
A PERFORMANCE MEASURE FOR INTELLIGENTMACHINES BASED ON COMPLEXITY AND RELIABILITYP. LIMA�, G. SARIDIS���Dept. Engenharia Electrot�ecnica, Instituto Superior T�ecnico, Av. Rovisco Pais, 1 - 1096 Lisboa Codex,PORTUGAL. E-mail: d2116@alfa.ist.utl.pt. JNICT grant #BD/1357/91-IA.��Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy,NY 12180-3590, U.S.A.. E-mail: saridis@ral.rpi.edu. NASA grant #NAGW-1333.Abstract. This paper introduces a formalism which combines reliability and complexity in a measure ofperformance for Intelligent Machines. For a given desired accuracy, di�erent algorithms may be availablewhich are reliable enough. Reliability is de�ned as the probability that an algorithm meets, at run-time,the accuracy speci�cations which guided its design. However it is important to have a means of choosingthe algorithm of least cost among the reliable ones. The cost measures resources usage, such as CPUtime, memory space or number of processors. The Theory of Information-Based Complexity provides aformalism to deal with di�erent sources of information, thus with distinct algorithms at all levels of themachine. Two case studies on motion control and image processing illustrate the method.Key Words. Hierarchical Intelligent Machines, Performance Measures, Complexity, Reliability.1. INTRODUCTIONThe analytic approach to the theory of Intelligent Ma-chines has developed in the past few years a formal-ism for the architecture of an Hierarchical and Goal-Directed Intelligent Machine (HGDIM), as describedby Valavanis and Saridis (1992).Other authors (Technical Committee on IntelligentControl, 1994) have also pointed out that an analyticdesign based on measures of performance assures somedegree of certainty about the measurability of thatdesign. Also, an approach somewhat di�erent fromtraditional control cost functionals is needed, since amyriad of di�erent sources of information is presentin such a machine. To accommodate this, the generalgoal of the Analytic Theory of Intelligent Machineshas been to decrease of entropy at all levels of theHGDIM, since entropy is a measure of information, aconcept manipulated by all the di�erent algorithms.Reliability has been proposed as an equivalent mea-sure of entropy by McInroy and Saridis (1994). Com-plexity was �rst included in the performance functionby Lima and Saridis (1993).In this paper a complementary approach to the useof reliability as a performance measure is introduced.For a speci�ed accuracy, di�erent algorithms may beavailable which solve the problem with a reliabilitygreater than some threshold. Hence it is importantto have the means to choose the algorithm of leastcomputational cost among the reliable ones. Anotherpoint of view, followed here, is to combine cost andreliability in a cost function which balances the twoand guides the decision process. When uncertaintyis present, Information Based Theory of Complexity,introduced by Traub et al (1988), provides the back-ground to formalize a coherent de�nition of reliabilityand cost. Also, this theory is capable of dealing withdi�erent sources of information, thus with distinct al-gorithms at all levels of the machine.

The paper is organized as follows: after this intro-duction, section 2 brie
y describes the formalism ofInformation-Based Complexity. The core of the pa-per is section 3 where the performance function basedon cost and reliability is introduced, as well as theequations to propagate it from the Execution level tothe other 2 levels of the HGDIM: Organization andCoordination. Two applications of the theory to In-telligent Robotic Systems are described in section 4.Section 5 concludes the paper.2. INFORMATION-BASED COMPLEXITYControl problems associated to Intelligent Machines,whether they consist of servomechanisms, adaptivesystems, robotic vision, neural net or fuzzy logic con-trollers, deal with information of all kinds, and this in-formation is often partial, noisy and costly. Moreover,Intelligent Machines frequently move within stronglyuncertain environments, and their goal is to reducethe degree of uncertainty in controlling these envi-ronments. Hence, in the sequel the focus will be onInformation-Based Complexity, not on CombinatorialComplexity (Traub et al (1988)).2.1. Problem FormulationFor each f 2 F , where F is a set of problem elements,it is desired to compute an approximation U(f) ofS(f), where S : F ! G is called a problem solutionand G is a normed linear space over the scalar �eldof real or complex numbers. To measure the distancebetween S(f) and U(f) an absolute error criterion,kS(f) � U(f)k, is used, where k(:)k represents somenorm de�ned in G.U(f) is an �-approximation of S(f) i� kS(f)�U(f)k �� � 0. � is called the accuracy of the approximation.



2.2. InformationIt is assumed that the only initial knowledge aboutf is that it belongs to the set F , and also that moreknowledge about f may be gathered using computa-tions of the form L(f); L : F ! H, for some setH.H may assume several di�erent forms. For example,it may either be the set f0; 1g of answers to a questionlike \what is the intensity value of pixel (i,j) in someblack-and-white image?" or the set of real numberswhen the information consists on the collection of afunction and its derivative values at some point x,Li(f) = f (i)(x); 0 � i � r.The information I(f) is then de�ned as I(f) =(L1(f); L2(f); : : : ; Ln(f))T ; 8f 2 F .U(f; �) = �(I(f)) where �(I(f)) 2 G is an algorithmthat computes an approximation of S(f) given theinformation I(f).2.3. Model of ComputationThe initial assumptions are:� either a sequential or parallel model of computa-tion is assumed;� there is a charge for each information operation;� all information and combinatorial operations areperformed with in�nite precision and �nite cost.The model postulates a constant cost c for each in-formation operation L(f) 2 � and unit cost for eachcombinatory operation performed by � over I(f).The cost of an algorithm � has two components:cost(�; f) = ci(I(f); f) + cp(�;I(f)) (1)where ci is the cost of getting information about fneeded by algorithm �, and cp is the combinatorialcost of processing that information by algorithm �.Given the above, ci(I(f); f) = cjI(f)j, where jI(f)jdenotes the cardinality of I(f), that is, the numberof information operations. The term ci is inherent toinformation-based complexity. Information is gath-ered to reduce uncertainty. cp would be the only termin the absence of uncertainty. Depending on the modelused, di�erent features are weighted (CPU time, mem-ory space, number of processors).2.4. Coherent De�nition of Reliability and CostIn order to coherently combine the de�nitions of costand reliability for a given problem, the key is the de-sired accuracy or error speci�cation � for the problem,which must be the same in both de�nitions, as ex-plained before.�-cost (cost for short) of a problem is de�ned as theminimal cost among the set �feas of all available andfeasible algorithms which solve the problem with errorde�ned in the probabilistic sense:�-cost = inf�2�feasfcost(�)g (2)Suppose now that S(f) is a vector of speci�cationsfor a given problem. The problem solution S(f) is for

example the desired overshoot of a control algorithmimplementing a move robot event, and the prob-lem element f is the output signal used to computeU(f; �).Given this, Reliability is de�ned as:R(�; f) = Prfspeci�cation error < �g= PrfkS(f)� U (f;�)k < �g (3)for some desired accuracy �. Model-based computa-tions of reliability often assume gaussian distribution(McInroy and Saridis, 1994) or no speci�c distribu-tion (Musto and Saridis, 1993) for the probability ofthe speci�cation error. If the reliability is learned fromsuccesses and failures along time (Lima, 1994), no dis-tribution must be speci�ed either.Under the probabilistic setting the error of estimatingS(f) by U(f; �) (the result of algorithm �), is kept be-low �, except in a subset of G with measure �. Now,making Rd = 1 � �, where Rd is the desired relia-bility lower-bound, the coherent de�nition of cost isobtained:f� = arg inff2FfR(�; f) 3 R(�; f) � RdgC(�) = cost(�; f�) (4)that is, among all f 2 F capable of keeping the spec-i�cation error for algorithm � below � with reliabilityat least Rd, the one leading to the worst-case, i.e. thef leading to the larger probability of error, is picked.Here and henceforth, the reliability will be denoted asR(�) = R(�; f�).For example, N image frames or more need to be av-eraged to increase to a certain value the probabilitythat the error of locating an object in a noisy im-age is below �. Every image resulting from the av-erage of a di�erent number frames is a problem el-ement. If the cost of processing that information isnot considered, the overall cost will be equal to ciand proportional to the number of averaged frames.Among the number of image frames which have tobe averaged, N corresponds to the worst-case speci-�cation error. A greater number of averages will de-crease the error probability, while a smaller numberwill push the corresponding approximated problem so-lution to the subset of G with measure �, for whichPrfkS(f)� U(f;�)k < �g < 1� �.The link between the de�nitions of reliability and costis the assumption that all algorithms are designed tomeet an error speci�cation � of the problem they cansolve. Given some desired reliability for the problem,the cost of obtaining that reliability can be deter-mined for each of the algorithms, according to the costmeasure de�ned (number of operations, elapsed CPU-time, memory used) for the problem. Conversely, ifthe cost measure is �xed at di�erent values for thedi�erent algorithms, this will correspond to di�erentreliabilities for each of them.3. A PERFORMANCE MEASURE FORINTELLIGENT MACHINESWhen dealing with very large systems, some amountof uncertainty exists in the model of the system to be



controlled. Hence there is always uncertainty aboutthe result of a given command sent to the controlledsystem.The di�erent algorithms used at the Execution Levelof an Intelligent Machine (Valavanis and Saridis(1992)) are frequently designed in order to meet a setof speci�cations or, without loss of generality, in orderto keep the error of a set of involved variables belowsome desired accuracy �.The uncertainty involved in the design of these algo-rithms is mostly due to approximate or incompletemodeling, and statistical 
uctuations around nomi-nal parameters. Hence it can be modeled statistically.McInroy and Saridis (1994) and Musto and Saridis(1993) describe algorithm selection techniques basedon entropy, capable of choosing the most reliable froma set of di�erent algorithms capable of solving somespeci�c problem. However, the most reliable algo-rithm may have a non feasible computational cost,in terms of the time it takes to complete, the amountof memory it uses or the number of resources (e.g.processors) required.The coherent de�nition of reliability and complexityintroduced in the previous section allows the de�ni-tion of a cost function combining the two, assumingthat each algorithm is designed to meet a set of spec-i�cations:J = 1�R+ �C (5)where R is the reliability, C the cost and � a normal-izing factor such that �C 2 [0;1]. In general, � will besuch that the cost does not overwhelm the reliabilitywhen searching for the optimal action. Examples of� are � = 1maxa2A C(a) or � = 1Pa2AC(a) , where A isthe set of algorithms capable of solving a problem.Equation (5) applies to all levels of the HGDIM, i.e.,the performance of an algorithm, primitive event ortask can evaluated by (5) if the cost and reliabilityare appropriately propagated bottom-up through thehierarchy.A task t is composed by several events ek 2 Et, whereEt is the set of events composing task t, occurring insequence or in parallel. For each event ek there exista set of alternative algorithms Ak capable of solvingthe problem represented by the event.The propagation equations are:Cost of event ek 2 Et is the minimum cost amongall algorithms translating the event:C(ek) �= mina2AkfC(a)g (6)Action probability pa of algorithm a 2 Ak is thecurrent probability of a being applied. A probabilitydensity function is de�ned over the discrete algorithmspace Ak. Its purpose, not discussed here, is to help alearning algorithm converging to the algorithm whichminimizes the cost function J .Reliability of event ek is the average reliabilityamong all algorithms translating the event:R(ek) �= Xa2Ak para (7)

where ra is the reliability of algorithm a.The cost of parallel execution of events e1; e2 isC(e1==e2) �= maxe1;e22EtfC(e1); C(e2)g (8)while the cost of n events e1; : : : ; en 2 Et executedin series isC(e1j : : : jen) �= 1n nXi=1 C(ei) (9)The mean in equation (9) intends to keep the cost inthe interval [0; 1].The successive application of these rules leads to thecost of a task, C(t).The parallel execution of events is not logically parallelfrom the reliability point of view. In fact, all eventsmust be successful to complete a task. Hence, thereliability of task t is (Lima, 1994)R(t) �= Yek2Et R(ek) (10)4. APPLICATION TO INTELLIGENT ROBOTICSYSTEMSTasks implemented by Intelligent Robotic Systemsmay generally be decomposed on primitive events,such asMove Robot, Locate Object, Plan Path,Grasp Object. In this section, the paradigm justformulated will be used to derive the relation betweencost and reliability of algorithms capable of solvingthe problems corresponding to two of these primitiveevents. Emphasis was put on cost measures other thanexecution or computing time, to enhance the 
exibil-ity of the de�nition.4.1. Motion ControlThe dynamics of an n-degree of freedom robot ma-nipulator can be expressed by the following compactform of Euler-Lagrange's equations of motion:D(�)��+NL(�; _�) = u (11)where � 2 <n is the joint angles vector, u 2 <n isthe control torques vector, D(�) : <n ! <nxn isthe inertia matrix, and NL(�; _�) : <nx<n ! <n isthe vector representing nonlinear coupling of Corio-lis, centrifugal, gravity and friction torques. Luo andSaridis (1985) formulated the optimal control solutionfor the problem of making the manipulator track a de-sired trajectory. They identi�ed the system state withx(t) = (�(t) _�(t))T and suggested the performance in-dexJ(u) = 12eT (tf )Ge(tf) + (12)12 Z tft0 [eT (t)Qe(t) + _eT (t)S _e(t)]dtwhere S = � 0 00 S0 �, G is a 2nx2n, S0 an nxn realsymmetric, positive de�nite matrix, Q is a real non-



negative 2nx2nmatrix, e(t) = xd(t)�x(t) and xd(t) =(�d(t) _�d(t))T is the desired state vector. When tf !1, the control law reduces tou� = D(�)f��d(t) +Kp[�d(t)� �(t)] +Kv[ _�d(t)� _�(t)]g+NL(�; _�) (13)which has the same form of the Computed TorqueMethod, with Kp = S�10 P12 and Kv = S�10 P22.P = � P11 P12P12 P22 � is the solution of a continuousalgebraic Ricatti equation.Given the optimal control law, and if the samplingperiod is Ts, the discretized closed loop state spacemodel comes x((k+1)Ts) = Adclx(kTs)+Bdclud(kTs)where ud = (�Td _�Td ��Td )T .In this development it was assumed:1. Perfect cancellation of the non-linear terms;2. Non-noisy measurements;3. Complete information about the state.However, assumption 3 may be kept while relax-ing assumptions 1 and 2, by modeling the resul-tant perturbations as zero mean gaussian noise. Anew discrete state model will be obtained: x((k +1)Ts) = Adclx(kTs) + Bdclud(kTs) + Dv(kTs), wherev is a gaussian noise vector with E[v(kTs)] =0; E[v(kTs)v(kTs)T ] = Cv.The performance index has to be modi�ed when thenoise is actually added to the open loop system, andit becomes I(u) = E[J(u)]. For this motion controlproblem (event move robot) the algorithms cost isidenti�ed with the optimal value of I:C = I(u�) = e(0)TPe(0) + NXk=1 tr(PDCvDT ) (14)where P is the solution of a discrete algebraic Ricattiequation (Lewis, 1986), and N the number of samplesin the trajectory.A lower bound for the Reliability can be obtainedbased on a method described by McInroy and Saridis(1994), when the speci�cations are quadratic in thetracking error e(kTs):e(kTs)TQse(kTs) � �; k = 1; : : : ;N; Qs � 0 (15)where Qs is a matrix weighting the error components.If C�1e (kTs)�Qs(kTs) � 0; 8k = 1; : : : ;N (16)then R � [�2d(�)]N , where �2d is a chi-square distribu-tion with d degrees of freedom, Ce(kTs) is the covari-ance of the tracking error, N the number of pointsthe speci�cations are concerned with, and d the di-mension of the state vector (d = 2n for a n-degreeof freedom manipulator). Ce(kTs) can be determinedby solving the di�erence equation Ce((k + 1)Ts) =AdclCe(kTs)ATdcl +DCv(kTs)DT .Given Qs and �, the reliability lower bound is givenby [�2d(�)]N for all di�erent Ce which satisfy (16). Thevalue of Ce depends on Adcl which in turn is a functionof the weighting matrices Q;S; G in the performanceindex. Hence, for di�erent lower bound reliabilities,di�erent Costs C will be obtained, and the perfor-

mance function J = 1 � R + �C is used to decideamong di�erent optimal algorithms resulting from dif-ferent choices of Q;S; G.In order to clarify the application of the formalism,the following de�nitions for this particular exampleshould be useful:� problem element f = (x xd)� problem solution S(f) = xd� solution approximation U(f; �) = x, as obtainedby algorithm �� algorithm � = �(Q;S; G) = u�(Q;S; G)The performance function associated to the algo-rithms balances the penalization of error and cost ofcontrol (by penalizing joint accelerations) to track agiven trajectory (joint positions, velocities and accel-erations) and the reduction of uncertainty due to mea-surement noise.4.2. Image ProcessingThe use of stereo vision algorithms to determine thepose (3D position + orientation) of an object in aworkspace is usually prone to errors due to the cam-era calibration process, spot noise superimposed onpixel brightness, and pixel resolution. In the sequel,the cost-reliability analysis of a 2D object locationproblem using two image processing algorithms is de-tailed. The brightness is corrupted by superimposedspot noise only, whose in
uence is reduced by averag-ing several image frames corresponding to the samescene.Given a rectangle inside an M x M pixels image, theproblem is to estimate the position of the rectanglein the image (see Fig. 1), that is, its central pixel ofcoordinates (xc; yc). The pixels inside the rectangleare initially set to 1, while the outside pixels are setto 0. Zero mean gaussian noise is added to the initialvalue of each pixel in the whole image.Several assumptions are made with the goal of simpli-fying the mathematical analysis and the simulation:� The area of the rectangle is known and equal toA = (ye � yb)(xe � xb);� The whole rectangle is inside the boundaries ofthe image;� No other objects are present in the image;� Errors resulting from poor image resolution orcomputational roundo� are not considered, thatis, without noise any algorithm should be ableto determine the rectangle position with in�niteaccuracy.Two algorithms are proposed to solve the problem:The open loop algorithm (ol) determines the centerof gravity of the total image, using the equationsx̂c = PMi=1PMj=1 jb(i;j)Aŷc = PMi=1PMj=1 ib(i;j)A (17)where b(i; j) is the brightness of pixel (i; j).The closed loop algorithm (cl) correlates the image(feedback) with a pattern rectangle (reference) equalin size to the original noise-free rectangle of the imageand with the same orientation. The rectangle is as-
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XeFig. 1. Image processed by the two algorithmssumed to be centered inside the P x P pixels patternimage. The coordinates (xc; yc) of the pixel with thegreatest correlation coe�cient are the estimates of therectangle position in the image.Both algorithms manipulate images resulting from theaverage of several image frames, in order to reducenoise.Problem formulation. F is the set of M x M imagescontaining rectangles with size (xe� xb) by (ye� yb).This includes images resulting of averaging several im-age frames.The goal is to compute an �-approximation U(f;�) ofS : F ! <2, where S(f) = (xc yc)T and U(f;�) =(x̂c ŷc)T .To simplify the analysis, and since what happens inone of the directions is similar to what happens in theother, only the error estimate jx̂c�xcj of xc is checked.Information. The information operationsLij(f); Lij : F ! < give the resultsLij(f) = � 1 + nij if pixel(f; i; j) 2 rnij if pixel(f; i; j) 62 rwhere r denotes the set of pixels inside the rectangle.Hence, I = (L111(f); : : : ; Lkij(f); : : : ; LNMM(f))Twhere k denotes the kth frame, N is the total num-ber of averaged frames, M the number of pixels oneach side of the image and nij is a random variablerepresenting the noise at pixel (i; j); nij � N (0; �b2),i.i.d.Model of computation. In this simple approach, theset of algorithms is restricted to those that can solvethe problem in, say polynomial time. This means thatmore concern is put on the cost of getting information.For example, if a mobile robot has to stop and getseveral frames of a scene in order to speedup posteriorcomputations of its locations, a slower algorithm thatrequires less stopping time for the robot is better. Thealgorithm may run while the robot is performing othertasks. Sequential computation is also assumed.Hence, cost(�) = cost(I; f) = cNmin, that is, costis proportional to the minimum number of averagesneeded by algorithm � to get the error below �. Noticethat here f represents an image resulting from the

average of Nmin image frames.Study of the algorithms. The open loop algorithmestimates the center coordinates of the rectangle usingequations (17). Since the brightness of each pixel is agaussian distributed random variablepBij (bij) � � N (1; �2b ) pixel(f; i; j) 2 rN (0; �2b ) pixel(f; i; j) 62 rand the Bij 's are uncorrelated from pixel to pixel(given that they are independent), it can be deducedthat, after N averages of distinct frames of the sameimage and if assuming independent noise from frameto frame, pX̂c (x̂c) � N (�X̂c ; �2̂Xc ) with �X̂c = xc and�2̂Xc = M2(M + 1)(2M + 1)�2b6A2N (18)Now, given an accuracy � and a desired reliability Rd,N is determined such that Prfjx̂c � xcj � �g � RdFrom the table of standard normal �(Rd) inPrf jx̂c�xc j�X̂c � �g = Rd is obtained.Equating �(Rd) = �=�X̂c and using (18): N �Nmin = �2(Rd)M2(M+1)(2M+1)�2b6A2�2 . The inequalitycomes from the fact that the reliability is to be lowerbounded by Rd.The closed loop algorithm looks for the pixel wherethe noisy output of the correlator achieves a maximumwhen the pattern is displaced around the image. Dueto noise, there is some probability that the wrong pixelis chosen. In order to make the problem tractable,some assumptions are made, such as working at 1Dagain, and considering errors of 1 pixel displacementat most.If the correlator input ucorr(x) = r(x) + n(x), wherer(x) is a rectangle of length xe � xb and n(x) isgaussian noise of zero mean and variance �2b=N , andthe impulse response of the correlator is r(xc � x),then ycorr(x) = yr(x) + yn(x) is the correlator out-put, where yr(x) is an isosceles triangle of length2(xe � xb), centered at xc and of height xe � xb,and yn(x) is gaussian noise with mean x and variance�2n = �2b (xe � xb)=N .Now, assuming errors of 1 pixel at most and that 1pixel corresponds to an � displacement, the reliabilitycomes Rd = Prfjx̂c � xcj < �g = Prf(ycorr(xc + �)�ycorr(xc) < 0) ^ (ycorr(xc� �)�ycorr(xc) < 0)g. It isfurther assumed that the output noise of the correlatoris independent from pixel to pixel. This is not actu-ally true, but since the two random variables are cor-related, under this assumption a smaller probabilitywill be obtained, hence obtaining an upper bound forNmin. Noticing that the sum of two random variablesjointly and marginally gaussian is another gaussiandistributed random variable, Rd = Pr2fz < 0g; z �N (��;2�2n), or pRd = Prf z+�p2�n < �g, where �(Rd)can be read from a table of standard normal and ismade equal to �p2�n . Hence, the upper bound for theminimum number of averaged frames isNminup = 2�2(Rd)�2b (xe � xb)�2 (19)Comparing Nminup and Nmin for the open loop algo-



Table 1 ol algorithm with Rd = 90 %.�b 0.1 0.3� Nmin R Nmin R0.1 73 0.8733 655 0.89330.2 18 0.8333 164 0.8533Table 2 ol algorithm with � = 0:3 pixel.�b 0.1 0.3Rd Nmin R Nmin R90 % 8 0.9267 73 0.873395 % 11 0.9400 103 0.9467rithm, it may be noticed that the closed loop upperbound on the number of averages does not depend onthe size of the image M , while the minimum num-ber of averages for the open loop algorithm increaseswith M , thus it is possible, with a reasonable ratioof image size to pattern size, to show that the closedloop algorithm upper bound Nminup will be below theactual value of Nmin for the open loop case. Simula-tions show that (19) is a loose upper-bound and thatin practice the cost of the closed loop algorithm ismuch smaller, for the same reliability.Simulation results. The open loop algorithm wastested with di�erent sets of parameters as follows:� Rd = 90% and � = 0:1 and 0:2.� � = 0:3 and Rd = 90% and 95%.Each of the setups was tested with standard deviationof pixel noise �b = 0:1 and �b = 0:3. Each side of theimage had 32 pixels and the rectangle had 13 pixelsin the x direction, 9 in the y direction.The results are presented in Tables 1 and 2, show-ing for each setup the reliability obtained after 150runs with a number of averages slightly greater thanthe minimum theoretically required. In general, theoutcomes agree quite well with the expected results.The closed loop algorithm was simulated under thesame setup. The standard deviation of the superim-posed noise needed to obtain reliabilities close to thoseof the open loop case with the same number of aver-ages was determined by trial and error. Table 3 showsthese results. � was made equal to 1 pixel, because theclosed loop algorithm can not achieve sub-pixel reso-lution. The same Nmin is su�cient to obtain accurateestimates with the same reliability, but with a noisestandard deviation approximately 10 times larger.Both results show that, given a desired accuracy �and di�erent environmental conditions (symbolized bydi�erent pixel noise variances), the cost of the objectlocation algorithms increases with increasing demandon the reliability.Table 3 ol and cl algorithms compared.Nmin Rol/�b Rcl/�b4 98%/0.2 99%/2.09 97%/0.3 98%/3.0

Constraining the number of averages to some value,the open loop algorithm can only attain the reliabil-ity of the closed loop algorithm under a much morefavorable environment. Hence, for the same cost andunder the same environment, reliability would distin-guish the two. Also, if di�erent algorithms of bothtypes, distinguished by the choice of di�erent N atdesign time, were available, a combination of the costand reliability associated to each of them would helpin the selection of the most reliable algorithm amongthose constrained by some cost. If cost of process-ing information were considered, an algorithm com-promising the speed of the open loop algorithm andthe reliability of the closed loop algorithm wouldminimize the cost function J .5. CONCLUSIONSIn this paper, the formalism of Information-BasedTheory of Complexity was used to state a coherentde�nition of Cost and Reliability for the di�erent al-gorithms composing a feasible set for a problem. Twoexamples of application to subtasks of an IntelligentRobotic System were presented.The combined measure of reliability and cost pre-sented in this paper may be used in the o�-line se-lection of plans, if viewed as an extension of the workby McInroy and Saridis (1994). It may also be usedto build a cost function which is updated recursivelyon-line and used to learn the action that minimizesthe cost function, as described by Lima (1994). In thelast case, the cost is determined o�-line and the re-liability estimated from experience. No assumptionsabout the distribution of the speci�cation error arerequired. Adaptation to changes in the environmentis possible in some situations. In both cases, the costfunction introduced here can be used as a tool to de-sign Intelligent Machines and as a measure of theirperformance. 6. REFERENCESLewis, F. L. (1986). Optimal Estimation. John Wiley andSons.Lima, P. U. (1994). Intelligent Machines as HierarchicalStochastic Automata. PhD thesis. Rensselaer Polytech-nic Institute. Troy, NY 12180-3590.Lima, P. U. and G. N. Saridis (1993). Measuring Com-plexity of IntelligentMachines. In: Proceedings of 1993IEEE Int. Conf. Robotics and Automat.Luo, G. L. andG. N. Saridis (1985). Optimal/PID formula-tion for control of robotic manipulators. IEEE Journalof Robotics and Automation 1(3).McInroy, J. and G. Saridis (1994). Techniques for selectingpose algorithms. to be published in Automatica .Musto, J. and G. N. Saridis (1993). An entropy-based re-liability assessment technique for intelligent machines.In: Proceedings of 8th International Symposium on In-telligent Control.Technical Committee on IntelligentControl (1994). Reportof task force on Intelligent Control, IEEE Control Sys-tems Society. IEEE Control Systems Magazine 14(3).P. Antsaklis, editor.Traub, J., G. Wasilkowsky and H. Wo�zniakowsky (1988).Information-Based Complexity. Academic Press, Inc.Valavanis, K. P. and G. N. Saridis (1992). IntelligentRobotic Systems. Kluwier Publishers.


