
CURRENT STATUS OF ISR/ISTOPEN CONTROL ARCHITECTURE FOR A PUMA 560Pedro LimaInstituto Superior T�ecnico/ Instituto de Sistemas e Rob�otica,Av.Rovisco Pais 1, P-1096 Lisboa CODEX, PORTUGALE-mail: pal@isr.ist.utl.ptAbstract. This paper describes work carried out at the Instituto Superior T�ecnico location of theInstituto de Sistemas e Rob�otica towards an open control architecture for a PUMA 560 manipulator.The fundamentals of the architecture, developed in past work, are described, followed by an explana-tion of the concepts underlying the target architecture, whose implementation is the group long-termobjective. Current status of the project, including on-going and short-term scheduled work, is alsomentioned. From a functional standpoint, an hierarchical architecture has been chosen, with emphasison performance evaluation and improvement through feedback.Key Words. Hierarchical intelligent control, Petri nets, reinforcement learning.1. INTRODUCTION AND HISTORICALPERSPECTIVEThe PUMA industrial manipulator was made com-mercially available in the 1960s and has been inten-sively used in industrial applications and researchprojects since then. Even though the programminglanguage provided with the manipulator controller(VAL, followed by VAL II) had high level featuresand represented a signi�cant milestone in robotprogramming, it was limited with respect to theintegration in the control loop of external sensorsinformation, such as force and vision signals. Thehardware architecture of the Mark controller familywas also closed, preventing the access to the mo-tion control algorithm and its parameters, as wellas to the trajectory generation algorithm.All those limitations motivated several researchlaboratories to \open" the hardware architecture ofthe controllers, by replacing its main processor andVAL interpreter (LSI-11), as well as, in some cases,the joint controllers (6503 in the Mark III model),by an external processor (or a multi-processor ma-chine) (Bihn and Hsia, 1988; Desrochers, 1992).This open architecture provides access to exter-nal sensors, extended 
exibility regarding the mo-tion control and trajectory planning algorithms, in-creased computing power, and new features, suchas task planning and distributed control. For thenew external controller, most groups chose a VME-cage with multi-processing capabilities, usually un-der the real time operating system VxWorks. Asurvey of alternative ways of implementing thishardware modi�cation can be found in (Chen etal., 1991) and in the references therein.At the Instituto Superior T�ecnico location of the

Instituto de Sistemas e Rob�otica (ISR/IST), theIntelligent Control group made such a hardwaremodi�cation of its PUMA 560 Mark III controller.However, some of the solutions used were di�erentof those referred above, notably:� the external controller is based on several PCsrunning DOS, Windows NT or Windows 95,linked by a local Ethernet network, and com-municating by TCP/IP protocol;� the original processors were replaced by a newcard with A/D, D/A and encoder handlinghardware, with direct access to the Mark IIIcontroller signals, which interfaces with thePC by another dedicated card plugged into thePC bus.The �rst steps towards an open control architecturefor our PUMA 560 were described in (Moreira etal., 1996). At the time we were mainly concernedwith hardware issues. With the modi�cation suc-cessfully made, we are now discussing architecturesunder which future work should develop, as well asperformance evaluation of the whole system andits improvement through feedback. These are cur-rent topics of research by the Robotics and Intel-ligent Control communities, as it is important notonly to develop successful applications, but to beable to identify an engineering methodology underwhich they were designed, including the capabilityof choosing among alternatives, based on the eval-uation of their performance.In this paper we describe the conclusions of the dis-cussions we have had so far and report the currentstatus of the project. Section 2 describes the tar-get architecture, a long-term goal of this project.The functional, hardware and software architec-



tures are detailed, as well as issues concerning theglobal memory, man machine interface, learningand performance evaluation of the whole system.The current status is reported in Section 3, includ-ing on-going work. Future work envisaged for theshort-term is presented in Section 4.2. TARGET ARCHITECTUREThree main issues were considered in the choiceof ISR/IST target open control architecture of thePUMA 560:� from a functional standpoint, it should begoal-oriented, therefore a hierarchical solutionshould be chosen;� from the hardware and software standpoint,it should be based on a distributed philoso-phy, if possible with multi-processor and multi-tasking capabilities;� it should include means to evaluate its perfor-mance and to use that evaluation to improvethe performance through feedback of many dif-ferent kinds.Based on those considerations, the functional ar-chitecture was mainly inspired by Albus' RCSmodel (Albus, 1991), while the performance evalu-ation issues are an extension of the analytic the-ory of intelligent machines, by Saridis and hisco-workers (Lima and Saridis, 1996; McInroy etal., 1996; Saridis, 1989; Valavanis and Saridis,1992; Wang and Saridis, 1993).2.1. Functional ArchitectureThe control system will be based on a hierarchicalarchitecture with four levels (task, action, primi-tive and servo, from the top to the bottom) andthree legs (decision, world model and perception),present at all levels (Albus, 1991). Each hierarchyleg is ruled by the Principle of Increasing Precisionwith Decreasing Intelligence (Saridis, 1989) whentraversing the hierarchy top-down:� Decision: A task is described as a string ofsymbols at the top task and action levels. Thesymbols composing the string represent sub-tasks whose description is re�ned top-down,ending at the servo level, where the appropri-ate procedures to execute the task, as well astheir speci�cations and required resources, aredetermined.� World Model: The spatial and temporal res-olution increases top-down: e.g., map detailsare known at the bottom level, while a globalmap is available at the top level; images fromthe vision sensor are available at a higher rateat the bottom level than objects recognizedfrom the image at the top level.

� Perception: Sensor data is aggregated in abottom-up fashion: at the bottom level onlyraw data is available but, at the other levels,information resulting from processing the sig-nal of one or more sensors is obtained.One may think of a control loop which is closed ateach level: the decision leg represents the actuators,the world model contains the control law and pa-rameters, while the perception leg is identi�ed withthe sensors. Feedback is used by the control law toinstantiate variables of the decision leg, but alsoto update world model parameters and the choiceamong alternative control laws. In fact, it is as-sumed that there are two major decision stages inthis hierarchy (Lima and Saridis, 1996):� A command to the hierarchical controller, rep-resenting a plan to be executed, can be trans-lated in general by more than one task (e.g.,a maze with more than one path to reach theexit). At the task level, a plan is translatedinto one of several alternative tasks;� When a task is re�ned into subtasks, the de-composition reaches a point where the subtaskis no further decomposable. It is then calledprimitive task. Each primitive task has associ-ated speci�cations and required resources but,again, it is an abstraction of the actual proce-dure which implements its goal. It is assumedthat, in general, there are several alternativeprimitive actions capable of implementing agiven primitive task (e.g., cubic polynomialsor linear interpolation with parabolic blendsare two alternative primitive actions to imple-ment a generate trajectory primitive task).An example of this hierarchy of two decision stagesis depicted in Figure 1. Notice that there are twoalternative tasks, distinguishable by the use of vi-sion or of a parts size checking device. There is alsoa reference to performance measures, which will beexplained in subsection 2.6.
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the decision leg.2.2. Hardware ArchitectureThe hardware architecture is based on a virtualmulti-processor machine, actually composed of sev-eral PCs linked by a local fast Ethernet network (upto 100 Mbps of communications speed). Each ofthe processors has also multi-tasking capabilities,when the operating system used is Windows NT orWindows 95. Even under DOS, a scheduler withlimited capabilities is being used, as explained inthe next subsection, therefore simple multi-taskingis also possible.This solution has proved so far to be suitablefor real-time control of the PUMA 560, providedthat limited communication is needed between thenodes of the network. However, this is actu-ally the philosophy underlying the architecture, asexplained in the next subsections. Furthermore,adding processors to such a hardware architectureis relatively inexpensive, corresponding to the pur-chase of a new PC. Also, signal acquisition cards,both image acquisition and A/D cards, are muchcheaper than their counterparts for systems likeVME-cages. Such facts, together with the currentwidespread availability of hardware and softwarefor PCs, makes this solution attractive.
Fig. 2. Mapping of the open control architecture to Al-bus' RCS model.2.3. Software ArchitectureThe software will be based on a client/server phi-losophy. Each PC in the network will behave ei-ther as a server or as a client, depending on thecircumstances. When acting like a server, a PCprovides services, which are applications resident inthat server. Services may be divided in primitiveactions and general-purpose applications. The lat-ter include functions to communicate between PCsusing sockets (TCP/IP protocol), functions whichaccess the global memory of the system, librariesof math functions, board drivers and others. Some

of the services are only available locally, i.e., canonly be requested by local processes, while othersexist speci�cally to serve requests from other net-work nodes | which will then behave as clients.From the programmer standpoint, the distributionof primitive action services by processors in thenetwork is transparent, i.e., he/she must initiallyde�ne in a �le the location of the di�erent primi-tive actions and then the software will know whereto direct a request for such a service, each timeit is invoked. Data/primitive action requests be-tween network processors are handled by socket-based communication services, always running inevery PC of the network. Nevertheless, a wiseprocedure consists of distributing primitive actionsaccording to the hardware resources allocated toeach processor. As an example, in a visual servo-ing and object catching application of the archi-tecture, motion control primitive tasks (therefore,all their primitive actions) should be located in thePC which directly interfaces the PUMA controller,while image processing primitive tasks and actionsshould be located in the PC interfacing the camera(see diagram in Figure 3).
Fig. 3. Hardware and software architecture for an ap-plication concerning visual servoing and objectcatching.Whenever two or more services must run concur-rently on the same processor, multi-tasking capa-bilities are required. In fact, this is always the case,as a server will need at least two processes runningconcurrently during part of a task execution: oneto serve/ask for external services, the other asso-ciated to at least one primitive action running onthat PC. When the processes run under WindowsNT or Windows 95, multi-tasking is embedded inthe operating system (as well as the TCP/IP li-braries, actually). However, some applications re-quire the use of DOS, a single-task operating sys-tem. In this case, we use a non-preemptive simplescheduler, whose capabilities are considerably lim-ited but which has accomplished its job so far, andthe TCPDOS library.



The action level and the levels below are imple-mented by Petri nets. This tool has the advantageof allowing a qualitative and quantitative study oftask performance, by appropriate modeling (Davidand Alla, 1994), and providing a friendly man-machine interface.The interpreted Petri net model (David and Alla,1994) is used for implementation purposes (notnecessarily for modeling). Under such model,places represent resources, including primitivetasks. Whenever a token is inside a place represent-ing a primitive task, this means that the primitiveaction translating the task is running. Events (e.g.,signaling the end of a task) are associated to tran-sitions and occur as a consequence of the executionof the primitive action(s) associated to the inputplaces of the transition. A similar use of Petri netswas �rst introduced by Wang and Saridis (Wangand Saridis, 1993). An example of an interpretedPetri net representing the visual servoing and ob-ject catching task is depicted in Figure 4.
Fig. 4. Petri net representation of the visual servoingand object catching task.2.4. Global MemoryDi�erent services may require the same data (ei-ther raw or processed, both signal and static data| such as calibration tables) as part of their pro-cessing job. As such, all data must be stored in aglobal shared memory. It is also convenient to dis-tribute this global memory by the di�erent networknodes, to make data access more e�cient. Never-theless, this will be again user-con�gurable.An illustrative example concerns the storage offorce signals. Those should ideally be stored in thePC where some force control primitive actions arelocated. However, it may be required by other ser-vice (e.g., an algorithm which processes force sig-nals to get more information on the shape of anobject) located in another PC. The most e�cientsolution is to locate the force data in the PC whereit is used more often.Providing the mechanisms to access such a dis-tributed signal database is certainly a complextask. There must exist special services to acquiresignals at regular rates and to read speci�c datawhen requested by any local or remote service, as

well as semaphores to handle data access. This isone of our mid-term work priorities.As explained in the previous subsection, every PCin the network will have a service devoted to answerdata requests from remote services. The same oranother service will also answer local data requests.Even though it would be more e�cient for a localprocess to directly acquire the data (e.g., from theforce A/D acquisition card), this would jeopardizethe overall system organization. It is currently en-visaged that every non-local data request will berouted through a central server, i.e., the machinewhere the task coordinator Petri net is running.We are aware that this may create e�ciency prob-lems for some applications, but it is meant to re-duce the required communications bandwidth andto simplify global memory management.2.5. Man-Machine InterfaceEven though the ultimate goal of an autonomousintelligent controller is to eliminate any man-machine interface, such a subsystem will be nec-essary in the years to come. To increase auton-omy safely, it is important that high level informa-tion and its degree of con�dence are continuouslyprovided to the operator, so that he/she may besure that no intervention is necessary. Neverthe-less, whenever such an action is required, the oper-ator should be able to intervene at any abstractionlevel. For example, he/she should be able to in-terrupt or modify the task sequence by adding orremoving tokens to input places of every signi�canttransition (e.g., place # times in Figure 3), but itshould also be possible for the operator to control\hands-on" (e.g., at the joint level), the manipula-tor.2.6. Learning and Performance EvaluationThe design of control systems consists of correctlychoosing a control law and the corresponding con-troller parameters to meet a speci�cations set. Thespeci�cations usually refer to properties of the timeresponse to speci�c signals (e.g., overshoot of thestep response), of the frequency response magni-tude (e.g., noise reduction in a given range) or tothe minimization of a cost functional, correspond-ing to maximizing some performance index, suchas in the LQR problem.Designing an intelligent control system implies thegeneralization of the \control law" concept, and re-quires a performance index applicable to the di-versity of primitive functions involved (e.g., signalprocessors, \low-level" controllers, trajectory gen-erators). Furthermore, it requires the use of feed-back to improve performance over time. Under ahierarchical approach, feedback must be used by allhierarchic levels.



ISR/IST control architecture for the PUMA 560will be based on a controller design method �rstdescribed in (Lima and Saridis, 1996). In short,the designer must de�ne the nominal speci�cationsfor each available primitive task, including a timeinterval after which the speci�cations are checkedand two thresholds concerning the primitive taskspeci�cation error:� the soft threshold;� the hard threshold.Every primitive action chosen to translate theprimitive task must keep the speci�cation error be-low the soft threshold. When the time interval forthe primitive task expires, the speci�cation error ischecked and, in case it is below the soft threshold,a success signal is returned. Should the primitiveaction fail to keep the error below the soft thresh-old, the primitive action will return a failure signal,in case the error is below the hard threshold, or anerror signal, in case the latter is exceeded. Thosesignals are sent to the task coordinator. The suc-cess and failure signals are used to update a reliabil-ity estimate of each primitive action and primitivetask. Notice that the reliability R, estimated asthe relative frequency of successes, is a performancemeasure applicable to any primitive action, as re-quired for an intelligent controller, and is de�ned asthe probability that the primitive action meets thespeci�cations for its corresponding primitive task.When the primitive action exits with a failure sig-nal, even though it failed to meet its speci�cations,it is assumed that the task can proceed its exe-cution. However, the error signal denotes a non-acceptable performance, and task execution mustbe switched to an error recovery path.A generalized stochastic Petri net model of the taskcoordinator is used to evaluate overall task relia-bility, using two random switches (Vishwanadhamand Narahari, 1992) per each place identi�ed witha primitive task. The transition leading to an er-ror recovery has a probability equal to the errorsignal frequency for that primitive task, while thecomplement of that probability is associated to thetransition corresponding to the normal task execu-tion. Therefore, one can evaluate task reliabilityby well known Petri net based methods.Reliability alone is not a realistic performance mea-sure. In most cases, one may inde�nitely increasethe reliability of a primitive action by using moresystem resources (e.g., CPU time, memory, increas-ing sampling frequency). Therefore, an acceptableperformance measure must also include the costC of the primitive action. In (Lima and Saridis,1996) we introduced the following cost function tobe minimized at all hierarchic levels:J = 1�R+ C: (1)Reliability and cost, respectively measured and

computed at the servo level for the primitive ac-tions, can be propagated bottom-up by the expres-sions in Figure 1, as an alternative to the directcomputation of task reliability from the Petri net,explained above.Both the translation of primitive tasks by primitiveactions and of plans by tasks is based, at the twodecision stages referred above, on learning stochas-tic automata (Fu and Mendel, 1970; Narendra andThathachar, 1989). This way, the selection of thebest alternatives at each stage and at each exe-cution step is posed as a discrete stochastic op-timization problem, leading to the selection withprobability one, when the number of steps goes toin�nity, of the tasks and primitive actions whichminimize J in (1). While this reinforcement learn-ing process proceeds, di�erent tasks and primitiveactions will be selected at the execution steps, al-lowing the update of their reliabilities and selectionprobabilities. As the number of steps increases, theprobability of the optimal choice will converge toone, with probability one.3. CURRENT STATUSThe hardware modi�cation of the original con-troller was accomplished in the beginning of 1996.The old and new hardware architectures are de-picted in Figure 5. They are described with de-tail in (Moreira et al., 1996), where some results ofmotion control based on control and trajectory in-terpolation algorithms, di�erent from those of theMark III controller, are presented. Meanwhile, alibrary of motion control primitive actions was de-veloped (Lima et al., 1997), including calibration,motion control and trajectory generation primitivetasks. Those were used in applications such as apainter robot | which paints faces from a digitalimage | and visual serving and catching of dy-namic objects (see Figure 3) (Fernandes and Lima,1998).The �rst implementation of distributed control us-ing three PCs was also accomplished by a teleoper-ation system with one PC locally acquiring images,a second PC locally controlling the robot motion,and a third PC serving as the remote man-machineinterface (MMI). This interface consists of a full im-age of the teleoperation site, as well as of a graphi-cal representation of the robot motion, based on thefeedback of its joint positions | a low-bandwidthinformation sent from the motion control PC tothe MMI PC. The remote operator can use a sim-ple joystick to telecontrol joint motion or he/shecan program a trajectory and sent it to the localmotion controller to be executed.Currently, we are developing a Petri net task coor-dinator, which will allow graphical task program-ming by drawing the corresponding interpretedPetri net, and task execution supervision, by fol-lowing/modifying the token 
ow in the Petri net.



Fig. 5. Old (top) and new (bottom) hardware architec-tures. 4. FUTURE WORKIn the short-term, we plan to �nish and test thePetri net task coordinator under several plan sce-narios.For the mid-term, we will include speci�cationschecking in all primitive actions already developed,and develop new primitive actions, namely thoseconcerned with image processing and control of theinteraction with the environment (e.g., force con-trol). The global distributed memory system willalso be implemented, as well as its management.We will then be ready to use reinforcement learn-ing to improve performance through feedback, asexplained in subsection 2.6.Long-term objectives include the automatic gener-ation of Petri nets representing tasks from a graph-ical or other high-level method description of thetask goal (e.g., clicking on a 3D representation ofthe operation site to tell the robot the operationsit must perform, such as picking objects or takingpictures).AcknowledgmentsThe author would like to thank the following stu-dents who, under his supervision, made importantcontributions to the work described in this paper:Dinis Fernandes, Nuno Moreira, Paulo Alvito, Pe-dro Lobo and Rui Barbosa. Thanks go also toRichard Voyles, from Trident Robotics, who helpedus with several hardware questions and some free-ware routines (e.g., the DOS scheduler referred inthe text).
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