Using Stochastic Grammars
to Learn Robotic Tasks*

Pedro U. Lima! and George N. Saridis?

! Instituto de Sistemas e Robética/Instituto Superior Técnico
1096 Lisboa Codex, PORTUGAL
2 ECSE Dept., Rensselaer Polytechnic Institute
Troy, NY 12180-3590, USA

Abstract. The paper introduces a reinforcement learning-based method-
ology for performance improvement of Intelligent Controllers. The trans-
lation interfaces of a 3-level Hierarchical Goal-Directed Intelligent Ma-
chine (HGDIM) are modeled by a 2-stage Hierarchical Learning Stochas-
tic Automaton (HLSA). The decision probabilities at the two stages are
recursively updated from the success and failure signals received by the
bottom stage whenever a primitive action of the HGDIM is applied to
the environment where the machine operates.

The top translation stage and the use of regular stochastic grammars to
accomplish the translation of commands into tasks are described here.
Under this framework, subsets of conflicting grammar productions rep-
resent different task strategies to accomplish a command. At this stage,
an LSA is associated to each subset of conflicting grammar productions.
Results of simulations show the application of the methodology to an
Intelligent Robotic System.

1 Introduction

Intelligent Control (IC) techniques [1] particularly qualify for applications to
Robotics, due to the need to coordinate a diverse and large number of sensors
and actuators. They differ from “conventional” control techniques by aiming to
attain higher degrees of autonomy, thus dealing with higher uncertainty. Among
IC techniques, we are especially interested on learning-based methodologies, due
to the repetitive nature of some robotic tasks or at least of some of the primitive
operations which compose them. Reinforcement Learning is particularly inter-
esting as it involves the exchange of small bandwidth information (failure and
success signals only) between robotic subsystems. In typical applications, such
as unmanned space and underwater missions, the cost of large bandwith for
communications between the central command (earth controller or main vessel
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controller) is prohibitive and can be reduced by increasing the autonomy of the
machine involved in the mission.

This paper summarizes work done towards establishing an analytic design
methodology for Intelligent Controllers whose feedback is essentially based on
reinforcement learning. An analytic design based on measures of performance
recursively improved through feedback assures some degree of certainty about
the measurability, repeatability and verifiability of that design. To the best of
our knowledge, such a methodology does not currently exist. Here, we focus on
learning the optimal tasks of an Intelligent Controller, although this is just a
piece of the hierarchical learning methodology we proposed in previous work
[2, 3].

Fu [4] was probably the first author to write about Learning Control Systems
and to coin as Intelligent Control Systems those systems of interdisciplinary
nature, in the intersection of Artificial Intelligence and Automatic Control. He
also introduced the concepts of Stochastic Automata and Stochastic Grammars.
The former has been developed, although in different directions, by Narendra
and his associates [5]. In the last few years, Sutton and his associates explored
reinforcement learning solutions which associate these two views of stochastic
automata [6].

The paper is organized as follows: in Sect. 2, we summarize basic concepts
related to the Theory of Stochastic Grammars. In Sect. 3 we give some insight
into the more general problem we are addressing (selection of the optimal tasks
and primitive actions from a robotic language hierarchy), focusing later on the
particular problem of learning the optimal task selection. Section 4 describes
the application of the theory to an intelligent robotic system. Finally, Sect. 5
summarizes the paper and provides suggestions of future research.

2 Stochastic Grammars

Grammars are usually employed to describe the syntax of languages or struc-
tural relations defining a pattern. They are useful in the context of Hierarchical
Intelligent Controllers to describe the constraints imposed to the ordering of
subtasks composing a task. In particular, Stochastic Grammars (see a survey
by Fu and Booth [7]) allow the assignment of probabilities to conflicting pro-
ductions or rewrite rules. This turns out to be equivalent to the assignment of
probabilities to the different strings of the generated language. The probabilities
of the productions in each conflicting set can be learned by a Learning Stochastic
Automaton. Hence, stochastic grammars combined with Reinforcement Learning
provide the means to learn the ordering of subtasks composing a task.
Let us first define formally a stochastic grammar:

Definition1. A stochastic grammar is defined by the quintuple G' = (Vp, Vi,
R, P, S), where

1. Vr is a finite set of terminal symbols;
2. Vi 18 a finite set of nonterminal symbols;



3. R is a finite set of productions or rewrite rules;

4. P is a finite set of probabilities that are assigned by a one to one mapping
to the elements of R;

5. S 1s the start symbol.

Only stochastic reqular grammars will be considered here, that is stochastic
grammars whose productions have the general syntax

A—a or A—aB, acVy, AABEVN

where the symbol to the left of the arrow is called premise while the term to the
right of the arrow is the consequent. Vi denotes the set of all the possible strings
composed by elements of Vp, including the null string.

The set of productions R can be partitioned into m disjoint subsets R =
{R1,...,Rm}, where m is the number of nonterminal symbols, m = |Vy/|. In
particular, R; is the subset of productions with the same premise A;, corre-
sponding to the ¢th nonterminal symbol.

Correspondingly, the set of probabilities P can be partitioned into m disjoint
subsets, where subset P; contains the probabilities of the productions of R;.

A stochastic grammar is proper if

m;
Zplkzla plkepla |7?Z|:mlalzlaam
k=1

1. e. if for each subset of productions R; the production probabilities in P; add
to one.

To each string # of the language L(G) generated by G corresponds a word
function f(x). If the grammar is unambiguous, that is, if there is only one left-
most derivation for each z,

K(=)

fe) = T[ plk,2), vz € L(G)

k=1

where K (z) represents the number of steps in the derivation of #, and p(k, z) is
the probability of the production used in the kth step of the derivation of x.

A language L C V5, where V7 represents all strings of finite length composed
by elements of V7, including the null string €, 1s called a stochastic language if
there is a function 0 < f(z) < 1, Vo € L, called probabilistic word function,
f(z): L —1IR <, such that 3 ., f(z) = 1. This is the same as to say that the
probabilities of each of the strings of L add up to one.

Not all stochastic grammars generate stochastic languages. Some restrictions
must be imposed to the stochastic grammar.

A stochastic grammar G is a consistent grammar iff the word function de-
fined over L(G) is a probabilistic word function, that is, iff L(G) is a stochastic
language.

If the grammar is proper, then it will be consistent.



3 Hierarchical Learning of Optimal Robotic Tasks

3.1 General Concepts of the Model Proposed

A hierarchical architecture for autonomous intelligent control systems which en-
compasses most of the concepts described in related work was proposed in the
70s by Saridis (see a recent book by Saridis and Valavanis [8]). This architec-
ture is based on a 3-level hierarchy, where more abstract actions are taken at
the top Organization Level and more precise actions are taken at the bottom
Execution Level. Given an external command (goal), the Organization Level
is responsible for sequencing the pre-defined primitive tasks into a task. The
Execution Level executes a detailed translation of the task, generated by the
intermediate Coordination Level. This level successively decomposes the sub-
tasks composing the task into primitive tasks, and distributes them by a number
of coordinators specialized in specific sub-tasks, such as vision or motion plan-
ning for an Intelligent Robotic System. The coordinators invoke the Execution
Level primitive actions to precisely execute the task.

At the interfaces between IM levels, specific translations must be made: the
Organization-to-Coordination Translation Interface has to choose among
different tasks capable of attaining a goal. The goal is expressed by a command
sent to the machine. Any task is composed of primitive tasks, usually corre-
sponding to the primitives of a given language. For each primitive task, the
Coordination-to-Execution Translation Interface has to determine the
best primitive action from the set of those capable of reaching the elementary
subgoal associated to the primitive task.

To compare the different alternatives at each translation interface, we need a
cost function [3]. In robotic systems, the uncertainty involved in the design of the
algorithms implementing primitive tasks (move, locate, plan-path) is mostly due
to approximate or incomplete modeling and statistical fluctuations around nom-
inal parameters. This uncertainty can be quantified by estimating the reliability
of the algorithm, roughly defined as the frequency of successes when attempting
to meet its specifications. However, generally the computational cost increases
with reliability, in terms of the time it takes to complete, the amount of mem-
ory it uses, or the number of resources (e.g. processors) required. Thus, it makes
sense to think of a selection technique which includes both reliability and compu-
tational cost, but first the two measures must be coherently defined in a context
where information is noisy and incomplete [3].

We presented elsewhere [3] equations wich propagate bottom-up the cost
function originally defined for primitive actions. Hence, the cost function of prim-
itive actions, primitive tasks and tasks is expressed by the balance between cost
and complement of reliability of a task. Task cost and reliability are a direct re-
sult of the costs and reliabilities of the primitive tasks which compose the task.
Primitive task cost and reliability are propagated from the same measures for
the corresponding primitive actions.

The success and failure signals used to estimate the reliability of the algo-
rithms at all levels of the Intelligent Controller are implicitly propagated bottom-



up through the hierarchy by the described scheme. The Execution Level re-
ceives a reinforcement signal as the result of applying a primitive action. This
occurs each time the primitive action is applied by checking if the corresponding
specifications were met. The success or failure signal is used to recursively esti-
mate the reliability of the primitive action, which is propagated to the reliability
of a task as explained before.

3.2 Learning Task Selection

When the design is based on the hierarchical model just described, we must
define the set of available primitive tasks and corresponding primitive actions
first, and then define the alternative tasks for each command as strings of a lan-
guage whose terminal symbols are the primitive tasks. If we view the alternative
tasks for a command as different decompositions of that command into primitive
tasks, a stochastic grammar is a well suited model of the job performed by the
Organization-to-Coordination Translation Interface. Each subset of pro-
ductions of the grammar represents a set of alternatives in the decomposition
process.

This use of a stochatic grammar resembles an expert system where the pro-
duction rules have associated certainty factors. However, the association of a LSA
to each subset of productions and the introduction of a performance measure
provides a consistent and quantifiable method of learning the best decisions.

We have proposed before a methodology for performance improvement of
Hierarchical Intelligent Controllers (HICs) based on Hierarchical Reinforcement
Learning. The two translation interfaces of Saridis’ 3-level hierarchy are modeled
by a 2-stage Hierarchical Learning Stochastic Automaton (HLSA), as sketched in
Fig. 1. The HLSA includes a Hierarchical Reinforcement Learning Scheme which
recursively updates the decision probabilities at the two stages from success
and failure signals received by the bottom level whenever an action of the HIC
is applied to the environment. Under this learning scheme, the probability of
selecting the best tasks and primitive algorithms converges to 1 with probability
one (w.p.1) [2].

The task selection process is improved recursively as the cost function esti-
mates improve from the propagation of the cost and reliability learned at the
Coordination-to-Execution Interface. However, we fill focus here on the
top Organization-to-Coordination Interface, that is on learning the opti-
mal task selection. Nevertheless, it is important to note that this differs from
other Hierarchical Reinforcement Learning methods described in the literature
(e.g. Lin [9]) aiming to teach some complex task to a robot. Here a primitive
action fails or succeeds due to a failure or success to meet its specifications, and
the overall task is evaluated from the performance of its composing primitives,
while in those works the overall task is directly reinforced from the success or
failure of its application, evaluated by an external agent. This evaluation is as-
sumed to be either performed either by a human or by a sensing system which
may be itself very unreliable or too complex.
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Fig.1. HLSA and HIC

The solution presented is valid under the general assumptions that the HIC
moves inside an environment which can be modeled as a multi-state stochastic
process, the HIC can recognize the different states of the model of the environ-
ment, and there 1s a mechanism of error detection and error recovery to detect
and recover from situations which could compromise the integrity of the HIC
and/or of the environment.

Each command interpretable by the HIC is the starting symbol of a regular
stochastic grammar. The grammar expresses the constraints imposed by the
command to the set of primitive tasks, the terminal symbols of the grammar.
Each string of the language generated by the grammar represents a task. Hence,
a task is generated by the successive application of grammar productions.

As we are dealing with regular grammars, the premise of each production of
the grammar is a non-terminal symbol of the grammar. Each subset of grammar



productions with the same premise (refer to Sect. 2) represents one (or more)
alternatives on the derivation of the translating {ask. There is a LSA associated
to each of these subsets. The productions in each subset are the actions of the
LSA, and their probabilities are learned according to the LSA reinforcement
scheme explained below. The set of all these LSAs represents the top stage of
the hierarchy. The optimal task is indirectly learned along time, as a result of
learning the optimal production of each production subset. The task 1s optimal
in the sense of minimizing the cost function which balances algorithm reliability
and cost.

At every step, a (sub)optimal task is selected by random decision, based on
the current subsets of production probabilities. Each task is a string of primitive
tasks. The primitive tasks composing taskt will also be in the consequent of some
production involved in the generation of ¢.

The cost function, valid at all levels of a Hierarchical Intelligent Controller,

is defined by:
J=1—-R+pC (1)

where R is the reliability, C' the cost and p a weighting factor such that pC' €
[0,1]. In general p will be such that the cost does not overwhelm the reliability
when directing the search for the optimal action.

Equation (1) applies to the three levels of the HIC, i.e., the performance of a
primitive action, primitive task or production can be evaluated by (1), if the cost
and reliability are appropriately propagated bottom-up through the hierarchy.
The propagation equations can be found in Lima and Saridis [3].

To update the probability density function over the set of tasks for a com-
mand, Fu’s stochastic approximation reinforcement learning scheme used in this
work is based on the generalized LSA proposed by Nikoli¢ and Fu [10].:

pij(ni + 1) = pij(ni) + y(ni + 1) (Xij (i) — pij(ni + 1)) (2)
where n; = Z]' ni;, 0 < Agi(ng) < 1, Z]' Aij(n;) = 1,1 = 1,...,d denotes
environment states, j = 1,...,r denotes tasks. As the environment is assumed

to be multi-state stochastic, we must create a LSA per environment state.
Given the estimates of the performance function for the top stage, A;;(n;) is
given at each step by

1if Jij(ni;) = ming Jik(nix

)\i](ni) - { 01if jijgni]; # ming jlkgnlk; (3)
We use y(n; + 1) = mlT’ which satisfies the condition of Theorem 2 in [10].
Given this, it has been proven that the probability density function of the ac-
tion probabilities for state i converges w.p.1 to zeros for all the actions (tasks)
except the optimal action m at each stage. The optimal action is the one which
minimizes J. If m is the index of the optimal action, J; = ming=1  {Jix},
where J;; is the cost function at the decision stage under consideration. Hence,
the theorem implies that Pr{limy,, e pim(n;) = 1} = 1, for state ¢, i = 1,...,d
and action j, j=1,...,r.



4 Application to an Intelligent Robotic System

The coordination of vision and motion algorithms is one of the typical problems
in Intelligent Robotic Systems. This is the subject of the case study described
in this section.

A manipulator PUMA 560 has to grasp a cylindrical strut whose 3D pose
(position + orientation) is roughly known. There is a pair of cameras in the
ceiling, overviewing the working space of the manipulator and used by a stereo
vision system to determine more accurately the 3D pose of the object. The ma-
nipulator has position, velocity and force sensors. The scene is well 1lluminated
but from time to time lights go off, deteriorating the accuracy of vision algo-
rithms. The environment has 2 states, one corresponding to lights on (state 0)
and the other to lights off (state 1).

B=05m
-—

Fig. 2. Workspace setup for case study 2

A realistic simulation of this setup has been performed, including PUMA
dynamics, realistic vision system parameters and dimensions, and compliance.
Detailed description of the primitive actions used for each primitive task can be
found in [2].

The only command available is e=Grab-Strut. The primitive task set is com-
posed by b primitive tasks, E = {ey, e, €3, eq, €5}, where e; 2rmove manipulator,
€9 égrasp object with compliance, e3 Zlocate object, ey éplan trajectory, and
es égrasp object hard.

Primitive task ey represents the motion of the manipulator tip along a pre-
planned trajectory in joint space. Uncertainty is due to unmodeled dynamics
and noise.

The goal of primitive tasks es and es is to slowly move the tip (tool) of the
manipulator to the object and grasp it. The Position Accommodation Control



method is used by all algorithms translating es to accomplish compliance con-
trol of the manipulator. Different parameterizations of the required impedance
(similar to a mass, spring and damper system) result in different algorithms
with different costs and reliabilities. Motion driven by some desired force moves
the tool tip to the object. e5 is position controlled and has only one translating
algorithm. Only passive compliance exists in this case.

Primitive task es determines the pose of an object using stereo vision algo-
rithms. The uncertainty on pose determination by stereo vision is mainly due to
matcher errors when determining which image pixels in the two cameras corre-
spond to the same point in the observed scene. This may be due both to spot
noise and pixel resolution, and leads to disparity errors which affect the 3D pose
estimation.

Changing the state of the environment deeply affects the two algorithms.
Switching the lights off increases spot noise which affects the estimation (by any
of the algorithms) of the strut end-points in each of the images. This will increase
disparity errors and consequently pose estimation errors.

Primative task e4 plans a trajectory in joint space whose end-points are the
joint-space vectors corresponding to the initial and final pose required for the
manipulator tip when moving from a standby position to the grasping position. A
minimum-jerk trajectory generator is the only algorithm used. It generates the
desired joints acceleration, velocity and position at a number of pre-specified
points along the trajectory by a method which minimizes the jerk, or third
derivative of joint position.

Table 1 shows the costs of the primitive actions for the different primitive
tasks. Cost does not change with the state of the environment. During the sim-
ulation, the reliabilities of the primitive actions were estimated based on the
rewards resulting from the successes of their application over the simulated en-
vironment.

Table 1. Primitive tasks, primitive actions and computed costs.

pr. task el €9 e3 eq |les
pr. action|| af [ a3 || a® [ a3 [ a2 | a3 || a3 [ a3 || af ||}
cost 0.55|0.44//0.18]0.14]0.16]0.22{|0.35(0.35(/0.00/0.3

To grab the strut, the system must first estimate the strut pose. Then, it
plans a path from the current pose of the manipulator tip to the neighborhood
of the strut pose, and moves along that path. Finally, the manipulator slowly
approaches the strut and tries to grasp it. Alternative tasks differ by the inclusion
or not of compliance in the final move, and by using or not using stereo vision to
refine the a prior: knowledge of the strut pose. The stochastic regular grammar
for the command is:



G = (Vr, Va,R,P,S)
VN = {S,A,B}

Vp = {ei,es,e3,¢e4,¢5}
R = {

05S —es A

05S —A

1.0A — €4 €1 B

05 B — €9

05B — €5 }

The numbers to the left of the productions are the initial production proba-
bilities. Productions such as S — A, with no terminal symbols in its right-hand
side, are assigned zero cost and 0.5 reliability.

The simulation described in the previous section was run for several different
situations in order to point out the main concepts and tradeoffs of the proposed
execution and design methodologies, and also to suggest future research avenues.

All results shown are the average over 50 sample functions of some stochastic
process, such as the evolution of action probabilities or cost function, except
when noted. Each sample function consists of 150 task runs (iterations in the
figures), except when noted. The production and algorithm probabilities are
updated after a task is applied. The initial state of the environment is always
state 0 (lights on).

The plots of action probabilities and cost functions for “conflicting” produc-
tions 0 and 1 are displayed at the top of Fig. 3. Their evolution is slow. The
bottom of the same figure shows the result of using a convergence acceleration
method which combines a modified version of the algorithm proposed by Nikolig
and Fu [10], with the use of initial estimates for the reliabilities, based on mod-
els or past experience of the designer. initial estimates R(0) are weighted by a
confidence factor.

Figure 4 shows the results of testing the adaptiveness of the learning scheme
to an unacknowledged change in the state of the environment. Only one sample
of the stochastic processes is shown. The state of the environment switches from
state 0 (lights on) to state 1 (lights off) at iteration 150, but state 0 remains the es-
timated state for the HLSA, which does not recognize the change. The simulation
consisted of 400 task runs. A recursive sample mean algorithm with forgetting
factor was used to improve the adaptiveness of cost function and probability
estimates at the bottom stage. No proof of convergence exists for this algorithm,
which resembles the stochastic approximation algorithm described before, but
gives more weight to recent samples than to old samples.

After the state switching, production 0 is no longer the best production,
since the performance of the stereo algorithms deteriorates under poor lighting
conditions, and the initial rough estimate of the strut pose is preferred. In this
run, the HLSA learned the change.
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5 Conclusions and Future Research

Measuring its performance and improving that performance using feedback from
the environment are desirable features of any Intelligent Controller. We have de-
scribed part of a model of a Hierarchical Intelligent Controller which uses a
Hierarchical Reinforcement Learning Scheme to converge w.p.1 to the actions
which minimize a proposed cost function. The cost function balances the com-
plement of reliability and cost at all levels of the Intelligent Controller.

The paper focused on the translation from commands to tasks, performed
by a regular stochastic grammar. The probabilities of production subsets of the
grammar are learned along time from estimates of the tasks cost function. These
are obtained by bottom-up propagation of the cost function of the primitive
actions of the Intelligent Controller, estimated from successes and failures of
these actions to meet the specifications for the primitive tasks they translate.

Future research should contemplate the extension from regular to more com-
plex grammars (such as context-free) in order to accommodate a broader lan-
guage for task generation from commands. The behavior of Hierarchical Learning
Stochatic Automata (used to model the whole Hierarchical Intelligent Controller)
in the presence of non-stationary environments is a subject of current research.
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