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Abstract

In this paper we introduce a formalism which
combines reliability and complexity as performance
measures for Intelligent Machines.

For a given desired reliability, different algorithms
may be avatlable which are reliable enough. Hence it
1s tmportant to have a means of choosing the algorithm
of least cost among the reliable ones. By cost we do not
mean CPU time only but other features such as mem-
ory space. Information-Based Complexity provides a
solid formalism to deal with different sources of infor-
mation, thus with distinct algorithms at all levels of
the machine.

A case study related to itmage processing illustrates
the method.

1 Introduction

The analytic approach to the theory of Intelli-
gent Machines (IM) [4] has developed in the past few
years a formalism for the architecture of an Intelligent
Machine[b, 3, 7, 8] which is now well established. Ef-
forts looking towards a practical implementation of
the formalism expressed in those works took place
recently[1] and are currently being pursued.

The closer one gets to the implementation prob-
lems, the stronger is the need for performance mea-
sures. However, an approach somewhat different from
traditional control cost functionals is needed, since a
myriad of different sources of information is present
in such a machine. This is what we call a wide-sense
control problem. The final stage of execution of a high
level task includes vision, control and path planning
algorithms, to name just the most relevant.

A first attempt to deal with this problem is de-
scribed in [2], where a reliability-based measure is
studied for pose-estimation problems. Since it is never
possible to overpass all the uncertainty associated to
the controlled system, it 1s important to study, for

a given set of algorithms, the probability of success
of the problem-solving task implemented by those al-
gorithms. This allows an entropy-based measure to
guide the system in its choice of the most reliable al-
gorithm for a given task.

In this paper a complementary approach to the use
of reliability as a performance measure is introduced.
For a given desired reliability, different algorithms may
be available which are reliable enough. Hence it is im-
portant to have a means of choosing the algorithm of
least computational cost among the reliable ones. In-
formation Based Theory of Complexily [6] provides a
solid formalism to deal with different sources of infor-
mation, thus with distinct algorithms at all levels of
the machine.

The paper is organized as follows: after this intro-
duction, section 2 briefly describes the formalism of
Information-Based Complexity. The core of the pa-
per is section 3 where the application of the theory
to the 3-levels hierarchy (Organization, Coordination
and Execution) of the Intelligent Machine is formal-
ized. A simple case study using image processing algo-
rithms is presented in section 4 to show how to apply
the techniques described below, and finally section 5
concludes the paper.

2 Information-Based Complexity

The computational complexity of a problem may
be defined as “its intrinsic difficulty as measured by
the time, space or other quantity required for its so-
lution” [6]. More formally this is equivalent to the
cost of the optimal algorithm for the solution of the
problem in the sense defined below.

We briefly summarize below the general formula-
tion of information-based complexity [6]. Hopefully
the details will be clarified by the formulation of the
case study.



2.1 Problem formulation

For each f € F, where F' is a set and [ is called
a problem element, the problem is to compute an ap-
proximation U(f) of S(f), where S : F — (G is called
a problem solution and G is a normed linear space over
the scalar field of real or complex numbers. In this in-
terpretation, G is the feature space of the problem,
S(f) represents a vector of desired features for f and
U(f) computes the actual corresponding features from
f. To measure the distance between S(f) and U(f)
we use an absolute error criterion, [|S(f) — U(f)||.
U(f) is an e-approzimation of S(f) iff ||S(f) —
UH| < e > 0. We wish a computed element U(f)
which i1s an e-approximation in one of three settings:
worst-case, average and probabilistic.

2.2 Information

It is assumed that the only initial knowledge we
have about f is that it belongs to the set F', and also
that we may gather more knowledge about f using
computations of the form L(f), L : F — H for some
set H.

The information Z(f) is then defined as

I(f)=1[L1(f), L2(f),..., La(f)], VfE F.

In the above sense, we may say that U(f) com-
putes the feature vector obtained when algorithm
®: I(f) — G is used. ® is an algorithm which com-
putes an approximation of S(f) given the information

Z(f).
2.3 Model of computation

The initial assumptions are: ) a sequential
model of computation and é¢) all information and com-
binatorial operations are performed with infinite pre-
cision and finite cost.

The model postulates a constant cost ¢ for each in-
formation operation L(f) and unit cost for each com-
binatory operation performed by ® over Z(f).

Cost is defined as

cost(P) = Jsclelg{cz(f) +ep(f)} (1)

where ¢;(f) is the cost of getting information about
f and ¢p(f) is the cost of processing that information

by algorithm &.
The error associated to @ is, in a probabilistic set-
ting

e(U) = ;Zr;{lls(f)—U(f)ll s P(IS(H-U(Hl <) 2 1-8} (2)

In simple words, this means that we control the
error of estimating S(f), keeping it below ¢, except in
a subset of G with measure 6. The cost is obtained
from the constraints imposed to the error.

Finally, e-complexity (complexity for short) of a
problem 1s the minimal cost among all algorithms
which solve the problem with error at most e:
comp(e) = infe{cost(U) :e(U) <€}

The algorithm ®* that achieves the minimal cost is
called an optimal algorithm.

3 A Performance measure for Intelli-
gent Machines

A major concern of a control system designer is
the performance measure for the controlled system.
The design goal is such that the controlled system
should maximize that measure.

When dealing with very large systems, some
amount of uncertainty must be assumed in the model
of the system to be controlled. Hence there is always
uncertainty about the result of a given command sent
to the controlled system.

Uncertainty is present at all levels of the Intelligent
Machine [4]: at the execution level, there is uncer-
tainty in terms of features like rise-time or overshoot,
since mathematical models never match exactly the
real controlled system. Zames [9] suggests that feed-
back reduces this uncertainty in conventional control
problems; at the coordination level, there is uncer-
tainty in terms of the success of each of the primitive
events (e. g. strut grabbed, path planned, manipulator
didn’t move) composing a task [7]; at the organiza-
tion level, there is uncertainty in terms of the success
of the task executed.

Thus, if we reduce the uncertainty about the ac-
tions taken by the Intelligent Machine, we are improv-
ing performance, since each of the actions at all levels
will have a broader chance of success. This can be
interpreted as a problem of improving reliability, by
choosing at the coordination/execution levels the
most reliable low-level algorithms for each primitive
event [2], and at the organization level the most
reliable ordered sequence of primitive events (task).

However, the price to pay when a high reliability is
required may be unacceptable, either in terms of com-
putational time or resources such as memory, number
of image frames or sampling rate.

Thus it is desirable to measure the relative costs of
the different algorithms capable of solving the problem



represented by an event, with the required accuracy.
This cost includes the prices of getting information
and processing it. Depending on the model used, dif-
ferent features are weighted (CPU time, memory).

Given the above, maximizing the performance of
the entire machine may then be formulated as a Dis-
crete Optimization Problem:

min cost(a)
s. t. reliability(a) > Ri(a)

where Rg is the reliability required by the command
sent to the machine and a 1s a task translation for the
command.

Reliability is defined by
R = P(worst case error w/r to specifications < €)  (3)

for some € > 0.

Suppose we consider in (2) S(f) as a vector of
specifications for a given problem. The problem so-
lution S(f) is for example the desired overshoot of a
control algorithm implementing a move robot event,
and the problem element f is the output signal where
S(f) is computed from. Hence,the formulation of
Information-Based Theory of Complexity is appropri-
ate to help us in the design of the IM, expressed by the
optimization problem above. If we make Ry =1 — 6,
when determining the cost of U by equations (1) and
(2) we guarantee that e(U) is such that its probability
of being below ¢ (i. e. the reliability of the solution)
is lower-bounded by Ry.

In order to determine the cost of a task, we need
to know how to determine it from the cost of its com-
posing events. If we assume that the cost of one event
(minimal cost of the algorithms which implement the
event) does not depend on the cost of the other events:

cost(sequence of events) § cost(each event in the sequence)

max cost(concurrent events)

(4)

cost(concurrent events)

In view of the above, the problem of finding the
sequence of actions that solve a problem by the Intel-
ligent Machine with least cost given the current knowl-
edge and a desired reliability may be presented as fol-
lows:

1. Design the low-level algorithms imposing some ¢
accuracy for each algorithm;

2. Wait for command specifying the problem and the
desired reliability Ry = 1 — 6 for its solution;

3. Translate command into n pre-stored tasks [7]
ai, ..., ap capable of solving the problem. We are

not concerned with planning here: it is assumed
that the tasks were planned prior to this. Thus,
learning the correct reliabilities is an important
issue. However, this will only be addressed in
later work;

4. Translate each task a; into m; pre-stored ordered
events €1, ..., em,, and each event e; into I; pos-
sible algorithms g1, ..., g1;;

5. For each event e; determine the reliability of the
event as the reliability of the most reliable algo-
rithm for that event, and the cost of the event
as the cost of the least costly algorithm for the
event;

6. For each task a;, ¢ = 1,... , n determine the cost
of the task, using the rules of composition of
event-cost (4), and the reliability of the task as
the product of the reliabilities of the events com-
posing the task;

7. Among the tasks with reliability greater than or
equal to the desired reliability for the task, deter-
mine the task of least cost and apply it. Go to
2.

Without learning, this algorithm will only work in
static environments if we initially know the correct
reliabilities of each algorithm. Moreover, there is a
risk of combinatorial explosion when commands are
translated into tasks, these into events and these into
algorithms. These are topics which will be addressed
in the near future.

4 Study of an image processing prob-
lem

In order to provide an example of application
of the above formalism, an image processing problem
was formulated.

Given a rectangle inside a M x M pixels image, the
problem was to estimate the position of the rectangle
in the image (see figure 1), that is, its central pixel
of coordinates (i., j.). The pixels inside the rectangle
were initially set to 1, while the outside pixels were
set to 0. Zero mean gaussian noise was added to the
initial value of each pixel in the whole image.

Several assumptions were made with the goal of
simplifying the mathematical analysis and the simu-
lation: ) The area of the rectangle is known, A =
(ye — yp)(xe — ®p); 44) The whole rectangle is inside
the boundaries of the image; #ii) No more objects
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Figure 1: Image processed by the two algorithms

are present in the image; iv) Errors resulting from
poor image resolution or computational roundoff were
not considered, that i1s, without noise both algorithms
should determine the rectangle position with infinite
accuracy.

Two algorithms were proposed to solve the prob-
lem:

e The open loop algorithm determines the center of
gravity of the total image, using the equations

e =

. S S (5)
g = Zmigm U

where b(i, j) is the brightness of pixel (4, 7).

e The closed loop algorithm correlates the image
(feedback) with a pattern rectangle (reference)
equal in size to the original noise-free rectangle
of the image and with the same orientation. The
rectangle 1s assumed to be centered inside the P x
P pixels pattern image. The coordinates (., y.)
of the pixel with the greatest correlation coeffi-
cient are the estimates of the rectangle position
in the image.

The objectives were twofold: ¢) apply the proposed
methodology to study and compare the cost of the
open loop and closed loop algorithms; 4i) compare in
terms of cost a wide-sense open loop solution with a
wide-sense closed loop solution for the problem.

4.1 Problem formulation

F is the set of rectangles with size (. — x3) by
(ye — yp) that fit inside the M x M image.

The goal is to compute an e-approximation for S :
F — R? that is, we want to determine an estimate

U(f) of S(f) such that

1SC) = U <«
where S(f) =[x, y]' and U(f) = [z, 9.]".

To simplify the analysis, and since what happens
in one of the directions is similar to what happens in
the other, we will only check the error estimate of x..

|#e — ] < €.
4.2 Information

The computations L;;(f), Li; : F — R have the
format

o T4y if pixel(i,j) € f

and so 7T = [L111(f), ..., Lnam (f)] where n de-
notes the nth average, N is the total number of aver-
ages, M the number of pixels on each side of the image
and n;; is a random variable representing the noise at

pixel (4,7), ni; ~ N(0,04?), i.i.d.
4.3 Model of computation

In this simple approach, we restrict the set of al-
gorithms to those that can solve the problem in, say
polynomial time. This means that we are more con-
cerned about the cost of getting information. For ex-
ample, if a mobile robot has to stop and get several
frames of a scene in order to speedup posterior compu-
tations of its locations, we prefer a slowest algorithm
that however requires less stopping time for the robot.
The algorithm may run while the robot is performing
other tasks.

Hence, cost(®) = cost(Z, f) = ¢Npmin, that is, cost
is proportional to the minimum number of averages
needed by algorithm @ to get the error below e.

4.4 Study of the algorithms

The open loop algorithm estimates the center co-
ordinates of the rectangle using equations (5). Since
the brightness of each pixel is a gaussian distributed
random variable

N(1,02) pixel(i,j) € f
pB,;(bij) ~ { N(O’U%) pixel(,j) & f

and the B;;’s are uncorrelated from pixel to pixel
(given that they are independent), it can be deduced



that, after V averages of distinct frames of the same
image and if we assume independent noise from frame
to frame, pg (2c) ~ N(px,, O?(C) with pgx = z. and
. M?*(M 4+ 1)(2M + 1)o? (©)
Xe 6AZN
Now, given an accuracy € and a desired reliability
R4, we want to determine N such that P(|&. — x| <
€) > Rq
From the table of standard normal we get 7 in
P(% <n)=Rq

Making 7 = ¢/o%_and using (6) we finally get

W M*(M +1)(2M + 1)o} .
6A%e? (7)

The inequality in (7) comes from the fact that we
want the reliability to be lower bounded by Ry.

The closed loop algorithm looks for the pixel where
the noisy output of the correlator achieves a maximum
when the pattern is displaced around the image. Due
to noise, there is some probability that the wrong pixel
is chosen. In order to make the problem tractable, we
have to make some assumptions, such as working at
1D again, and considering errors of 1 pixel displace-
ment at most.

If the correlator input weorr (#) = r(x)+n(z), where
r(z) is arectangle of length z.—xp and n(x) is gaussian
noise of zero mean and variance o7 /N, and the impulse
response of the correlator is r(z. — ), then yeor (2) =
yr(2) + yn () is the correlator output, where y, () is
an isosceles triangle of length 2(z. — ), centered at
z. and of height z. — 3, and y,(x) is gaussian noise
with mean z and variance o2 = oZ(z. — x3)/N.

Now, if we assume errors of 1 pixel at most and
we say that, for convenience, 1 pixel corresponds to
an ¢ displacement, the reliability P(|z. — #;] < €) =
P(ycorr(xc + 6) — Yeorr (xc) < 0 and ycorr(xc - 6) -
ycorr(xc) < 0)

Let us assume that the output noise of the corre-
lator is independent from pixel to pixel. This is not
actually true, but it allows us to proceed. Since the
two random variables are correlated, under this as-
sumption we will obtain a smaller probability, hence
obtaining an upper bound for N, . Noticing that the
sum of two random variables jointly and marginally
gaussian is another gaussian distributed random vari-
able, we finally get Ry = P%(z < 0), z ~ N(—¢,202),
or /Ry = P(ZE5 < n), where 5 can be read from a

\/iafl
table of standard normal and is made equal to ﬁ,
hence the upper bound is
277205(1‘6 — )

Comparing with N,,;, for the open loop algorithm
(7), it may be noticed that the closed loop upper
bound on the number of averages does not depend on
the size of the image M, while the minimum number
of averages for the open loop algorithm increases with
M, thus it is possible, with a reasonable ratio of im-
age size to pattern size, to show that the closed loop
algorithm upper bound for N,,;, will be below the
actual value of N,,;, for the open loop case. Simula-
tions show that (8) is a loose upper-bound and that in
practice the cost of the closed loop algorithm is much
smaller, for the same reliability. If the cost of process-
ing information is also considered, other intermediate
solutions between the two algorithms will have less
cost, since the open loop algorithm is computation-
ally fast.

4.5 Simulation results
The open loop algorithm was tested with differ-
ent sets of parameters as follows:
o R;=90% and ¢ = 0.1 and 0.2.
e ¢=0.3 and Ry = 90% and 95%.

Each of the setups was tested with standard devi-
ation of pixel noise o = 0.1 and o3 = 0.3. Each side
of the image had 32 pixels and the rectangle had 13
pixels in the @ direction, 9 in the y direction.

Ty 0.1 0.3
0.1 73 0.8733 655 | 0.8933
0.2 18 0.8333 164 | 0.8533

Table 1: Simulation results showing values of relia-
bility and minimum number of averages (cost) for a

desired reliability of 90 %.

Ty 0.1 0.3
90 % 8 0.9267 73 0.8733
95 % 11 0.9400 103 | 0.9467

Table 2: Simulation results showing values of relia-
bility and minimum number of averages (cost) for a

desired ¢ = 0.3.

The simulations were made in PRO-MATLAB Ver-
sion 3.51, running on a Sun SparkStation. The results



Niin | Rot/ow R.i/oy
4 98%/0.2 || 99%/2.0
9 97%]0.3 || 98%/3.0

Table 3: Simulation results showing values of reliabil-
ity for the same minimum number of averages (cost)
and different noise variances, using the open loop (ol)
and closed loop (cl) algorithms. ¢ = 1.

are presented in tables 1 and 2, showing for each setup
the reliability obtained after 150 runs with a number
of averages greater than the minimum theoretically
required (also shown).

In general, the outcomes agree quite well with the
expected results. In some cases, reliability is slightly
lower than expected. This may be explained by the
fact that MATLAB’s random number generator does
not assure complete independence of the output val-
ues, hence additional terms would be present in equa-
tion (7), raising the lower bound on the number of
averages.

The closed loop algorithm was simulated under the
same setup. By trial and error, we determined the
standard deviation of the superimposed noise needed
to obtain reliabilities close to those of the open loop
case with the same number of averages. Table 3 shows
these results. The same N,,;, 1s suflicient to obtain
accurate estimates with the same reliability, but with
a noise standard deviation approximately 10 times
larger.

This means that, given a desired reliability, we may
use the formalism to measure the cost of the alterna-
tive algorithms. On the other hand, given a N we
can determine the maximum possible reliability and
minimum possible cost of an algorithm.

5 Conclusions and future work

A first approach to the study of computational
complexity of Intelligent Machines was described in
this paper. The formalism introduced is based on
Information-Based Theory of Complexity and formu-
lates the problem of maximizing the performance of
the Intelligent Machine as a Discrete Optimization
problem, where the cost of a task is to be minimized,
and the constraints are imposed by a required Relia-
bility.

Future work will apply the introduced formalism to
other kinds of problems present in the execution level

of the Intelligent Machine (control, path planning) and
extend 1t to the total hierarchy of the Machine. An-
other research topic of interest is how to articulate
reliability and complexity at all levels of the IM, and
to use feedback to learn the reliability of the algorithms
along time.
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