sampling rate.Thus it is desirable to measure the relative costs ofthe di�erent algorithms capable of solving the problem



represented by an event, with the required accuracy.This cost includes the prices of getting informationand processing it. Depending on the model used, dif-ferent features are weighted (CPU time, memory).Given the above, maximizing the performance ofthe entire machine may then be formulated as a Dis-crete Optimization Problem:min cost(a)s. t. reliability(a) � Rd(a)where Rd is the reliability required by the commandsent to the machine and a is a task translation for thecommand.Reliability is de�ned byR = P(worst case error w/r to speci�cations < �) (3)for some � > 0.Suppose we consider in (2) S(f) as a vector ofspeci�cations for a given problem. The problem so-lution S(f) is for example the desired overshoot of acontrol algorithm implementing a move robot event,and the problem element f is the output signal whereS(f) is computed from. Hence,the formulation ofInformation-Based Theory of Complexity is appropri-ate to help us in the design of the IM, expressed by theoptimization problem above. If we make Rd = 1� �,when determining the cost of U by equations (1) and(2) we guarantee that e(U ) is such that its probabilityof being below � (i. e. the reliability of the solution)is lower-bounded by Rd.In order to determine the cost of a task, we needto know how to determine it from the cost of its com-posing events. If we assume that the cost of one event(minimal cost of the algorithms which implement theevent) does not depend on the cost of the other events:cost(sequence of events) = P cost(each event in the sequence)cost(concurrent events) = maxcost(concurrent events) (4)In view of the above, the problem of �nding thesequence of actions that solve a problem by the Intel-ligent Machine with least cost given the current knowl-edge and a desired reliability may be presented as fol-lows:1. Design the low-level algorithms imposing some �accuracy for each algorithm;2. Wait for command specifying the problem and thedesired reliability Rd = 1� � for its solution;3. Translate command into n pre-stored tasks [7]a1; : : : ; an capable of solving the problem. We are

not concerned with planning here: it is assumedthat the tasks were planned prior to this. Thus,learning the correct reliabilities is an importantissue. However, this will only be addressed inlater work;4. Translate each task ai into mi pre-stored orderedevents e1; : : : ; emi , and each event ej into lj pos-sible algorithms g1; : : : ; glj ;5. For each event ej determine the reliability of theevent as the reliability of the most reliable algo-rithm for that event, and the cost of the eventas the cost of the least costly algorithm for theevent;6. For each task ai; i = 1; : : : ; n determine the costof the task, using the rules of composition ofevent-cost (4), and the reliability of the task asthe product of the reliabilities of the events com-posing the task;7. Among the tasks with reliability greater than orequal to the desired reliability for the task, deter-mine the task of least cost and apply it. Go to2.Without learning, this algorithm will only work instatic environments if we initially know the correctreliabilities of each algorithm. Moreover, there is arisk of combinatorial explosion when commands aretranslated into tasks, these into events and these intoalgorithms. These are topics which will be addressedin the near future.4 Study of an image processing prob-lemIn order to provide an example of applicationof the above formalism, an image processing problemwas formulated.Given a rectangle inside a M xM pixels image, theproblem was to estimate the position of the rectanglein the image (see �gure 1), that is, its central pixelof coordinates (ic; jc). The pixels inside the rectanglewere initially set to 1, while the outside pixels wereset to 0. Zero mean gaussian noise was added to theinitial value of each pixel in the whole image.Several assumptions were made with the goal ofsimplifying the mathematical analysis and the simu-lation: i) The area of the rectangle is known, A =(ye � yb)(xe � xb); ii) The whole rectangle is insidethe boundaries of the image; iii) No more objects
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XeFigure 1: Image processed by the two algorithmsare present in the image; iv) Errors resulting frompoor image resolution or computational roundo� werenot considered, that is, without noise both algorithmsshould determine the rectangle position with in�niteaccuracy.Two algorithms were proposed to solve the prob-lem:� The open loop algorithm determines the center ofgravity of the total image, using the equationsx̂c = PMi=1PMj=1 jb(i;j)Aŷc = PMi=1PMj=1 ib(i;j)A (5)where b(i; j) is the brightness of pixel (i; j).� The closed loop algorithm correlates the image(feedback) with a pattern rectangle (reference)equal in size to the original noise-free rectangleof the image and with the same orientation. Therectangle is assumed to be centered inside the P xP pixels pattern image. The coordinates (xc; yc)of the pixel with the greatest correlation coe�-cient are the estimates of the rectangle positionin the image.The objectives were twofold: i) apply the proposedmethodology to study and compare the cost of theopen loop and closed loop algorithms; ii) compare interms of cost a wide-sense open loop solution with awide-sense closed loop solution for the problem.4.1 Problem formulationF is the set of rectangles with size (xe � xb) by(ye � yb) that �t inside the M x M image.

The goal is to compute an �-approximation for S :F ! R2, that is, we want to determine an estimateU (f) of S(f) such thatkS(f) � U (f)k < �where S(f) = [xc yc]0 and U (f) = [x̂c ŷc]0.To simplify the analysis, and since what happensin one of the directions is similar to what happens inthe other, we will only check the error estimate of xc.jx̂c � xcj < �:4.2 InformationThe computations Lij(f); Lij : F !R have theformatLnij(f) = � 1 + nij if pixel(i; j) 2 fnij if pixel(i; j) 62 fand so I = [L111(f); : : : ; LNMM (f)] where n de-notes the nth average, N is the total number of aver-ages,M the number of pixels on each side of the imageand nij is a random variable representing the noise atpixel (i; j); nij � N (0; �b2), i.i.d.4.3 Model of computationIn this simple approach, we restrict the set of al-gorithms to those that can solve the problem in, saypolynomial time. This means that we are more con-cerned about the cost of getting information. For ex-ample, if a mobile robot has to stop and get severalframes of a scene in order to speedup posterior compu-tations of its locations, we prefer a slowest algorithmthat however requires less stopping time for the robot.The algorithm may run while the robot is performingother tasks.Hence, cost(�) = cost(I; f) = cNmin, that is, costis proportional to the minimum number of averagesneeded by algorithm � to get the error below �.4.4 Study of the algorithmsThe open loop algorithm estimates the center co-ordinates of the rectangle using equations (5). Sincethe brightness of each pixel is a gaussian distributedrandom variablepBij (bij) � � N (1; �2b) pixel(i; j) 2 fN (0; �2b) pixel(i; j) 62 fand the Bij's are uncorrelated from pixel to pixel(given that they are independent), it can be deduced



that, after N averages of distinct frames of the sameimage and if we assume independent noise from frameto frame, pX̂c (x̂c) � N (�X̂c ; �2̂Xc) with �X̂c = xc and�2̂Xc = M2(M + 1)(2M + 1)�2b6A2N (6)Now, given an accuracy � and a desired reliabilityRd, we want to determine N such that P (jx̂c � xcj ��) � RdFrom the table of standard normal we get � inP ( jx̂c�xcj�X̂c � �) = RdMaking � = �=�X̂c and using (6) we �nally getN � Nmin = �2M2(M + 1)(2M + 1)�2b6A2�2 (7)The inequality in (7) comes from the fact that wewant the reliability to be lower bounded by Rd.The closed loop algorithm looks for the pixel wherethe noisy output of the correlator achieves a maximumwhen the pattern is displaced around the image. Dueto noise, there is some probability that the wrong pixelis chosen. In order to make the problem tractable, wehave to make some assumptions, such as working at1D again, and considering errors of 1 pixel displace-ment at most.If the correlator input ucorr(x) = r(x)+n(x), wherer(x) is a rectangle of length xe�xb and n(x) is gaussiannoise of zero mean and variance �2b=N , and the impulseresponse of the correlator is r(xc�x), then ycorr(x) =yr(x) + yn(x) is the correlator output, where yr(x) isan isosceles triangle of length 2(xe � xb), centered atxc and of height xe � xb, and yn(x) is gaussian noisewith mean x and variance �2n = �2b (xe � xb)=N .Now, if we assume errors of 1 pixel at most andwe say that, for convenience, 1 pixel corresponds toan � displacement, the reliability P (jx̂c � xcj < �) =P (ycorr(xc + �) � ycorr (xc) < 0 and ycorr(xc � �) �ycorr(xc) < 0).Let us assume that the output noise of the corre-lator is independent from pixel to pixel. This is notactually true, but it allows us to proceed. Since thetwo random variables are correlated, under this as-sumption we will obtain a smaller probability, henceobtaining an upper bound for Nmin. Noticing that thesum of two random variables jointly and marginallygaussian is another gaussian distributed random vari-able, we �nally get Rd = P 2(z < 0); z � N (��; 2�2n),or pRd = P ( z+�p2�2n < �), where � can be read from atable of standard normal and is made equal to �p2�n ,hence the upper bound isNmin = 2�2�2b (xe � xb)�2 (8)

Comparing with Nmin for the open loop algorithm(7), it may be noticed that the closed loop upperbound on the number of averages does not depend onthe size of the image M , while the minimum numberof averages for the open loop algorithm increases withM , thus it is possible, with a reasonable ratio of im-age size to pattern size, to show that the closed loopalgorithm upper bound for Nmin will be below theactual value of Nmin for the open loop case. Simula-tions show that (8) is a loose upper-bound and that inpractice the cost of the closed loop algorithm is muchsmaller, for the same reliability. If the cost of process-ing information is also considered, other intermediatesolutions between the two algorithms will have lesscost, since the open loop algorithm is computation-ally fast.4.5 Simulation resultsThe open loop algorithm was tested with di�er-ent sets of parameters as follows:� Rd = 90% and � = 0:1 and 0:2.� � = 0:3 and Rd = 90% and 95%.Each of the setups was tested with standard devi-ation of pixel noise �b = 0:1 and �b = 0:3. Each sideof the image had 32 pixels and the rectangle had 13pixels in the x direction, 9 in the y direction.�b 0.1 0.3� Nmin R Nmin R0.1 73 0.8733 655 0.89330.2 18 0.8333 164 0.8533Table 1: Simulation results showing values of relia-bility and minimum number of averages (cost) for adesired reliability of 90 %.�b 0.1 0.3Rd Nmin R Nmin R90 % 8 0.9267 73 0.873395 % 11 0.9400 103 0.9467Table 2: Simulation results showing values of relia-bility and minimum number of averages (cost) for adesired � = 0:3.The simulations were made in PRO-MATLAB Ver-sion 3.5i, running on a Sun SparkStation. The results



Nmin Rol/�b Rcl/�b4 98%/0.2 99%/2.09 97%/0.3 98%/3.0Table 3: Simulation results showing values of reliabil-ity for the same minimum number of averages (cost)and di�erent noise variances, using the open loop (ol)and closed loop (cl) algorithms. � = 1.are presented in tables 1 and 2, showing for each setupthe reliability obtained after 150 runs with a numberof averages greater than the minimum theoreticallyrequired (also shown).In general, the outcomes agree quite well with theexpected results. In some cases, reliability is slightlylower than expected. This may be explained by thefact that MATLAB's random number generator doesnot assure complete independence of the output val-ues, hence additional terms would be present in equa-tion (7), raising the lower bound on the number ofaverages.The closed loop algorithm was simulated under thesame setup. By trial and error, we determined thestandard deviation of the superimposed noise neededto obtain reliabilities close to those of the open loopcase with the same number of averages. Table 3 showsthese results. The same Nmin is su�cient to obtainaccurate estimates with the same reliability, but witha noise standard deviation approximately 10 timeslarger.This means that, given a desired reliability, we mayuse the formalism to measure the cost of the alterna-tive algorithms. On the other hand, given a N wecan determine the maximum possible reliability andminimum possible cost of an algorithm.5 Conclusions and future workA �rst approach to the study of computationalcomplexity of Intelligent Machines was described inthis paper. The formalism introduced is based onInformation-Based Theory of Complexity and formu-lates the problem of maximizing the performance ofthe Intelligent Machine as a Discrete Optimizationproblem, where the cost of a task is to be minimized,and the constraints are imposed by a required Relia-bility.Future work will apply the introduced formalism toother kinds of problems present in the execution level
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