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Abstract. This paper describes work carried out at the Instituto Superior Técnico location of the
Instituto de Sistemas e Robética towards an open control architecture for a PUMA 560 manipulator.
The fundamentals of the architecture, developed in past work, are described, followed by an explana-
tion of the concepts underlying the target architecture, whose implementation is the group long-term
objective. Current status of the project, including on-going and short-term scheduled work, is also
mentioned. From a functional standpoint, an hierarchical architecture has been chosen, with emphasis
on performance evaluation and improvement through feedback.
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1. INTRODUCTION AND HISTORICAL
PERSPECTIVE

The PUMA industrial manipulator was made com-
mercially available in the 1960s and has been inten-
sively used in industrial applications and research
projects since then. Even though the programming
language provided with the manipulator controller
(VAL, followed by VAL IT) had high level features
and represented a significant milestone in robot
programming, it was limited with respect to the
integration in the control loop of external sensors
information, such as force and vision signals. The
hardware architecture of the Mark controller family
was also closed, preventing the access to the mo-
tion control algorithm and its parameters, as well
as to the trajectory generation algorithm.

All those limitations motivated several research
laboratories to “open” the hardware architecture of
the controllers, by replacing its main processor and
VAL interpreter (LSI-11), as well as, in some cases,
the joint controllers (6503 in the Mark TIT model),
by an external processor (or a multi-processor ma-
chine) (Bihn and Hsia, 1988; Desrochers, 1992).
This open architecture provides access to exter-
nal sensors, extended flexibility regarding the mo-
tion control and trajectory planning algorithms, in-
creased computing power, and new features, such
as task planning and distributed control. For the
new external controller, most groups chose a VME-
cage with multi-processing capabilities, usually un-
der the real time operating system VxWorks. A
survey of alternative ways of implementing this
hardware modification can be found in (Chen et
al.,, 1991) and in the references therein.

At the Instituto Superior Técnico location of the

Instituto de Sistemas e Robdtica (ISR/IST), the
Intelligent Control group made such a hardware
modification of its PUMA 560 Mark III controller.
However, some of the solutions used were different
of those referred above, notably:

e the external controller is based on several PCs
running DOS, Windows NT or Windows 95,
linked by a local Ethernet network, and com-
municating by TCP/IP protocol;

e the original processors were replaced by a new
card with A/D, D/A and encoder handling
hardware, with direct access to the Mark III
controller signals, which interfaces with the
PC by another dedicated card plugged into the
PC bus.

The first steps towards an open control architecture
for our PUMA 560 were described in (Moreira et
al., 1996). At the time we were mainly concerned
with hardware issues. With the modification suc-
cessfully made, we are now discussing architectures
under which future work should develop, as well as
performance evaluation of the whole system and
its improvement through feedback. These are cur-
rent topics of research by the Robotics and Intel-
ligent Control communities, as it is important not
only to develop successful applications, but to be
able to identify an engineering methodology under
which they were designed, including the capability
of choosing among alternatives, based on the eval-
uation of their performance.

In this paper we describe the conclusions of the dis-
cussions we have had so far and report the current
status of the project. Section 2 describes the tar-
get architecture, a long-term goal of this project.
The functional, hardware and software architec-



tures are detailed, as well as issues concerning the
global memory, man machine interface, learning
and performance evaluation of the whole system.
The current status is reported in Section 3, includ-
ing on-going work. Future work envisaged for the
short-term is presented in Section 4.

2. TARGET ARCHITECTURE

Three main issues were considered in the choice
of ISR/IST target open control architecture of the
PUMA 560:

e from a functional standpoint, it should be
goal-oriented, therefore a hierarchical solution
should be chosen;

e from the hardware and software standpoint,
it should be based on a distributed philoso-
phy, if possible with multi-processor and multi-
tasking capabilities;

¢ it should include means to evaluate its perfor-
mance and to use that evaluation to improve
the performance through feedback of many dif-
ferent kinds.

Based on those considerations, the functional ar-
chitecture was mainly inspired by Albus’ RCS
model (Albus, 1991), while the performance evalu-
ation issues are an extension of the analytic the-
ory of intelligent machines, by Saridis and his
co-workers (Lima and Saridis, 1996; McInroy et
al., 1996; Saridis, 1989; Valavanis and Saridis,
1992; Wang and Saridis, 1993).

2.1. Functional Architecture

The control system will be based on a hierarchical
architecture with four levels (task, action, primi-
tive and servo, from the top to the bottom) and
three legs (decision, world model and perception),
present at all levels (Albus, 1991). Each hierarchy
leg is ruled by the Principle of Increasing Precision
with Decreasing Intelligence (Saridis, 1989) when
traversing the hierarchy top-down:

e Decision: A task is described as a string of
symbols at the top task and action levels. The
symbols composing the string represent sub-
tasks whose description is refined top-down,
ending at the servo level, where the appropri-
ate procedures to execute the task, as well as
their specifications and required resources, are
determined.

¢ World Model: The spatial and temporal res-
olution increases top-down: e.g., map details
are known at the bottom level, while a global
map is available at the top level; images from
the vision sensor are available at a higher rate
at the bottom level than objects recognized
from the image at the top level.

e Perception: Sensor data is aggregated in a
bottom-up fashion: at the bottom level only
raw data is available but, at the other levels,
information resulting from processing the sig-
nal of one or more sensors is obtained.

One may think of a control loop which is closed at
each level: the decision leg represents the actuators,
the world model contains the control law and pa-
rameters, while the perception leg is identified with
the sensors. Feedback 1s used by the control law to
instantiate variables of the decision leg, but also
to update world model parameters and the choice
among alternative control laws. In fact, it is as-
sumed that there are two major decision stages in
this hierarchy (Lima and Saridis, 1996):

e A command to the hierarchical controller, rep-
resenting a plan to be executed, can be trans-
lated in general by more than one task (e.g.,
a maze with more than one path to reach the
exit). At the task level, a plan is translated
into one of several alternative tasks;

e When a task is refined into subtasks, the de-
composition reaches a point where the subtask
is no further decomposable. It is then called
primitive task. Each primitive task has associ-
ated specifications and required resources but,
again, 1t is an abstraction of the actual proce-
dure which implements its goal. It is assumed
that, in general, there are several alternative
primitive actions capable of implementing a
given primitive task (e.g., cubic polynomials
or linear interpolation with parabolic blends
are two alternative primitive actions to imple-
ment a generate trajectory primitive task).

An example of this hierarchy of two decision stages
is depicted in Figure 1. Notice that there are two
alternative tasks, distinguishable by the use of vi-
sion or of a parts size checking device. There is also
a reference to performance measures, which will be
explained in subsection 2.6.
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Fig. 1. Example of decision stages hierarchy for a man-
ufacturing cell. In the figure, C(e;) and R(e;)
represent the cost and the reliability of primitive
task e;, respectively.

A rough mapping of this task representation and
decomposition onto Albus’ model is shown in Fig-
ure 2. Notice that it corresponds mainly to the
decision leg. The other two legs were divided by
levels based on the requirements of each level of



the decision leg.

2.2. Hardware Architecture

The hardware architecture is based on a virtual
multi-processor machine, actually composed of sev-
eral PCs linked by a local fast Ethernet network (up
to 100 Mbps of communications speed). Each of
the processors has also multi-tasking capabilities,
when the operating system used is Windows N'T or
Windows 95. Even under DOS, a scheduler with
limited capabilities is being used, as explained in
the next subsection, therefore simple multi-tasking
is also possible.

This solution has proved so far to be suitable
for real-time control of the PUMA 560, provided
that limited communication is needed between the
nodes of the network. However, this is actu-
ally the philosophy underlying the architecture, as
explained in the next subsections. Furthermore,
adding processors to such a hardware architecture
is relatively inexpensive, corresponding to the pur-
chase of a new PC. Also, signal acquisition cards,
both image acquisition and A/D cards, are much
cheaper than their counterparts for systems like
VME-cages. Such facts, together with the current
widespread availability of hardware and software
for PCs, makes this solution attractive.
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Fig. 2. Mapping of the open control architecture to Al-
bus’ RCS model.

2.3. Software Architecture

The software will be based on a client/server phi-
losophy. Each PC in the network will behave ei-
ther as a server or as a client, depending on the
circumstances. When acting like a server, a PC
provides services, which are applications resident in
that server. Services may be divided in primitive
actions and general-purpose applications. The lat-
ter include functions to communicate between PCs
using sockets (TCP/IP protocol), functions which
access the global memory of the system, libraries
of math functions, board drivers and others. Some

of the services are only available locally, i.e., can
only be requested by local processes, while others
exist specifically to serve requests from other net-
work nodes — which will then behave as clients.

From the programmer standpoint, the distribution
of primitive action services by processors in the
network is transparent, i.e., he/she must initially
define 1n a file the location of the different primi-
tive actions and then the software will know where
to direct a request for such a service, each time
it is invoked. Data/primitive action requests be-
tween network processors are handled by socket-
based communication services, always running in
every PC of the network.
procedure consists of distributing primitive actions
according to the hardware resources allocated to

Nevertheless, a wise

each processor. As an example, in a visual servo-
ing and object catching application of the archi-
tecture, motion control primitive tasks (therefore,
all their primitive actions) should be located in the
PC which directly interfaces the PUMA controller,
while image processing primitive tasks and actions
should be located in the PC interfacing the camera
(see diagram in Figure 3).

TCP/IP sobre ethernet local

PC Pentium PC Pentium
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ISA bus ISA bus
TRC 006 Electrim
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Fig. 3. Hardware and software architecture for an ap-
plication concerning visual servoing and object
catching.

Whenever two or more services must run concur-
rently on the same processor, multi-tasking capa-
bilities are required. In fact, this is always the case,
as a server will need at least two processes running
concurrently during part of a task execution: one
to serve/ask for external services, the other asso-
ciated to at least one primitive action running on
that PC. When the processes run under Windows
NT or Windows 95, multi-tasking is embedded in
the operating system (as well as the TCP/IP li-
braries, actually). However, some applications re-
quire the use of DOS, a single-task operating sys-
tem. In this case, we use a non-preemptive simple
scheduler, whose capabilities are considerably lim-
ited but which has accomplished its job so far, and
the TCPDOS library.



The action level and the levels below are imple-
mented by Petri nets. This tool has the advantage
of allowing a qualitative and quantitative study of
task performance, by appropriate modeling (David
and Alla, 1994), and providing a friendly man-
machine interface.

The interpreted Petri net model (David and Alla,
1994) is used for implementation purposes (not
necessarily for modeling). Under such model,
places represent resources, including primitive
tasks. Whenever a token is inside a place represent-
ing a primitive task, this means that the primitive
action translating the task is running. Events (e.g.,
signaling the end of a task) are associated to tran-
sitions and occur as a consequence of the execution
of the primitive action(s) associated to the input
places of the transition. A similar use of Petri nets
was first introduced by Wang and Saridis (Wang
and Saridis, 1993). An example of an interpreted
Petri net representing the visual servoing and ob-
ject catching task is depicted in Figure 4.
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Fig. 4. Petri net representation of the visual servoing
and object catching task.

2.4. Global Memory

Different services may require the same data (ei-
ther raw or processed, both signal and static data
— such as calibration tables) as part of their pro-
cessing job. As such, all data must be stored in a
global shared memory. It is also convenient to dis-
tribute this global memory by the different network
nodes, to make data access more efficient. Never-
theless, this will be again user-configurable.

An illustrative example concerns the storage of
force signals. Those should ideally be stored in the
PC where some force control primitive actions are
located. However, it may be required by other ser-
vice (e.g., an algorithm which processes force sig-
nals to get more information on the shape of an
object) located in another PC. The most efficient
solution 1s to locate the force data in the PC where
it 1s used more often.

Providing the mechanisms to access such a dis-
tributed signal database is certainly a complex
task. There must exist special services to acquire
signals at regular rates and to read specific data
when requested by any local or remote service, as

well as semaphores to handle data access. This is
one of our mid-term work priorities.

As explained in the previous subsection, every PC
in the network will have a service devoted to answer
data requests from remote services. The same or
another service will also answer local data requests.
Even though it would be more efficient for a local
process to directly acquire the data (e.g., from the
force A/D acquisition card), this would jeopardize
the overall system organization. It is currently en-
visaged that every non-local data request will be
routed through a central server, i.e., the machine
where the task coordinator Petri net is running.
We are aware that this may create efficiency prob-
lems for some applications, but it i1s meant to re-
duce the required communications bandwidth and
to simplify global memory management.

2.5. Man-Machine Interface

Even though the ultimate goal of an autonomous
intelligent controller is to eliminate any man-
machine interface, such a subsystem will be nec-
essary in the years to come. To increase auton-
omy safely, 1t is important that high level informa-
tion and its degree of confidence are continuously
provided to the operator, so that he/she may be
sure that no intervention is necessary. Neverthe-
less, whenever such an action is required, the oper-
ator should be able to intervene at any abstraction
level. For example, he/she should be able to in-
terrupt or modify the task sequence by adding or
removing tokens to input places of every significant
transition (e.g., place # times in Figure 3), but it
should also be possible for the operator to control
“hands-on” (e.g., at the joint level), the manipula-
tor.

2.6. Learning and Performance Evaluation

The design of control systems consists of correctly
choosing a control law and the corresponding con-
troller parameters to meet a specifications set. The
specifications usually refer to properties of the time
response to specific signals (e.g., overshoot of the
step response), of the frequency response magni-
tude (e.g., noise reduction in a given range) or to
the minimization of a cost functional, correspond-
ing to maximizing some performance index, such
as in the LQR problem.

Designing an intelligent control system implies the
generalization of the “control law” concept, and re-
quires a performance index applicable to the di-
versity of primitive functions involved (e.g., signal
processors, “low-level” controllers, trajectory gen-
erators). Furthermore, it requires the use of feed-
back to improve performance over time. Under a
hierarchical approach, feedback must be used by all
hierarchic levels.



ISR/IST control architecture for the PUMA 560
will be based on a controller design method first
described in (Lima and Saridis, 1996). In short,
the designer must define the nominal specifications
for each available primitive task, including a time
interval after which the specifications are checked
and two thresholds concerning the primitive task
specification error:

e the soft threshold,
e the hard threshold.

Every primitive action chosen to translate the
primitive task must keep the specification error be-
low the soft threshold. When the time interval for
the primitive task expires, the specification error is
checked and, in case 1t is below the soft threshold,
a success signal is returned. Should the primitive
action fail to keep the error below the soft thresh-
old, the primitive action will return a failure signal,
in case the error is below the hard threshold, or an
error signal, in case the latter i1s exceeded. Those
signals are sent to the task coordinator. The suc-
cess and failure signals are used to update a reliabal-
ity estimate of each primitive action and primitive
task. Notice that the reliability R, estimated as
the relative frequency of successes, is a performance
measure applicable to any primitive action, as re-
quired for an intelligent controller; and 1s defined as
the probability that the primitive action meets the
specifications for its corresponding primitive task.
When the primitive action exits with a failure sig-
nal, even though it failed to meet its specifications,
it is assumed that the task can proceed its exe-
cution. However, the error signal denotes a non-
acceptable performance, and task execution must
be switched to an error recovery path.

A generalized stochastic Petri net model of the task
coordinator is used to evaluate overall task relia-
bility, using two random switches (Vishwanadham
and Narahari, 1992) per each place identified with
a primitive task. The transition leading to an er-
ror recovery has a probability equal to the error
signal frequency for that primitive task, while the
complement of that probability is associated to the
transition corresponding to the normal task execu-
tion. Therefore, one can evaluate task reliability
by well known Petri net based methods.
Reliability alone is not a realistic performance mea-
sure. In most cases, one may indefinitely increase
the reliability of a primitive action by using more
system resources (e.g., CPU time, memory, increas-
ing sampling frequency). Therefore, an acceptable
performance measure must also include the cost
C' of the primitive action. In (Lima and Saridis,
1996) we introduced the following cost function to
be minimized at all hierarchic levels:

J=1-R+C. (1)

Reliability and cost, respectively measured and

computed at the servo level for the primitive ac-
tions, can be propagated bottom-up by the expres-
sions in Figure 1, as an alternative to the direct
computation of task reliability from the Petri net,
explained above.

Both the translation of primitive tasks by primitive
actions and of plans by tasks is based, at the two
decision stages referred above, on learning stochas-
tic automata (Fu and Mendel, 1970; Narendra and
Thathachar, 1989). This way, the selection of the
best alternatives at each stage and at each exe-
cution step is posed as a discrete stochastic op-
timization problem, leading to the selection with
probability one, when the number of steps goes to
infinity, of the tasks and primitive actions which
minimize J in (1). While this reinforcement learn-
ing process proceeds, different tasks and primitive
actions will be selected at the execution steps, al-
lowing the update of their reliabilities and selection
probabilities. As the number of steps increases, the
probability of the optimal choice will converge to
one, with probability one.

3. CURRENT STATUS

The hardware modification of the original con-
troller was accomplished in the beginning of 1996.
The old and new hardware architectures are de-
picted in Figure 5. They are described with de-
tail in (Moreira et al., 1996), where some results of
motion control based on control and trajectory in-
terpolation algorithms, different from those of the
Mark III controller, are presented. Meanwhile, a
library of motion control primitive actions was de-
veloped (Lima et al., 1997), including calibration,
motion control and trajectory generation primitive
tasks. Those were used in applications such as a
painter robot — which paints faces from a digital

image — and visual serving and catching of dy-
namic objects (see Figure 3) (Fernandes and Lima,
1998).

The first implementation of distributed control us-
ing three PCs was also accomplished by a teleoper-
ation system with one PC locally acquiring images,
a second PC locally controlling the robot motion,
and a third PC serving as the remote man-machine
interface (MMT). This interface consists of a full im-
age of the teleoperation site, as well as of a graphi-
cal representation of the robot motion, based on the
feedback of its joint positions — a low-bandwidth
information sent from the motion control PC to
the MMI PC. The remote operator can use a sim-
ple joystick to telecontrol joint motion or he/she
can program a trajectory and sent it to the local
motion controller to be executed.

Currently, we are developing a Petr1 net task coor-
dinator, which will allow graphical task program-
ming by drawing the corresponding interpreted
Petri net, and task execution supervision, by fol-
lowing/modifying the token flow in the Petri net.
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Fig. 5. Old (top) and new (bottom) hardware architec-
tures.

4. FUTURE WORK

In the short-term, we plan to finish and test the
Petri net task coordinator under several plan sce-
narios.

For the mid-term, we will include specifications
checking in all primitive actions already developed,
and develop new primitive actions, namely those
concerned with image processing and control of the
interaction with the environment (e.g., force con-
trol). The global distributed memory system will
also be implemented, as well as its management.
We will then be ready to use reinforcement learn-
ing to improve performance through feedback, as
explained in subsection 2.6.

Long-term objectives include the automatic gener-
ation of Petri nets representing tasks from a graph-
ical or other high-level method description of the
task goal (e.g., clicking on a 3D representation of
the operation site to tell the robot the operations
1t must perform, such as picking objects or taking
pictures).
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