
Petri Nets for Modeling and Coordination of Robotic TasksPedro Lima, Hugo Gr�acio, Vasco Veiga, Anders Karlsson�Instituto de Sistemas e Rob�otica, Instituto Superior T�ecnico | Torre NorteAv. Rovisco Pais, 1; 1096 Lisboa Codex; PORTUGALE-mail: pal@isr.ist.utl.ptAbstractPetri nets have been widely used to model dynamicsystems, namely manufacturing systems. In this pa-per we introduce the use of Petri nets to modelrobotic tasks. Di�erent views of the robotic taskmodel can be modeled by distinct Petri net types:interpreted Petri nets for task design and execution,generalized stochastic Petri nets for task quantitativeperformance evaluation and ordinary Petri nets fortask qualitative performance evaluation. Quantita-tive performance evaluation and improvement basedon reinforcement learning from feedback are detailedin the paper. Examples of applications to visual ser-voing and catching of moving objects by a roboticarm and to mobile robot tasks are presented.1 IntroductionPetri nets have been widely used to model dynamicsystems [1], notably automated manufacturing sys-tems [7]. They share the properties of more generaldiscrete event dynamic systems [6]. Those facts turnPetri nets into good candidates for qualitative perfor-mance evaluation of robotic tasks. What is singularwith Petri nets is their ability to provide simultane-ously means for quantitative performance evaluation,as well as to allow interaction between an operatorand the task under execution.This paper introduces a new framework underwhich Petri nets are used for qualitative and quan-titative performance evaluation, as well as a tool todesign and execute robotic tasks. This framework isan extension of previous work by Wang and Saridis[8], where Petri nets were �rst proposed as models�The work of this author was supported by a grant of theSwedish Government. He is currently a student of the LundInstitute of Technology, Sweden, doing his �nal year project atISR/IST.

of robotic tasks. Later, Lima and Saridis [3] intro-duced a methodology for robotic tasks performanceevaluation and learning-based improvement throughfeedback, which is mapped here to Petri nets.In Section 2 we introduce our robotic task model, aswell as the di�erent Petri net types used to model dif-ferent views of that model. Section 3 tackles the issueof task quantitative performance evaluation. Learn-ing through feedback the translations of places intoprimitive actions, which optimize the performanceevaluation function, is the subject of Section 4. A toolto design and execute interpreted Petri nets suitedfor the coordination of robotic tasks, is introduced inSection 5. Two examples of applications to roboticsystems are described in Section 6. The paper endswith some preliminary conclusions and projects forfuture work (Section 7).2 Petri Net Views of a RoboticTask ModelA robotic task is de�ned in [3] as a string of primitivetasks, representing the sequence of actions the roboticsystem must carry out to accomplish the task goal.Each primitive task may be actually implemented bymore than one primitive action (e.g., a locate objectprimitive task can be implemented by a set of dif-ferent image processing algorithms, de�ned here asprimitive actions). Primitive tasks and their trans-lating primitive actions must be established at designtime, associated to speci�c goals (e.g., to locate anobject, to follow a trajectory). When, during the ex-ecution of a primitive task, its speci�c goal or an errorstate (e.g., due to a timeout) is reached, an event oc-curs and must be detected. Events can be internalor external, depending on whether they are detectedwithin a primitive task or by a device or sensor notchecked by a primitive task. To reach its goal, a taskmust �rst reach the speci�c goals of each of its com-



posing primitive tasks.Primitive actions, primitive tasks, tasks and eventsconstitute a robotic task model. One can look fromdi�erent viewpoints at such a model. Di�erent Petrinet types [1] are used depending on the viewpointtaken. The following subsections illustrate this con-cept.Task Design and ExecutionThe actual task implementation (i.e., its design andexecution) requires the scheduling of the primitivetasks composing the task, as well as the synchroniza-tion with external and internal events. Events arecrucial to coordinate task execution, as they signalwhen a primitive task can be called for execution, ei-ther after another primitive task has �nished its jobor synchronized with other primitive task(s) execu-tion. An interactive man-machine interface is alsoimportant, so that the appropriate schedule of primi-tive tasks can be designed and task execution can befollowed and/or modi�ed by an operator.Interpreted Petri nets are used to model task im-plementation. Under our framework and within thistype of Petri nets, places represent resources, such asa robot, an object to be manipulated or a primitivetask under execution. Whenever a token is inside aplace representing a primitive task, this means thatthe primitive action chosen to translate the primitivetask is running. Events are linked to transitions. Aninternal event linked to a transition occurs when aprimitive task associated to one of the transition in-put places determines that its speci�c goal has beenreached. An external event is detected by devices orsensors whose output is not checked by any primitivetask (e.g., a cross�re sensor detects the presence ofan object). An external event may always becomeinternal, should it start being detected by a primitivetask. Nevertheless, there are cases where keeping anevent external is important.At design time, places and transitions must belinked by the task designer such that the roboticsystem goes through the desired sequence of speci�cgoals that must be reached before the task goal is ac-complished. The designer must also identify all theresources other than primitive tasks required at eachtask step, and represent them by places. He/she mustalso provide, for each place associated to a primitivetask, two output transitions: one corresponding to asuccessful completion of the primitive task, another toan exit upon an error situation. In the latter case, anappropriate error recovery procedure must be speci-

�ed. To avoid a cumbersome task representation, theerror recovery branches may be hidden in the graph-ical display of the Petri net associated to the task.During task execution, a transition is enabled ifeach of its input places have a su�cient number oftokens available. This happens when all the requiredresources are available and all the primitive tasks as-sociated to those places are running. However, thetransition will only be �red when all the events linkedto it occur. The tokens are then deposited in theoutput places of the transition, enabling the execu-tion of their associated primitive tasks. An operatormay follow task execution by following the token 
owthrough the Petri net representing the task.Quantitative Performance EvaluationOnce an Interpreted Petri Net has been designed torepresent the actual task implementation, one mayevaluate quantitative properties of the task perfor-mance by modifying its associated Petri net, turningit into a generalized stochastic Petri net.Generalized stochastic Petri nets can be used tomodel time-related properties (such as the averagetask execution time or primitive task bottlenecks)and/or task reliability, de�ned as the probability thatthe task will meet its speci�cations, i.e., that it willachieve its goal [3]. Reliability is actually estimatedon line during task execution, by measuring the rela-tive frequency of trials where task speci�cations weremet.Task execution time can actually be determinedby associating time to places (P-timed model). Thetime assigned to each place will determine the perfor-mance measure obtained afterwards. For instance, ifthe CPU time taken by the primitive tasks associatedto each place is used, the total CPU time spent by thetask will be computed. One may use the actual timetaken by each primitive task instead. In this case,the actual time taken by the task will be computed.Of course, this will be a stochastic variable, but ran-dom times can be associated to the places under theP-timed Petri net model. When those times are dis-tributed according to an exponential law, the markingof this stochastic Petri net is an homogeneous Marko-vian process [7], whose well known properties help todetermine the time properties of task execution.Random switches [7] are used to model task reli-ability. They are associated to the two alternativesat the exit of a primitive task, normal execution orerror recovery required, referred in the previous sub-section. Error and normal execution probabilities are



associated to those switches for modeling purposes.The probabilities can be estimated by measuring therelative frequency of primitive task executions endingwith or without error, respectively.Qualitative Performance EvaluationOrdinary Petri net models (or some of their abbrevi-ations [1]) can be used to evaluate qualitative proper-ties [7] of a task, such as boundedness (somewhat re-lated to stability), properness (related to the possibil-ity of error recovery) and liveness (indirectly relatedto controllability). Again, if a qualitative performanceevaluation is required, the original interpreted Petrinet modeling task execution can be modi�ed into anordinary Petri net (e.g., no event synchronization) todetermine such properties.3 Quantitative PerformanceEvaluationA cost function to determine task performance fromthe performance measure of each of its composingprimitive tasks and actions has been introduced in[3]. Such a cost function is general enough to be ap-plied to the diversity of primitive tasks which maycompose a robotic task model. It is based on a con-junctive de�nition of cost and reliability (see [3] foranalytic details), which essentially states the follow-ing:� reliability is the probability that a primitive ac-tion will meet its speci�cations (e.g., percentualdeviation from a trajectory, overshoot at the endof a point to point motion). This can be mea-sured on line by computing the relative frequencyof trials where speci�cations are met, and corre-sponds to the probability assigned to the randomswitch leading to the normal execution branch ofthe generalized stochastic Petri net view referredabove;� cost refers to CPU time or actual execution timeof the primitive action (e.g., the number assignedto the places in the P-timed generalized stochas-tic Petri net referred above) when the scenario towhich the primitive action is applied correspondsto the worst case (i.e., lowest) reliability amongthose with values lower-bounded by some targetreliability.

Given some target reliability for the primitive task,the cost of obtaining that reliability can be deter-mined for each of the translating primitive actions,according to the cost measure de�ned for the prob-lem. Conversely, establishing at design time di�erentcost values for a primitive action will correspond todi�erent reliabilities for the primitive action.In general, cost increases with reliability. For in-stance, to improve the reliability of locating a pointwithin a noisy image with a given accuracy, one hasto average several pictures of the image. If the cost isde�ned as the number of pictures needed, it will de-pend on the target reliability. However, if the numberof pictures is established at design time, the reliabilitywill depend on the number of images (i.e., the cost)used to compute the average.Therefore, a minimum exists, corresponding to theoptimal primitive action1, for the following cost func-tion: J = 1�R+ �C (1)where R is the reliability, C the cost and � a weightfactor such that �C 2 [0; 1]. In general � will be suchthat the cost does not overwhelm the reliability whendirecting the search for the optimal action. A typical� is given by � = 1maxa2AC(a) , where A is the set ofprimitive actions. Note that the cost is computed apriori, but in general it can assume any value and mayhave any units, depending on the primitive task. � isused to normalize both the cost value to the interval[0; 1] and the cost units across primitive tasks.Note that the de�nition of cost and reliability refersto primitive actions. However, their values, and con-sequently those of the cost function, can be propa-gated to the primitive tasks and the task using ap-propriate expressions [3]. Therefore, the quantitativeperformance evaluation is extended to the completerobotic task model.4 Learning the Optimal Trans-lationsWe have already pointed out the existence of alterna-tive translations for a primitive task, i.e., each time aprimitive task is ready to be executed, the �rst stepconsists of selecting which of its translating primi-tive actions will e�ectively run. Di�erent alterna-tives will have di�erent performances, measured by1This is a discrete space optimization problem, hence theminimum found will correspond to the optimal solution amongthe set of available primitive actions for the primitive task.



the cost function introduced in the previous section.Therefore, it is important to create a mechanism to:i) update at each step the primitive action cost func-tion estimates; ii) learn over time the optimal selec-tion, i.e., the primitive action which minimizes thecost function.Our framework distinguishes between three primi-tive action status, returned by the primitive actionupon completion: success, when the speci�cationswere fully met, failure, when the speci�cations werenot fully met, but task execution may proceed alongthe normal execution branch, and error, when thespeci�cations were not met and error recovery is re-quired (e.g., the primitive task exited on timeout).The success and failure signals are used to updatethe reliability (therefore the cost function) estimatesiteratively, after the execution of each primitive ac-tion. An error status is interpreted as a failure, forlearning purposes, but in this case task execution doesnot follow its regular path. The availability of successand failure signals suggests the use of a reinforcementlearning scheme [2, 4, 5] which updates a probabil-ity distribution function over the discrete set of al-ternative primitive actions for a primitive task. Thescheme is proved to converge with probability one tothe selection of the optimal action with probability 1[3]. In practice, this means that, after a number oflearning steps, dependent on the number of primitiveactions and their cost function values, the optimalprimitive action will be chosen with high probabil-ity. Therefore, the scheme represents a practical wayof using learning to provide adaptation to the envi-ronment state and improve performance of a robotictask.Learning may be slow in some cases, but those cor-respond to a set of alternative primitive actions withsimilar performances. Hence, the overall performancewill not be considerably a�ected by the duration ofthe learning process.5 A Tool for Task Design andExecutionA Petri-net-based application to coordinate the ex-ecution of robotic tasks and provide a man-machineinterface has been developed. A robotic task can bedesigned through a graphical interface, by drawingthe corresponding Petri net and associating primitivetasks to places and (when appropriate) events to tran-sitions. Task execution can be followed in real time

through the same graphical interface, by following thetoken 
ow in the Petri net. The operator can changethe task execution path and/or timing by token re-moval/insertion in special places, used for task 
owcontrol only (e.g., step-by-step execution is possible).The application runs on a hardware architecturebased on a virtual multi-processor machine, com-posed of several PCs linked by a local fast Ether-net network. Each of the processors has also multi-tasking capabilities.The software architecture is based on a client-serverphilosophy. Each PC in the network behaves ei-ther as a server or as a client, depending on the cir-cumstances. When acting like a server, a PC pro-vides services, which are applications resident in thatserver. Services may be divided in primitive actionsand general-purpose applications. The latter includefunctions to communicate between PCs using sockets(TCP/IP protocol), functions which access the globalmemory of the system, libraries of math functions,board drivers and others. Some of the services areonly available locally, i.e., can only be requested bylocal processes, while others exist speci�cally to serverequests from other network nodes | which will thenbehave as clients.From the designer standpoint, the distribution ofprimitive action services by processors in the net-work is transparent, i.e., he/she must initially de�nein a �le the location of the di�erent primitive actionsand then the software will know where to direct arequest for such a service, each time it is invoked.Data/primitive action requests between network pro-cessors are handled by socket-based communicationservices, always running in every PC of the network.Nevertheless, a wise procedure consists of distribut-ing primitive actions according to the hardware re-sources allocated to each processor. As an example,in a visual servoing and object catching applicationof the architecture, described below, motion controlprimitive tasks (therefore, all their primitive actions)should be located in the PC which directly interfacesthe PUMA controller, while image processing prim-itive tasks and actions should be located in the PCinterfacing the camera.6 Examples of ApplicationsAt the time of writing this paper, we were in the pro-cess of using the application described in the previoussection to recast the implementation of robotic tasksour group has been working with in the last few years.



Two of those tasks are described in the following sub-sections.Visual Servoing and CatchingBased on the distributed control architecture de-scribed in the previous section, a testbed for researchon visual servoing and catching of moving objects wasdeveloped, including a CCD camera located above atable and 2 PCs linked by the local Ethernet network.One of the PCs interfaces the CCD camera throughan ISA bus card. PUMA motion control algorithmsrun on the other PC, interfacing the PUMA throughISA bus cards. The image processing PC sends setpoints periodically to the motion control PC usingTCP/IP sockets. The set points represent the pre-dicted catching points.
ext ^image_sampling_tick

standby

move2ball catchball

locate ball remaining # runs (operator driven)

ext ^start_button

int ^ready2catch ext ^ball_catched (crossfire sensor)Figure 1: Petri net representation of the visual servo-ing and object catching task, with initial marking cor-responding to a 4 runs experiment. The 'int' and 'ext'label pre�xes represent internal and external events,respectively.An example of an interpreted Petri net represent-ing a visual servoing and object catching task by arobotic manipulator, currently running in our Lab-oratory, is depicted in Figure 1. The manipulatormust catch, at its closest end of the table, rollingping-pong balls. An individual throws the ball at theother end of the table towards the manipulator. Thevision subsystem tracks the ball motion and extractsits relevant motion parameters. From this informa-tion, the prediction subsystem iteratively estimatesthe ball trajectory and the coordinates, in the ma-nipulator base frame, of the point where it will leavethe table. The manipulator motion controller movesthe manipulator gripper, with the correct orientation,to this point and, equipped with a cup, catches theball.An operator may interact with task execution bysetting the number of times the task will run au-

Figure 2: The mobile robot competition track.tonomously. This is accomplished by token removalfrom or insertion into the remaining number of runsplace in the example.In the �gure, some of the events are internal, othersare external. The latter might become internal, but insome cases this might cause problems. For instance,the ball catched event might become internal to thecatchball primitive task. However, should the imagesampling tick event become internal to the locate ballprimitive task, this would prevent the control of thenumber of runs by the operator.Mobile Robot TaskWe have been participating in the last few years ina robotic competition, held in France. The objectiveis to build a robot whose task consists of followinga 5cm wide track painted on a chessboard-like sur-face, composed of 2m side squares of alternating blackand white colors. The track has the opposite color ofthe corresponding background square (see Figure 2)and is composed of 2 meter straight lines and one-fourth of a circle arc segments with 1 meter radius.There are track interruptions somewhere along thepath, obtained by replacing the corresponding back-ground square by one with the same color but withno track segment painted on. The robot must detectthe interruption, and recover the track at the clos-est segment, for instance by following a cylindricalretrore
ector, located 1 meter above the point wherethe track resumes. The end of the track is signaledby a T-shaped pattern.



A more complex interpreted Petri net is required tomodel the robot task in this example. It is depictedin Figure 3. In this case all events are internal. No-tice that there are several con
icts in the Petri net,but they all correspond to events linked to booleanvariables whose value is changed within the precedentprimitive tasks. The con
icts correspond always to abinary choice dependent on the variable value.As in the previous example, neither error recoverybranches nor the primitive actions associated to eachprimitive tasks are represented in the �gures.
standby

start

following_track

found_T

found_int

stop_robot

robot_stopped

look_ahead turn_left_and
_look_ahead

no_res_point no_res_point

turn_right_an
d_look_ahead

no_res_point

res_point res_point res_point

follow_res_point

track_not_found track_found

check_if_trackFigure 3: Petri net representation of a mobile robottask.7 Conclusions and FutureWorkThis paper introduced some novel concepts regardingrobotic task modeling by Petri nets, namely the use ofdi�erent Petri net types to model distinct views of therobotic task model, as well as the task performancequanti�cation and the use of learning to improve per-formance over task execution.One of the issues not yet tackled is the qualitativeperformance evaluation of robotic tasks using ordi-nary Petri nets. Boundedness, properness and live-ness properties, which can be determined from theordinary Petri net model, can be mapped to robotictask properties, such as stability, error recoverabilityand controllability. We intend to clarify those rela-tions in the near future.Quantitative performance evaluation concerningtime-related properties is another topic to be devel-

oped. Even though the cost measure referred in thepaper is based on the task execution time, so far onlythe reliability related issues have been studied in moredetail. We also believe that more speci�c time-basedcost measures can be used and intend to further studythis topic.Finally, even though the mapping between therobotic task model and the Petri net has been de�ned,an analytical formulation of this mapping would bedesirable, as well as a clear de�nition of primitivetasks and events. The latter would improve signi�-cantly the design of complex robotic tasks.References[1] R. David and H. Alla. Petri Nets for modeling ofdynamic systems. Automatica, 30(2):175{202, 1994.[2] K. S. Fu and J. M. Mendel. Adaptive, Learning andPattern Recognition Systems: Theory and Applica-tions. Academic Press, 1970.[3] P. U. Lima and G. N. Saridis. Design of IntelligentControl Systems Based on Hierarchical Stochastic Au-tomata. World Scienti�c Publ., 1996.[4] K. Najim and A. S. Poznyak. Learning Automata:Theory and Applications. Pergamon Press, Oxford,1994.[5] K. S. Narendra and M. A. L. Thathachar. LearningAutomata | an Introduction. Prentice Hall, 1989.[6] P. J. Ramadge and W. M. Wonham. The controlof discrete event systems. Proceedings of the IEEE,77(1), 1989.[7] N. Vishwanadham and Y. Narahari. PerformanceModelling of Automated Manufacturing Systems.Prentice Hally, 1992.[8] Fei-Yue Wang and G. N. Saridis. Task translationand integration speci�cation in Intelligent Machines.IEEE Transactions on Robotics and Automation, RA{9(3):257{271, 1993.


