
Using Stochastic Grammarsto Learn Robotic Tasks?Pedro U. Lima1 and George N. Saridis21 Instituto de Sistemas e Rob�otica/Instituto Superior T�ecnico1096 Lisboa Codex, PORTUGAL2 ECSE Dept., Rensselaer Polytechnic InstituteTroy, NY 12180-3590, USAAbstract. The paper introduces a reinforcement learning-based method-ology for performance improvement of Intelligent Controllers. The trans-lation interfaces of a 3-level Hierarchical Goal-Directed Intelligent Ma-chine (HGDIM) are modeled by a 2-stage Hierarchical Learning Stochas-tic Automaton (HLSA). The decision probabilities at the two stages arerecursively updated from the success and failure signals received by thebottom stage whenever a primitive action of the HGDIM is applied tothe environment where the machine operates.The top translation stage and the use of regular stochastic grammars toaccomplish the translation of commands into tasks are described here.Under this framework, subsets of con
icting grammar productions rep-resent di�erent task strategies to accomplish a command. At this stage,an LSA is associated to each subset of con
icting grammar productions.Results of simulations show the application of the methodology to anIntelligent Robotic System.1 IntroductionIntelligent Control (IC) techniques [1] particularly qualify for applications toRobotics, due to the need to coordinate a diverse and large number of sensorsand actuators. They di�er from \conventional" control techniques by aiming toattain higher degrees of autonomy, thus dealing with higher uncertainty. AmongIC techniques, we are especially interested on learning-based methodologies, dueto the repetitive nature of some robotic tasks or at least of some of the primitiveoperations which compose them. Reinforcement Learning is particularly inter-esting as it involves the exchange of small bandwidth information (failure andsuccess signals only) between robotic subsystems. In typical applications, suchas unmanned space and underwater missions, the cost of large bandwith forcommunications between the central command (earth controller or main vessel? The �rst author was supported by the portuguese National Board for Scienti�cand Technological Research (JNICT), under Grant #BD/1357/91-IA. The secondauthor was supported by the NASA Center for Intelligent Robotic Systems for SpaceExploration (CIRSSE) under Grant #NAGW-1333.



controller) is prohibitive and can be reduced by increasing the autonomy of themachine involved in the mission.This paper summarizes work done towards establishing an analytic designmethodology for Intelligent Controllers whose feedback is essentially based onreinforcement learning. An analytic design based on measures of performancerecursively improved through feedback assures some degree of certainty aboutthe measurability, repeatability and veri�ability of that design. To the best ofour knowledge, such a methodology does not currently exist. Here, we focus onlearning the optimal tasks of an Intelligent Controller, although this is just apiece of the hierarchical learning methodology we proposed in previous work[2, 3].Fu [4] was probably the �rst author to write about Learning Control Systemsand to coin as Intelligent Control Systems those systems of interdisciplinarynature, in the intersection of Arti�cial Intelligence and Automatic Control. Healso introduced the concepts of Stochastic Automata and Stochastic Grammars.The former has been developed, although in di�erent directions, by Narendraand his associates [5]. In the last few years, Sutton and his associates exploredreinforcement learning solutions which associate these two views of stochasticautomata [6].The paper is organized as follows: in Sect. 2, we summarize basic conceptsrelated to the Theory of Stochastic Grammars. In Sect. 3 we give some insightinto the more general problem we are addressing (selection of the optimal tasksand primitive actions from a robotic language hierarchy), focusing later on theparticular problem of learning the optimal task selection. Section 4 describesthe application of the theory to an intelligent robotic system. Finally, Sect. 5summarizes the paper and provides suggestions of future research.2 Stochastic GrammarsGrammars are usually employed to describe the syntax of languages or struc-tural relations de�ning a pattern. They are useful in the context of HierarchicalIntelligent Controllers to describe the constraints imposed to the ordering ofsubtasks composing a task. In particular, Stochastic Grammars (see a surveyby Fu and Booth [7]) allow the assignment of probabilities to con
icting pro-ductions or rewrite rules. This turns out to be equivalent to the assignment ofprobabilities to the di�erent strings of the generated language. The probabilitiesof the productions in each con
icting set can be learned by a Learning StochasticAutomaton. Hence, stochastic grammars combined with Reinforcement Learningprovide the means to learn the ordering of subtasks composing a task.Let us �rst de�ne formally a stochastic grammar:De�nition1. A stochastic grammar is de�ned by the quintuple G = (VT , VN ,R, P, S), where1. VT is a �nite set of terminal symbols;2. VN is a �nite set of nonterminal symbols;



3. R is a �nite set of productions or rewrite rules;4. P is a �nite set of probabilities that are assigned by a one to one mappingto the elements of R;5. S is the start symbol.Only stochastic regular grammars will be considered here, that is stochasticgrammars whose productions have the general syntaxA! � or A! �B; � 2 V �T ; A;B 2 VNwhere the symbol to the left of the arrow is called premise while the term to theright of the arrow is the consequent. V �T denotes the set of all the possible stringscomposed by elements of VT , including the null string.The set of productions R can be partitioned into m disjoint subsets R =fR1; : : : ;Rmg, where m is the number of nonterminal symbols, m = jVN j. Inparticular, Ri is the subset of productions with the same premise Ai, corre-sponding to the ith nonterminal symbol.Correspondingly, the set of probabilities P can be partitioned into m disjointsubsets, where subset Pi contains the probabilities of the productions of Ri.A stochastic grammar is proper ifmiXk=1pik = 1; pik 2 Pi; jPij = mi; i = 1; : : : ;mi. e. if for each subset of productions Ri the production probabilities in Pi addto one.To each string x of the language L(G) generated by G corresponds a wordfunction f(x). If the grammar is unambiguous, that is, if there is only one left-most derivation for each x,f(x) = K(x)Yk=1 p(k; x); 8x 2 L(G)where K(x) represents the number of steps in the derivation of x, and p(k; x) isthe probability of the production used in the kth step of the derivation of x.A language L � V �T , where V �T represents all strings of �nite length composedby elements of VT , including the null string �, is called a stochastic language ifthere is a function 0 � f(x) � 1; 8x 2 L, called probabilistic word function,f(x) : L! IR <, such that Px2L f(x) = 1. This is the same as to say that theprobabilities of each of the strings of L add up to one.Not all stochastic grammars generate stochastic languages. Some restrictionsmust be imposed to the stochastic grammar.A stochastic grammar G is a consistent grammar i� the word function de-�ned over L(G) is a probabilistic word function, that is, i� L(G) is a stochasticlanguage.If the grammar is proper, then it will be consistent.



3 Hierarchical Learning of Optimal Robotic Tasks3.1 General Concepts of the Model ProposedA hierarchical architecture for autonomous intelligent control systems which en-compasses most of the concepts described in related work was proposed in the70s by Saridis (see a recent book by Saridis and Valavanis [8]). This architec-ture is based on a 3-level hierarchy, where more abstract actions are taken atthe top Organization Level and more precise actions are taken at the bottomExecution Level. Given an external command (goal), the Organization Levelis responsible for sequencing the pre-de�ned primitive tasks into a task. TheExecution Level executes a detailed translation of the task, generated by theintermediate Coordination Level. This level successively decomposes the sub-tasks composing the task into primitive tasks, and distributes them by a numberof coordinators specialized in speci�c sub-tasks, such as vision or motion plan-ning for an Intelligent Robotic System. The coordinators invoke the ExecutionLevel primitive actions to precisely execute the task.At the interfaces between IM levels, speci�c translations must be made: theOrganization-to-Coordination Translation Interface has to choose amongdi�erent tasks capable of attaining a goal. The goal is expressed by a commandsent to the machine. Any task is composed of primitive tasks, usually corre-sponding to the primitives of a given language. For each primitive task, theCoordination-to-Execution Translation Interface has to determine thebest primitive action from the set of those capable of reaching the elementarysubgoal associated to the primitive task.To compare the di�erent alternatives at each translation interface, we need acost function [3]. In robotic systems, the uncertainty involved in the design of thealgorithms implementing primitive tasks (move, locate, plan-path) is mostly dueto approximate or incomplete modeling and statistical 
uctuations around nom-inal parameters. This uncertainty can be quanti�ed by estimating the reliabilityof the algorithm, roughly de�ned as the frequency of successes when attemptingto meet its speci�cations. However, generally the computational cost increaseswith reliability, in terms of the time it takes to complete, the amount of mem-ory it uses, or the number of resources (e.g. processors) required. Thus, it makessense to think of a selection technique which includes both reliability and compu-tational cost, but �rst the two measures must be coherently de�ned in a contextwhere information is noisy and incomplete [3].We presented elsewhere [3] equations wich propagate bottom-up the costfunction originally de�ned for primitive actions. Hence, the cost function of prim-itive actions, primitive tasks and tasks is expressed by the balance between costand complement of reliability of a task. Task cost and reliability are a direct re-sult of the costs and reliabilities of the primitive tasks which compose the task.Primitive task cost and reliability are propagated from the same measures forthe corresponding primitive actions.The success and failure signals used to estimate the reliability of the algo-rithms at all levels of the Intelligent Controller are implicitly propagated bottom-



up through the hierarchy by the described scheme. The Execution Level re-ceives a reinforcement signal as the result of applying a primitive action. Thisoccurs each time the primitive action is applied by checking if the correspondingspeci�cations were met. The success or failure signal is used to recursively esti-mate the reliability of the primitive action, which is propagated to the reliabilityof a task as explained before.3.2 Learning Task SelectionWhen the design is based on the hierarchical model just described, we mustde�ne the set of available primitive tasks and corresponding primitive actions�rst, and then de�ne the alternative tasks for each command as strings of a lan-guage whose terminal symbols are the primitive tasks. If we view the alternativetasks for a command as di�erent decompositions of that command into primitivetasks, a stochastic grammar is a well suited model of the job performed by theOrganization-to-Coordination Translation Interface. Each subset of pro-ductions of the grammar represents a set of alternatives in the decompositionprocess.This use of a stochatic grammar resembles an expert system where the pro-duction rules have associated certainty factors. However, the association of a LSAto each subset of productions and the introduction of a performance measureprovides a consistent and quanti�able method of learning the best decisions.We have proposed before a methodology for performance improvement ofHierarchical Intelligent Controllers (HICs) based on Hierarchical ReinforcementLearning. The two translation interfaces of Saridis' 3-level hierarchy are modeledby a 2-stage Hierarchical Learning Stochastic Automaton (HLSA), as sketched inFig. 1. The HLSA includes a Hierarchical Reinforcement Learning Scheme whichrecursively updates the decision probabilities at the two stages from successand failure signals received by the bottom level whenever an action of the HICis applied to the environment. Under this learning scheme, the probability ofselecting the best tasks and primitive algorithms converges to 1 with probabilityone (w.p.1) [2].The task selection process is improved recursively as the cost function esti-mates improve from the propagation of the cost and reliability learned at theCoordination-to-Execution Interface. However, we �ll focus here on thetop Organization-to-Coordination Interface, that is on learning the opti-mal task selection. Nevertheless, it is important to note that this di�ers fromother Hierarchical Reinforcement Learning methods described in the literature(e.g. Lin [9]) aiming to teach some complex task to a robot. Here a primitiveaction fails or succeeds due to a failure or success to meet its speci�cations, andthe overall task is evaluated from the performance of its composing primitives,while in those works the overall task is directly reinforced from the success orfailure of its application, evaluated by an external agent. This evaluation is as-sumed to be either performed either by a human or by a sensing system whichmay be itself very unreliable or too complex.
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Fig. 1. HLSA and HICThe solution presented is valid under the general assumptions that the HICmoves inside an environment which can be modeled as a multi-state stochasticprocess, the HIC can recognize the di�erent states of the model of the environ-ment, and there is a mechanism of error detection and error recovery to detectand recover from situations which could compromise the integrity of the HICand/or of the environment.Each command interpretable by the HIC is the starting symbol of a regularstochastic grammar. The grammar expresses the constraints imposed by thecommand to the set of primitive tasks, the terminal symbols of the grammar.Each string of the language generated by the grammar represents a task. Hence,a task is generated by the successive application of grammar productions.As we are dealing with regular grammars, the premise of each production ofthe grammar is a non-terminal symbol of the grammar. Each subset of grammar



productions with the same premise (refer to Sect. 2) represents one (or more)alternatives on the derivation of the translating task. There is a LSA associatedto each of these subsets. The productions in each subset are the actions of theLSA, and their probabilities are learned according to the LSA reinforcementscheme explained below. The set of all these LSAs represents the top stage ofthe hierarchy. The optimal task is indirectly learned along time, as a result oflearning the optimal production of each production subset. The task is optimalin the sense of minimizing the cost function which balances algorithm reliabilityand cost.At every step, a (sub)optimal task is selected by random decision, based onthe current subsets of production probabilities. Each task is a string of primitivetasks. The primitive tasks composing task t will also be in the consequent of someproduction involved in the generation of t.The cost function, valid at all levels of a Hierarchical Intelligent Controller,is de�ned by: J = 1� R+ �C (1)where R is the reliability, C the cost and � a weighting factor such that �C 2[0; 1]. In general � will be such that the cost does not overwhelm the reliabilitywhen directing the search for the optimal action.Equation (1) applies to the three levels of the HIC, i.e., the performance of aprimitive action, primitive task or production can be evaluated by (1), if the costand reliability are appropriately propagated bottom-up through the hierarchy.The propagation equations can be found in Lima and Saridis [3].To update the probability density function over the set of tasks for a com-mand, Fu's stochastic approximation reinforcement learning scheme used in thiswork is based on the generalized LSA proposed by Nikoli�c and Fu [10].:pij(ni + 1) = pij(ni) + 
(ni + 1)(�ij(ni)� pij(ni + 1)) (2)where ni = Pj nij; 0 � �ij(ni) � 1; Pj �ij(ni) = 1, i = 1; : : : ; d denotesenvironment states, j = 1; : : : ; r denotes tasks. As the environment is assumedto be multi-state stochastic, we must create a LSA per environment state.Given the estimates of the performance function for the top stage, �ij(ni) isgiven at each step by�ij(ni) = � 1 if Ĵij(nij) = mink Ĵik(nik)0 if Ĵij(nij) 6= mink Ĵik(nik) (3)We use 
(ni + 1) = 1ni+1 , which satis�es the condition of Theorem 2 in [10].Given this, it has been proven that the probability density function of the ac-tion probabilities for state i converges w.p.1 to zeros for all the actions (tasks)except the optimal action m at each stage. The optimal action is the one whichminimizes J . If m is the index of the optimal action, Jim = mink=1;:::;rfJikg,where Jij is the cost function at the decision stage under consideration. Hence,the theorem implies that Prflimni!1 pim(ni) = 1g = 1, for state i; i = 1; : : : ; dand action j; j = 1; : : : ; r.



4 Application to an Intelligent Robotic SystemThe coordination of vision and motion algorithms is one of the typical problemsin Intelligent Robotic Systems. This is the subject of the case study describedin this section.A manipulator PUMA 560 has to grasp a cylindrical strut whose 3D pose(position + orientation) is roughly known. There is a pair of cameras in theceiling, overviewing the working space of the manipulator and used by a stereovision system to determine more accurately the 3D pose of the object. The ma-nipulator has position, velocity and force sensors. The scene is well illuminatedbut from time to time lights go o�, deteriorating the accuracy of vision algo-rithms. The environment has 2 states, one corresponding to lights on (state 0)and the other to lights o� (state 1).
H = 2m

B = 0.5m

Fig. 2. Workspace setup for case study 2A realistic simulation of this setup has been performed, including PUMAdynamics, realistic vision system parameters and dimensions, and compliance.Detailed description of the primitive actions used for each primitive task can befound in [2].The only command available is c=Grab-Strut. The primitive task set is com-posed by 5 primitive tasks, E = fe1; e2; e3; e4; e5g, where e1 �=move manipulator,e2 �=grasp object with compliance, e3 �=locate object, e4 �=plan trajectory, ande5 �=grasp object hard.Primitive task e1 represents the motion of the manipulator tip along a pre-planned trajectory in joint space. Uncertainty is due to unmodeled dynamicsand noise.The goal of primitive tasks e2 and e5 is to slowly move the tip (tool) of themanipulator to the object and grasp it. The Position Accommodation Control



method is used by all algorithms translating e2 to accomplish compliance con-trol of the manipulator. Di�erent parameterizations of the required impedance(similar to a mass, spring and damper system) result in di�erent algorithmswith di�erent costs and reliabilities. Motion driven by some desired force movesthe tool tip to the object. e5 is position controlled and has only one translatingalgorithm. Only passive compliance exists in this case.Primitive task e3 determines the pose of an object using stereo vision algo-rithms. The uncertainty on pose determination by stereo vision is mainly due tomatcher errors when determining which image pixels in the two cameras corre-spond to the same point in the observed scene. This may be due both to spotnoise and pixel resolution, and leads to disparity errors which a�ect the 3D poseestimation.Changing the state of the environment deeply a�ects the two algorithms.Switching the lights o� increases spot noise which a�ects the estimation (by anyof the algorithms) of the strut end-points in each of the images. This will increasedisparity errors and consequently pose estimation errors.Primitive task e4 plans a trajectory in joint space whose end-points are thejoint-space vectors corresponding to the initial and �nal pose required for themanipulator tip when moving froma standby position to the grasping position. Aminimum-jerk trajectory generator is the only algorithm used. It generates thedesired joints acceleration, velocity and position at a number of pre-speci�edpoints along the trajectory by a method which minimizes the jerk, or thirdderivative of joint position.Table 1 shows the costs of the primitive actions for the di�erent primitivetasks. Cost does not change with the state of the environment. During the sim-ulation, the reliabilities of the primitive actions were estimated based on therewards resulting from the successes of their application over the simulated en-vironment.Table 1. Primitive tasks, primitive actions and computed costs.pr. task e1 e2 e3 e4 e5pr. action a11 a12 a21 a22 a23 a24 a31 a32 a41 a51cost 0.55 0.44 0.18 0.14 0.16 0.22 0.35 0.35 0.00 0.3To grab the strut, the system must �rst estimate the strut pose. Then, itplans a path from the current pose of the manipulator tip to the neighborhoodof the strut pose, and moves along that path. Finally, the manipulator slowlyapproaches the strut and tries to grasp it. Alternative tasks di�er by the inclusionor not of compliance in the �nal move, and by using or not using stereo vision tore�ne the a priori knowledge of the strut pose. The stochastic regular grammarfor the command is:



G = (VT ; VN ,R,P, S )VN = f S, A, B gVT = fe1; e2; e3; e4; e5gR = f0.5 S ! e3 A0.5 S ! A1.0 A ! e4 e1 B0.5 B ! e20.5 B ! e5 gThe numbers to the left of the productions are the initial production proba-bilities. Productions such as S ! A, with no terminal symbols in its right-handside, are assigned zero cost and 0.5 reliability.The simulation described in the previous section was run for several di�erentsituations in order to point out the main concepts and tradeo�s of the proposedexecution and design methodologies, and also to suggest future research avenues.All results shown are the average over 50 sample functions of some stochasticprocess, such as the evolution of action probabilities or cost function, exceptwhen noted. Each sample function consists of 150 task runs (iterations in the�gures), except when noted. The production and algorithm probabilities areupdated after a task is applied. The initial state of the environment is alwaysstate 0 (lights on).The plots of action probabilities and cost functions for \con
icting" produc-tions 0 and 1 are displayed at the top of Fig. 3. Their evolution is slow. Thebottom of the same �gure shows the result of using a convergence accelerationmethod which combines a modi�ed version of the algorithm proposed by Nikoli�cand Fu [10], with the use of initial estimates for the reliabilities, based on mod-els or past experience of the designer. initial estimates R(0) are weighted by acon�dence factor.Figure 4 shows the results of testing the adaptiveness of the learning schemeto an unacknowledged change in the state of the environment. Only one sampleof the stochastic processes is shown. The state of the environment switches fromstate 0 (lights on) to state 1 (lights o�) at iteration 150, but state 0 remains the es-timated state for the HLSA, which does not recognize the change. The simulationconsisted of 400 task runs. A recursive sample mean algorithm with forgettingfactor was used to improve the adaptiveness of cost function and probabilityestimates at the bottom stage. No proof of convergence exists for this algorithm,which resembles the stochastic approximation algorithm described before, butgives more weight to recent samples than to old samples.After the state switching, production 0 is no longer the best production,since the performance of the stereo algorithms deteriorates under poor lightingconditions, and the initial rough estimate of the strut pose is preferred. In thisrun, the HLSA learned the change.
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5 Conclusions and Future ResearchMeasuring its performance and improving that performance using feedback fromthe environment are desirable features of any Intelligent Controller. We have de-scribed part of a model of a Hierarchical Intelligent Controller which uses aHierarchical Reinforcement Learning Scheme to converge w.p.1 to the actionswhich minimize a proposed cost function. The cost function balances the com-plement of reliability and cost at all levels of the Intelligent Controller.The paper focused on the translation from commands to tasks, performedby a regular stochastic grammar. The probabilities of production subsets of thegrammar are learned along time from estimates of the tasks cost function. Theseare obtained by bottom-up propagation of the cost function of the primitiveactions of the Intelligent Controller, estimated from successes and failures ofthese actions to meet the speci�cations for the primitive tasks they translate.Future research should contemplate the extension from regular to more com-plex grammars (such as context-free) in order to accommodate a broader lan-guage for task generation from commands. The behavior of Hierarchical LearningStochatic Automata (used to model the whole Hierarchical Intelligent Controller)in the presence of non-stationary environments is a subject of current research.References1. Technical Committee on Intelligent Control, \Report of task force on IntelligentControl, IEEE Control Systems Society," IEEE Control Systems Magazine, vol. 14,June 1994. P. Antsaklis, editor.2. P. U. Lima and G. N. Saridis, \Hierarchical reinforcement learning and decisionmaking for Intelligent Machines," in Proceedings of 1994 IEEE Int. Conf. Roboticsand Automation, May 1994.3. P. U. Lima and G. N. Saridis, \A performance measure for Intelligent Machinesbased on complexity and reliability," in Proceedings of SY.RO.CO 94, September1994.4. K. S. Fu, \Learning Control Systems - review and outlook," IEEE Transactionson Automatic Control, vol. AC-15, no. 2, 1970.5. K. S. Narendra and M. A. L. Thathachar, Learning Automata - an Introduction.Prentice Hall, 1989.6. R. S. Sutton, A. G. Barto, and R. J. Williams, \Reinforcement learning in directadaptive optimal control," IEEE Control Systems Magazine, vol. 12, no. 2, pp. 19{22, 1992.7. K. S. Fu and T. L. Booth, \Grammatical inference: Introduction and survey { partII," IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-5, no. 4, 1975.8. K. P. Valavanis and G. N. Saridis, Intelligent Robotic Systems. Kluwier Publishers,1992.9. L.-J. Lin, \Scaling up reinforcement learning for robot control," in Proceedings ofthe Tenth International Conference on Machine Learning, 1994.10. K. S. Fu and Z. J. Nikoli�c, \On some reinforcement techniques and their relation tothe stochastic approximation," IEEE Transactions on Automatic Control, vol. AC-11, no. 2, pp. 756{758, 1966.
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