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Abstract. This paper introduces a formalism which combines reliability and complexity in a measure of
performance for Intelligent Machines. For a given desired accuracy, different algorithms may be available
which are reliable enough. Reliability is defined as the probability that an algorithm meets, at run-time,
the accuracy specifications which guided its design. However it is important to have a means of choosing
the algorithm of least cost among the reliable ones. The cost measures resources usage, such as CPU
time, memory space or number of processors. The Theory of Information-Based Complexity provides a
formalism to deal with different sources of information, thus with distinct algorithms at all levels of the

machine. Two case studies on motion control and image processing illustrate the method.
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1. INTRODUCTION

The analytic approach to the theory of Intelligent Ma-
chines has developed in the past few years a formal-
ism for the architecture of an Hierarchical and Goal-
Directed Intelligent Machine (HGDIM), as described
by Valavanis and Saridis (1992).

Other authors (Technical Committee on Intelligent
Control, 1994) have also pointed out that an analytic
design based on measures of performance assures some
degree of certainty about the measurability of that
design. Also, an approach somewhat different from
traditional control cost functionals is needed, since a
myriad of different sources of information is present
in such a machine. To accommodate this, the general
goal of the Analytic Theory of Intelligent Machines
has been to decrease of entropy at all levels of the
HGDIM, since entropy is a measure of information, a
concept manipulated by all the different algorithms.
Reliability has been proposed as an equivalent mea-
sure of entropy by McInroy and Saridis (1994). Com-
plexity was first included in the performance function
by Lima and Saridis (1993).

In this paper a complementary approach to the use
of reliability as a performance measure is introduced.
For a specified accuracy, different algorithms may be
available which solve the problem with a reliability
greater than some threshold. Hence it is important
to have the means to choose the algorithm of least
computational cost among the reliable ones. Another
point of view, followed here, is to combine cost and
reliability in a cost function which balances the two
and guides the decision process. When uncertainty
is present, Information Based Theory of Complexity,
introduced by Traub et al (1988), provides the back-
ground to formalize a coherent definition of reliability
and cost. Also, this theory is capable of dealing with
different sources of information, thus with distinct al-
gorithms at all levels of the machine.

The paper is organized as follows: after this intro-
duction, section 2 briefly describes the formalism of
Information-Based Complexity. The core of the pa-
per is section 3 where the performance function based
on cost and reliability is introduced, as well as the
equations to propagate it from the Execution level to
the other 2 levels of the HGDIM: Organization and
Coordination. Two applications of the theory to In-
telligent Robotic Systems are described in section 4.
Section 5 concludes the paper.

2. INFORMATION-BASED COMPLEXITY

Control problems associated to Intelligent Machines,
whether they consist of servomechanisms, adaptive
systems, robotic vision, neural net or fuzzy logic con-
trollers, deal with information of all kinds, and this in-
formation is often partial, noisy and costly. Moreover,
Intelligent Machines frequently move within strongly
uncertain environments, and their goal is to reduce
the degree of uncertainty in controlling these envi-
ronments. Hence, in the sequel the focus will be on
Information-Based Complexity, not on Combinatorial
Complexity (Traub et al (1988)).

2.1. Problem Formulation

For each f € F, where F is a set of problem elements,
it is desired to compute an approximation U(f) of
S(f), where S : F — G is called a problem solution
and G is a normed linear space over the scalar field
of real or complex numbers. To measure the distance
between S(f) and U(f) an absolute error criterion,
IS(f) = U(f)]|, is used, where ||(.)]| represents some
norm defined in G.

U(f)is an e-approzimationof S(f)iff ||S(f)=U(f)|| <

€ > 0. ¢ is called the accuracy of the approximation.



2.2. Information

It is assumed that the only initial knowledge about
f is that 1t belongs to the set F', and also that more
knowledge about f may be gathered using computa-
tions of the form L(f), L
H.

H may assume several different forms. For example,
it may either be the set {0,1} of answers to a question
like “what is the intensity value of pixel (i,j) in some
black-and-white image?” or the set of real numbers

F — H, for some set

when the information consists on the collection of a
function and its derivative values at some point z,
Li(f) = fP(), 0<i<r.

The information Z(f) is then defined as Z(f) =
(Ll(f)’ L2(f)’ ) Ln(f))T’ Vfer.

U(f,¢) = ¢(Z(f)) where ¢(Z(f)) € G is an algorithm
that computes an approximation of S(f) given the
information Z(f).

2.3. Model of Computation

The initial assumptions are:

e cither a sequential or parallel model of computa-
tion is assumed;

e there is a charge for each information operation;

e all information and combinatorial operations are
performed with infinite precision and finite cost.

The model postulates a constant cost ¢ for each in-
formation operation L(f) € A and unit cost for each
combinatory operation performed by ¢ over Z(f).
The cost of an algorithm ¢ has two components:

cost(¢, f) = ci(Z(f), f) + cp(6, Z(f)) (1)

where ¢; is the cost of getting information about f
needed by algorithm ¢, and ¢, is the combinatorial
cost of processing that information by algorithm ¢.
Given the above, ¢;(Z(f), f) = ¢|Z(f)|, where |Z(f)|
denotes the cardinality of Z(f), that is, the number
of information operations. The term ¢; is inherent to
information-based complexity. Information is gath-
ered to reduce uncertainty. ¢, would be the only term
in the absence of uncertainty. Depending on the model
used, different features are weighted (CPU time, mem-
ory space, number of processors).

2.4. Coherent Definition of Reliability and Cost

In order to coherently combine the definitions of cost
and reliability for a given problem, the key is the de-
sired accuracy or error specification € for the problem,
which must be the same in both definitions, as ex-
plained before.

e-cost (cost for short) of a problem is defined as the
minimal cost among the set ®s.q. of all available and
feasible algorithms which solve the problem with error
defined in the probabilistic sense:

e-cost =

. inf {cost(¢4)} (2)

feas

Suppose now that S(f) is a vector of specifications
for a given problem. The problem solution S(f) is for

example the desired overshoot of a control algorithm
implementing a move robot event, and the prob-
lem element f is the output signal used to compute
Given this, Reliabilityis defined as:

R(¢, f)

Pr{specification error < ¢}

= Pr{||lS(f) - U(f, o)l <€} (3)

for some desired accuracy e¢. Model-based computa-
tions of reliability often assume gaussian distribution
(McInroy and Saridis, 1994) or no specific distribu-
tion (Musto and Saridis, 1993) for the probability of
the specification error. If the reliability is learned from
successes and failures along time (Lima, 1994), no dis-
tribution must be specified either.

Under the probabilistic setting the error of estimating
S(f) by U(f, ¢) (the result of algorithm ¢), is kept be-
low €, except in a subset of G with measure 6. Now,
making Ry = 1 — 6, where Rg i1s the desired relia-
bility lower-bound, the coherent definition of cost is
obtained:

~
*
I

arg }Ielg{R(rb, f) 2 R(¢, f) > Ra}

C(e) cost(¢, f7) (4)

that is;, among all f € F' capable of keeping the spec-
ification error for algorithm ¢ below e with reliability
at least R4, the one leading to the worst-case, i.e. the
f leading to the larger probability of error, is picked.
Here and henceforth, the reliability will be denoted as
R(6) = R(6, ).

For example, N image frames or more need to be av-
eraged to increase to a certain value the probability
that the error of locating an object in a noisy im-
age is below €. Every image resulting from the av-
erage of a different number frames is a problem el-
ement. If the cost of processing that information is
not considered, the overall cost will be equal to ¢;
and proportional to the number of averaged frames.
Among the number of image frames which have to
be averaged, N corresponds to the worst-case speci-
fication error. A greater number of averages will de-
crease the error probability, while a smaller number
will push the corresponding approximated problem so-
lution to the subset of G with measure é, for which
Pr{lIS(f) — U(f,6)]l < e} < 1.

The link between the definitions of reliability and cost
is the assumption that all algorithms are designed to
meet an error specification ¢ of the problem they can
solve. Given some desired reliability for the problem,
the cost of obtaining that reliability can be deter-
mined for each of the algorithms, according to the cost
measure defined (number of operations, elapsed CPU-
time, memory used) for the problem. Conversely, if
the cost measure is fixed at different values for the
different algorithms, this will correspond to different
reliabilities for each of them.

3. A PERFORMANCE MEASURE FOR
INTELLIGENT MACHINES

When dealing with very large systems, some amount
of uncertainty exists in the model of the system to be



controlled. Hence there is always uncertainty about
the result of a given command sent to the controlled
system.

The different algorithms used at the Execution Level
of an Intelligent Machine (Valavanis and Saridis
(1992)) are frequently designed in order to meet a set
of specifications or, without loss of generality, in order
to keep the error of a set of involved variables below
some desired accuracy €.

The uncertainty involved in the design of these algo-
rithms is mostly due to approximate or incomplete
modeling, and statistical fluctuations around nomi-
nal parameters. Hence it can be modeled statistically.
McInroy and Saridis (1994) and Musto and Saridis
(1993) describe algorithm selection techniques based
on entropy, capable of choosing the most reliable from
a set of different algorithms capable of solving some
specific problem. However, the most reliable algo-
rithm may have a non feasible computational cost,
in terms of the time it takes to complete, the amount
of memory it uses or the number of resources (e.g.
processors) required.

The coherent definition of reliability and complexity
introduced in the previous section allows the defini-
tion of a cost function combining the two, assuming
that each algorithm is designed to meet a set of spec-
ifications:

J=1-R+pC (5)

where R is the reliability, C the cost and p a normal-
izing factor such that pC € [0,1]. In general, p will be
such that the cost does not overwhelm the reliability
when searching for the optimal action. Examples of

_ 1 _ 1 :
pare p = gy OL P Za o) where A is

the set of algorithms capable of solving a problem.
Equation (5) applies to all levels of the HGDIM, i.e.,
the performance of an algorithm, primitive event or
task can evaluated by (5) if the cost and reliability
are appropriately propagated bottom-up through the
hierarchy.

A task t is composed by several events ey € E', where
E' is the set of events composing task t, occurring in
sequence or in parallel. For each event ey there exist
a set of alternative algorithms A* capable of solving
the problem represented by the event.

The propagation equations are:

Cost of event e; € F* is the minimum cost among
all algorithms translating the event:

C(ex) & min {C(a)} (6)

a€ Ak

Action probability p, of algorithm a € A* is the
current probability of ¢ being applied. A probability
density function is defined over the discrete algorithm
space A*. Its purpose, not discussed here, is to help a
learning algorithm converging to the algorithm which
minimizes the cost function J.

Reliability of event ep is the average reliability
among all algorithms translating the event:

R(ek) é Z PaTa (7)

a€ Ak

where r, 1s the reliability of algorithm a.
The cost of parallel execution of events ei, ez is

Cler/[e2) & max {C(er), C(e2)} (8)
ey,e0€E
while the cost of n events e1, ..., e, € E? executed

in series is
Al &
C oo len) = — Cle; 9
(eal.-len) Z (ei) (9)

The mean in equation (9) intends to keep the cost in
the interval [0,1].

The successive application of these rules leads to the
cost of a task, C(t).

The parallel execution of events is not logically parallel
from the reliability point of view. In fact, all events
must be successful to complete a task. Hence, the
reliability of task ¢ is (Lima, 1994)

R = ] R(ex) (10)

e cEt

4. APPLICATION TO INTELLIGENT ROBOTIC
SYSTEMS

Tasks implemented by Intelligent Robotic Systems
may generally be decomposed on primitive events,
such as Move Robot, Locate Object, Plan Path,
Grasp Object. In this section, the paradigm just
formulated will be used to derive the relation between
cost and reliability of algorithms capable of solving
the problems corresponding to two of these primitive
events. Emphasis was put on cost measures other than
execution or computing time, to enhance the flexibil-
ity of the definition.

4.1. Motion Control

The dynamics of an n-degree of freedom robot ma-
nipulator can be expressed by the following compact
form of Euler-Lagrange’s equations of motion:

D(0)§+ NL(8,8) = u (11)
where 8§ € R" is the joint angles vector, u € R" is
the control torques vector, D(g) : R" — R"X" is
the inertia matrix, and NL(§, Q) : RPxR" — R” is
the vector representing nonlinear coupling of Corio-
lis, centrifugal, gravity and friction torques. Luo and
Saridis (1985) formulated the optimal control solution
for the problem of making the manipulator track a de-
sired trajectory. They identified the system state with
z(t) = (8(¢) Q(t))T and suggested the performance in-
dex

1
J(u) = 5§T(tf)Gé(tf) + (12)
1 [
3 | 0eun + Eosina
to
0 0 .
where S5 = , G is a 2nx2n, So an nxn real
0 So

symmetric, positive definite matrix, Q is a real non-



negative 2nx2n matrix, e(t) = z,(t)—z(t) and z,(t) =
(8,(t)8,4(t))T is the desired state vector. When t; —
o0, the control law reduces to

E* = D(Q){éd(t) + KP[Qd(t) - Q(t)] +
Ku[0,(t) — 6()]} + NL(8, 0) (13)

which has the same form of the Computed Torque
Method, with K, = S;'Py; and K, = S;'Pao.
Py P2
Py P
algebraic Ricatti equation.

Given the optimal control law, and if the sampling
period is Ty, the discretized closed loop state space
model comes z((k+1)T.) = Aaaz(kT:)+ Bacu,(kT:)
where u, = (87 85 ;)"

In this development it was assumed:

P =

is the solution of a continuous

1. Perfect cancellation of the non-linear terms;
2. Non-noisy measurements;
3. Complete information about the state.

However, assumption 3 may be kept while relax-
ing assumptions 1 and 2; by modeling the resul-
tant perturbations as zero mean gaussian noise. A
new discrete state model will be obtained: =z((k +
NTe) = Agaz(kT,) + Bacuy(kTs) + Du(kT:), where

v is a gaussian noise vector with FE[v(kT.)] =

0, Elo(kTe)o(kT)T] = C,.

he performance index has to be modified when the
noise is actually added to the open loop system, and
it becomes I(u) = E[J(u)]. For this motion control
problem (event move robot) the algorithms cost is
identified with the optimal value of I:

N
C = 1I(u*) =e(0)"Pe(0) + Y _t(PDC,DT)  (14)
k=1

where P is the solution of a discrete algebraic Ricatti
equation (Lewis, 1986), and N the number of samples

in the trajectory.

A lower bound for the Reliability can be obtained
based on a method described by Mclnroy and Saridis
(1994), when the specifications are quadratic in the
tracking error e(kT%):

e(kT )" Que(kTs) < e, k=1,...,N, Q¢ >0 (15)

where Q. is a matrix weighting the error components.

If
O (kTe) — Qe(kT) > 0,Yk =1,..., N (16)

then R > [x2(¢)]", where x2 is a chi-square distribu-
tion with d degrees of freedom, C.(kT;) is the covari-
ance of the tracking error, N the number of points
the specifications are concerned with, and d the di-
mension of the state vector (d = 2n for a n-degree
of freedom manipulator). C.(kT.) can be determined
by solving the difference equation C.((k + 1)T.) =
AqeCe(kTHAL, + DC(KTS)DT.

Given Q. and ¢, the reliability lower bound is given
by [x2(¢)]" for all different C. which satisfy (16). The
value of C. depends on A4 which in turn is a function
of the weighting matrices @, 5, G in the performance
index. Hence, for different lower bound reliabilities,
different Costs C will be obtained, and the perfor-

mance function J = 1 — R + pC is used to decide
among different optimal algorithms resulting from dif-
ferent choices of @, 5, G.

In order to clarify the application of the formalism,
the following definitions for this particular example

should be useful:

~—

e problem element f = (z &,

¢ problem solution E(i) =z,
o solution approximation U(f, #) = z, as obtained
by algorithm ¢

e algorithm ¢ = ¢(Q, 5, G) = u*(Q, 5, G)

The performance function associated to the algo-
rithms balances the penalization of error and cost of
control (by penalizing joint accelerations) to track a
given trajectory (joint positions, velocities and accel-
erations) and the reduction of uncertainty due to mea-
surement noise.

4.2. Image Processing

The use of stereo vision algorithms to determine the
pose (3D position + orientation) of an object in a
workspace is usually prone to errors due to the cam-
era calibration process, spot noise superimposed on
pixel brightness, and pixel resolution. In the sequel,
the cost-reliability analysis of a 2D object location
problem using two image processing algorithms is de-
tailed. The brightness is corrupted by superimposed
spot noise only, whose influence is reduced by averag-
ing several image frames corresponding to the same
scene.

Given a rectangle inside an M x M pixels image, the
problem is to estimate the position of the rectangle
in the image (see Fig. 1), that is, its central pixel of
coordinates (z.,y.). The pixels inside the rectangle
are initially set to 1, while the outside pixels are set
to 0. Zero mean gaussian noise is added to the initial
value of each pixel in the whole image.

Several assumptions are made with the goal of simpli-
fying the mathematical analysis and the simulation:

e The area of the rectangle is known and equal to
A= (ye — yo)(ze — Tb);

e The whole rectangle is inside the boundaries of
the image;

e No other objects are present in the image;

e Errors resulting from poor image resolution or
computational roundoff are not considered, that
is, without noise any algorithm should be able
to determine the rectangle position with infinite
accuracy.

Two algorithms are proposed to solve the problem:
The open loop algorithm (ol) determines the center
of gravity of the total image, using the equations

N Zi\il Z;\/Izljb(i’])
A

N Zi\il Z]Nil #b(5:9) (17)
A

where b(z, j) is the brightness of pixel (i, j).

The closed loop algorithm (cl) correlates the image
(feedback) with a pattern rectangle (reference) equal
in size to the original noise-free rectangle of the image
and with the same orientation. The rectangle is as-
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Fig. 1. Image processed by the two algorithms

sumed to be centered inside the P x P pixels pattern
image. The coordinates (z.,y.) of the pixel with the
greatest correlation coefficient are the estimates of the
rectangle position in the image.

Both algorithms manipulate images resulting from the
average of several image frames, in order to reduce
noise.

Problem formulation. F is the set of M x M images
containing rectangles with size (z. — zs) by (ye — y2).
This includes images resulting of averaging several im-
age frames.

The goal is to compute an e-approximation U(f, ¢) of
S: F — %2, where S(f) = (zc v.)T and U(f,¢) =
(£c §e)”

To simplify the analysis, and since what happens in
one of the directions is similar to what happens in the
other, only the error estimate |&.—x.| of z. is checked.

Information. The  information operations

Lii(f), Lij : F — R give the results

e J T4mg i pixel(f,4,5) €
Li;(f) = { i if pixel(f,i,5) & r

where r denotes the set of pixels inside the rectangle.
Hence, Z = (Lui(f),--, Lris(f), -+, Lxvarar(F))T
where k denotes the kth frame, N is the total num-
ber of averaged frames, M the number of pixels on
each side of the image and n;; is a random variable
representing the noise at pixel (1, 5), n:; ~ N(0, 73?),
iid.

Model of computation. In this simple approach, the
set of algorithms is restricted to those that can solve
the problem in, say polynomial time. This means that
more concern 1s put on the cost of getting information.
For example, if a mobile robot has to stop and get
several frames of a scene in order to speedup posterior
computations of its locations, a slower algorithm that
requires less stopping time for the robot is better. The
algorithm may run while the robot is performing other
tasks. Sequential computation is also assumed.

Hence, cost(¢) = cost(Z, f) = cNpmin, that is, cost
is proportional to the minimum number of averages
needed by algorithm ¢ to get the error below €. Notice
that here f represents an image resulting from the

average of Ny, image frames.

Study of the algorithms. The open loop algorithm
estimates the center coordinates of the rectangle using
equations (17). Since the brightness of each pixel is a
gaussian distributed random variable

‘ N(Q,62) pixel(f,i,5) €r
P (bis) ~ { N(o,ag) pixel(f,i,7) & r

and the B;;’s are uncorrelated from pixel to pixel
(given that they are independent), it can be deduced
that, after N averages of distinct frames of the same
image and if assuming independent noise from frame
to frame, px (&c) ~ N([LXC, cri»(c) with py_ = . and

M2(M 4+ 1)(2M + 1o}
2 b
Txe = 6A>N (18)

Now, given an accuracy € and a desired reliability Rq,
N is determined such that Pr{|i. — z.| < ¢} > Ra
From the table of standard mnormal n(Rgq) in
Pr{@ < n} = Rq is obtained.

X
Equating n(Ra) = €/ox_ and using (18): N >

2 2 2
Nmin = = (Fa)M ((SJ\IZ:;)@MH)%. The inequality

comes from the fact that the reliability is to be lower
bounded by Rg4.

The closed loop algorithm looks for the pixel where
the noisy output of the correlator achieves a maximum
when the pattern is displaced around the image. Due
to noise, there is some probability that the wrong pixel
is chosen. In order to make the problem tractable,
some assumptions are made, such as working at 1D
again, and considering errors of 1 pixel displacement
at most.

If the correlator input wcerr(2) = r(z) + n(z), where
r(z) is a rectangle of length z. — z; and n(z) is
gaussian noise of zero mean and variance o; /N, and
the impulse response of the correlator is r(z. — z),
then yeorr(z) = yr(z) + yn(z) is the correlator out-
put, where y,(z) is an isosceles triangle of length
2(z. — zp), centered at . and of height z. — w4,
and yn(x) is gaussian noise with mean & and variance
ol = ag(xe —xp)/N.

Now, assuming errors of 1 pixel at most and that 1
pixel corresponds to an € displacement, the reliability
comes Rg = Pr{|@. — 2| < €} = Pr{(ycorr(zc +€) —
Yeorr(Tc) < 0) A (Yeorr(Te—€) = Yeorr(ve) < 0)}. It is
further assumed that the output noise of the correlator
is independent from pixel to pixel. This is not actu-
ally true, but since the two random variables are cor-
related, under this assumption a smaller probability
will be obtained, hence obtaining an upper bound for
Nopin. Noticing that the sum of two random variables
jointly and marginally gaussian is another gaussian
distributed random variable, Ry = Pr?{z < 0}, z ~
N(—¢,202), or /Ra = Pr{ \;;;n < n}, where n(Rq)

can be read from a table of standard normal and is

made equal to \/5;0 Hence, the upper bound for the

minimum number of averaged frames is

21°(Ra)op (ze — )
62

(19)

Nminup =

Comparing Nminup and Ny for the open loop algo-



Table 1 ol algorithm with R4 = 90 %.

op 0.1 0.3

€ Nuin R Nuin R
0.1 73 0.8733 655 0.8933
0.2 18 0.8333 164 0.8533

Table 2 ol algorithm with € = 0.3 pixel.

op 0.1 0.3

Rg Nuin R Nuin R
90 % 8 0.9267 73 0.8733
95 % 11 0.9400 103 0.9467

rithm, it may be noticed that the closed loop upper
bound on the number of averages does not depend on
the size of the image M, while the minimum num-
ber of averages for the open loop algorithm increases
with M, thus it is possible, with a reasonable ratio
of image size to pattern size, to show that the closed
loop algorithm upper bound Nuyinup will be below the
actual value of Ny,in for the open loop case. Simula-
tions show that (19) is a loose upper-bound and that
in practice the cost of the closed loop algorithm is
much smaller, for the same reliability.

Simulation results. The open loop algorithm was
tested with different sets of parameters as follows:

o Ry =90% and ¢ = 0.1 and 0.2.
o ¢=10.3 and Rqg = 90% and 95%.

Each of the setups was tested with standard deviation
of pixel noise o, = 0.1 and o = 0.3. Each side of the
image had 32 pixels and the rectangle had 13 pixels
in the x direction, 9 in the y direction.

The results are presented in Tables 1 and 2, show-
ing for each setup the reliability obtained after 150
runs with a number of averages slightly greater than
the minimum theoretically required. In general, the
outcomes agree quite well with the expected results.
The closed loop algorithm was simulated under the
same setup. The standard deviation of the superim-
posed noise needed to obtain reliabilities close to those
of the open loop case with the same number of aver-
ages was determined by trial and error. Table 3 shows
these results. ¢ was made equal to 1 pixel, because the
closed loop algorithm can not achieve sub-pixel reso-
lution. The same N,.:» 1s sufficient to obtain accurate
estimates with the same reliability, but with a noise
standard deviation approximately 10 times larger.
Both results show that, given a desired accuracy e
and different environmental conditions (symbolized by
different pixel noise variances), the cost of the object
location algorithms increases with increasing demand
on the reliability.

Table 3 ol and ¢l algorithms compared.

Nmin Rol/a'b Rcl/a'b
4 98%/0.2 || 99%/2.0
9 97%/0.3 || 98%/3.0

Constraining the number of averages to some value,
the open loop algorithm can only attain the reliabil-
ity of the closed loop algorithm under a much more
favorable environment. Hence, for the same cost and
under the same environment, reliability would distin-
guish the two. Also, if different algorithms of both
types, distinguished by the choice of different N at
design time, were available, a combination of the cost
and reliability associated to each of them would help
in the selection of the most reliable algorithm among
those constrained by some cost. If cost of process-
ing information were considered, an algorithm com-
promising the speed of the open loop algorithm and
the reliability of the closed loop algorithm would
minimize the cost function J.

5. CONCLUSIONS

In this paper, the formalism of Information-Based
Theory of Complexity was used to state a coherent
definition of Cost and Reliability for the different al-
gorithms composing a feasible set for a problem. Two
examples of application to subtasks of an Intelligent
Robotic System were presented.

The combined measure of reliability and cost pre-
sented in this paper may be used in the off-line se-
lection of plans, if viewed as an extension of the work
by McInroy and Saridis (1994). It may also be used
to build a cost function which is updated recursively
on-line and used to learn the action that minimizes
the cost function, as described by Lima (1994). In the
last case, the cost is determined off-line and the re-
liability estimated from experience. No assumptions
about the distribution of the specification error are
required. Adaptation to changes in the environment
is possible in some situations. In both cases, the cost
function introduced here can be used as a tool to de-
sign Intelligent Machines and as a measure of their
performance.
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