Petri Nets for Modeling and Coordination of Robotic Tasks

Pedro Lima, Hugo Gracio, Vasco Veiga, Anders Karlsson™
Instituto de Sistemas e Robdtica, Instituto Superior Técnico — Torre Norte

Av. Rovisco Pais, 1; 1096 Lisboa Codex; PORTUGAL
E-mail: pal@isr.ist.utl.pt

Abstract

Petri nets have been widely used to model dynamic
systems, namely manufacturing systems. In this pa-
per we introduce the use of Petri nets to model
robotic tasks. Different views of the robotic task
model can be modeled by distinct Petri net types:
interpreted Petri nets for task design and execution,
generalized stochastic Petri nets for task quantitative
performance evaluation and ordinary Petri nets for
task qualitative performance evaluation. Quantita-
tive performance evaluation and improvement based
on reinforcement learning from feedback are detailed
in the paper. Examples of applications to visual ser-
voing and catching of moving objects by a robotic
arm and to mobile robot tasks are presented.

1 Introduction

Petri nets have been widely used to model dynamic
systems [1], notably automated manufacturing sys-
tems [7]. They share the properties of more general
discrete event dynamic systems [6]. Those facts turn
Petri nets into good candidates for qualitative perfor-
mance evaluation of robotic tasks. What is singular
with Petri nets 1s their ability to provide simultane-
ously means for guantitative performance evaluation,
as well as to allow interaction between an operator
and the task under execution.

This paper introduces a new framework under
which Petri nets are used for qualitative and quan-
titative performance evaluation, as well as a tool to
design and execute robotic tasks. This framework is
an extension of previous work by Wang and Saridis
[8], where Petri nets were first proposed as models

*The work of this author was supported by a grant of the
Swedish Government. He is currently a student of the Lund
Institute of Technology, Sweden, doing his final year project at
ISR/IST.

of robotic tasks. Later, Lima and Saridis [3] intro-
duced a methodology for robotic tasks performance
evaluation and learning-based improvement through
feedback, which is mapped here to Petri nets.

In Section 2 we introduce our robotic task model, as
well as the different Petri net types used to model dif-
ferent views of that model. Section 3 tackles the issue
of task quantitative performance evaluation. Learn-
ing through feedback the translations of places into
primitive actions, which optimize the performance
evaluation function, is the subject of Section 4. A tool
to design and execute interpreted Petri nets suited
for the coordination of robotic tasks, is introduced in
Section 5. Two examples of applications to robotic
systems are described in Section 6. The paper ends
with some preliminary conclusions and projects for
future work (Section 7).

2 Petri Net Views of a Robotic
Task Model

A robotic task is defined in [3] as a string of primitive
tasks, representing the sequence of actions the robotic
system must carry out to accomplish the task goal.
Each primitive task may be actually implemented by
more than one primitive action (e.g., a locate object
primitive task can be implemented by a set of dif-
ferent image processing algorithms, defined here as
primitive actions). Primitive tasks and their trans-
lating primitive actions must be established at design
time, associated to specific goals (e.g., to locate an
object, to follow a trajectory). When, during the ex-
ecution of a primitive task, its specific goal or an error
state (e.g., due to a timeout) is reached, an event oc-
curs and must be detected. Events can be internal
or external, depending on whether they are detected
within a primitive task or by a device or sensor not
checked by a primitive task. To reach its goal, a task
must first reach the specific goals of each of its com-

posing primitive tasks.

Primitive actions, primitive tasks, tasks and events
constitute a robotic task model. One can look from
different viewpoints at such a model. Different Petri
net types [1] are used depending on the viewpoint
taken. The following subsections illustrate this con-
cept.

Task Design and Execution

The actual task implementation (i.e., its design and
execution) requires the scheduling of the primitive
tasks composing the task, as well as the synchroniza-
tion with external and internal events. FEvents are
crucial to coordinate task execution, as they signal
when a primitive task can be called for execution, ei-
ther after another primitive task has finished its job
or synchronized with other primitive task(s) execu-
tion. An interactive man-machine interface is also
important, so that the appropriate schedule of primi-
tive tasks can be designed and task execution can be
followed and/or modified by an operator.

Interpreted Petri nets are used to model task im-
plementation. Under our framework and within this
type of Petri nets, places represent resources, such as
a robot, an object to be manipulated or a primitive
task under execution. Whenever a token is inside a
place representing a primitive task, this means that
the primitive action chosen to translate the primitive
task is running. Events are linked to transitions. An
internal event linked to a transition occurs when a
primitive task associated to one of the transition in-
put places determines that its specific goal has been
reached. An external event is detected by devices or
sensors whose output i1s not checked by any primitive
task (e.g., a crossfire sensor detects the presence of
an object). An external event may always become
internal, should it start being detected by a primitive
task. Nevertheless, there are cases where keeping an
event external is important.

At design time, places and transitions must be
linked by the task designer such that the robotic
system goes through the desired sequence of specific
goals that must be reached before the task goal is ac-
complished. The designer must also identify all the
resources other than primitive tasks required at each
task step, and represent them by places. He/she must
also provide, for each place associated to a primitive
task, two output transitions: one corresponding to a
successful completion of the primitive task, another to
an exit upon an error situation. In the latter case, an
appropriate error recovery procedure must be speci-

fied. To avoid a cumbersome task representation, the
error recovery branches may be hidden in the graph-
ical display of the Petri net associated to the task.

During task execution, a transition is enabled if
each of its input places have a sufficient number of
tokens available. This happens when all the required
resources are available and all the primitive tasks as-
sociated to those places are running. However, the
transition will only be fired when all the events linked
to 1t occur. The tokens are then deposited in the
output places of the transition, enabling the execu-
tion of their associated primitive tasks. An operator
may follow task execution by following the token flow
through the Petri net representing the task.

Quantitative Performance Evaluation

Once an Interpreted Petri Net has been designed to
represent the actual task implementation, one may
evaluate quantitative properties of the task perfor-
mance by modifying its associated Petri net, turning
it into a generalized stochastic Petri net.

Generalized stochastic Petri nets can be used to
model time-related properties (such as the average
task execution time or primitive task bottlenecks)
and/or task reliability, defined as the probability that
the task will meet its specifications, i.e., that it will
achieve its goal [3]. Reliability is actually estimated
on line during task execution, by measuring the rela-
tive frequency of trials where task specifications were
met.

Task execution time can actually be determined
by associating time to places (P-timed model). The
time assigned to each place will determine the perfor-
mance measure obtained afterwards. For instance, if
the CPU time taken by the primitive tasks associated
to each place 1s used, the total CPU time spent by the
task will be computed. One may use the actual time
taken by each primitive task instead. In this case,
the actual time taken by the task will be computed.
Of course, this will be a stochastic variable, but ran-
dom times can be associated to the places under the
P-timed Petri net model. When those times are dis-
tributed according to an exponential law, the marking
of this stochastic Petri net is an homogeneous Marko-
vian process [7], whose well known properties help to
determine the time properties of task execution.

Random switches [7] are used to model task reli-
ability. They are associated to the two alternatives
at the exit of a primitive task, normal execution or
error recovery required, referred in the previous sub-
section. Error and normal execution probabilities are

associated to those switches for modeling purposes.
The probabilities can be estimated by measuring the
relative frequency of primitive task executions ending
with or without error, respectively.

Qualitative Performance Evaluation

Ordinary Petri net models (or some of their abbrevi-
ations [1]) can be used to evaluate qualitative proper-
ties [7] of a task, such as boundedness (somewhat re-
lated to stability), properness (related to the possibil-
ity of error recovery) and liveness (indirectly related
to controllability). Again, if a qualitative performance
evaluation is required, the original interpreted Petri
net modeling task execution can be modified into an
ordinary Petri net (e.g., no event synchronization) to
determine such properties.

3 Quantitative Performance

Evaluation

A cost function to determine task performance from
the performance measure of each of its composing
primitive tasks and actions has been introduced in
[3]. Such a cost function is general enough to be ap-
plied to the diversity of primitive tasks which may
compose a robotic task model. It is based on a con-
junctive definition of cost and reliability (see [3] for
analytic details), which essentially states the follow-
ing:

e reliability is the probability that a primitive ac-
tion will meet its specifications (e.g., percentual
deviation from a trajectory, overshoot at the end
of a point to point motion). This can be mea-
sured on line by computing the relative frequency
of trials where specifications are met, and corre-
sponds to the probability assigned to the random
switch leading to the normal execution branch of
the generalized stochastic Petri net view referred
above;

e cost refers to CPU time or actual execution time
of the primitive action (e.g., the number assigned
to the places in the P-timed generalized stochas-
tic Petri net referred above) when the scenario to
which the primitive action is applied corresponds
to the worst case (i.e., lowest) reliability among
those with values lower-bounded by some target
reliability.

Given some target reliability for the primitive task,
the cost of obtaining that reliability can be deter-
mined for each of the translating primitive actions,
according to the cost measure defined for the prob-
lem. Conversely, establishing at design time different
cost values for a primitive action will correspond to
different reliabilities for the primitive action.

In general, cost increases with reliability. For in-
stance, to improve the reliability of locating a point
within a noisy image with a given accuracy, one has
to average several pictures of the image. If the cost is
defined as the number of pictures needed, it will de-
pend on the target reliability. However, if the number
of pictures is established at design time, the reliability
will depend on the number of images (i.e., the cost)
used to compute the average.

Therefore, a minimum exists,; corresponding to the
optimal primitive action’, for the following cost func-
tion:

J=1-R+pC (1)

where R is the reliability, C' the cost and p a weight
factor such that pC' € [0,1]. In general p will be such
that the cost does not overwhelm the reliability when
directing the search for the optimal action. A typical
p 1s given by p = m, where A is the set of
primitive actions. Note that the cost is computed a
priori, but in general it can assume any value and may
have any units, depending on the primitive task. p is
used to normalize both the cost value to the interval
[0,1] and the cost units across primitive tasks.

Note that the definition of cost and reliability refers
to primitive actions. However, their values, and con-
sequently those of the cost function, can be propa-
gated to the primitive tasks and the task using ap-
propriate expressions [3]. Therefore, the quantitative
performance evaluation is extended to the complete
robotic task model.

4 Learning the Optimal Trans-
lations

We have already pointed out the existence of alterna-
tive translations for a primitive task, 1.e., each time a
primitive task is ready to be executed, the first step
consists of selecting which of its translating primi-
tive actions will effectively run. Different alterna-
tives will have different performances, measured by

1This is a discrete space optimization problem, hence the
minimum found will correspond to the optimal solution among
the set of available primitive actions for the primitive task.

the cost function introduced in the previous section.
Therefore, 1t 1s important to create a mechanism to:
i) update at each step the primitive action cost func-
tion estimates; ii) learn over time the optimal selec-
tion, i.e., the primitive action which minimizes the
cost function.

Our framework distinguishes between three primi-
tive action status, returned by the primitive action
upon completion: success, when the specifications
were fully met, failure, when the specifications were
not fully met, but task execution may proceed along
the normal execution branch, and error, when the
specifications were not met and error recovery is re-
quired (e.g., the primitive task exited on timeout).

The success and failure signals are used to update
the reliability (therefore the cost function) estimates
iteratively, after the execution of each primitive ac-
tion. An error status is interpreted as a failure, for
learning purposes, but in this case task execution does
not follow its regular path. The availability of success
and failure signals suggests the use of a reinforcement
learning scheme [2, 4, 5] which updates a probabil-
ity distribution function over the discrete set of al-
ternative primitive actions for a primitive task. The
scheme is proved to converge with probability one to
the selection of the optimal action with probability 1
[3]. In practice, this means that, after a number of
learning steps, dependent on the number of primitive
actions and their cost function values, the optimal
primitive action will be chosen with high probabil-
ity. Therefore, the scheme represents a practical way
of using learning to provide adaptation to the envi-
ronment state and improve performance of a robotic
task.

Learning may be slow in some cases, but those cor-
respond to a set of alternative primitive actions with
similar performances. Hence, the overall performance
will not be considerably affected by the duration of
the learning process.

5 A Tool for Task Design and
Execution

A Petri-net-based application to coordinate the ex-
ecution of robotic tasks and provide a man-machine
interface has been developed. A robotic task can be
designed through a graphical interface, by drawing
the corresponding Petri net and associating primitive
tasks to places and (when appropriate) events to tran-
sitions. Task execution can be followed in real time

through the same graphical interface, by following the
token flow in the Petri net. The operator can change
the task execution path and/or timing by token re-
moval /insertion in special places, used for task flow
control only (e.g., step-by-step execution is possible).

The application runs on a hardware architecture
based on a virtual multi-processor machine, com-
posed of several PCs linked by a local fast Ether-
net network. FEach of the processors has also multi-
tasking capabilities.

The software architecture is based on a client-server
philosophy. Each PC in the network behaves ei-
ther as a server or as a client, depending on the cir-
cumstances. When acting like a server, a PC pro-
vides services, which are applications resident in that
server. Services may be divided in primitive actions
and general-purpose applications. The latter include
functions to communicate between PCs using sockets
(TCP/IP protocol), functions which access the global
memory of the system, libraries of math functions,
board drivers and others. Some of the services are
only available locally, i.e., can only be requested by
local processes, while others exist specifically to serve
requests from other network nodes — which will then
behave as clients.

From the designer standpoint, the distribution of
primitive action services by processors in the net-
work is transparent, i.e., he/she must initially define
in a file the location of the different primitive actions
and then the software will know where to direct a
request for such a service, each time it is invoked.
Data/primitive action requests between network pro-
cessors are handled by socket-based communication
services, always running in every PC of the network.
Nevertheless, a wise procedure consists of distribut-
ing primitive actions according to the hardware re-
sources allocated to each processor. As an example,
in a visual servoing and object catching application
of the architecture, described below, motion control
primitive tasks (therefore, all their primitive actions)
should be located in the PC which directly interfaces
the PUMA controller, while image processing prim-
itive tasks and actions should be located in the PC
interfacing the camera.

6 Examples of Applications

At the time of writing this paper, we were in the pro-
cess of using the application described in the previous
section to recast the implementation of robotic tasks
our group has been working with in the last few years.

Two of those tasks are described in the following sub-
sections.

Visual Servoing and Catching

Based on the distributed control architecture de-
scribed 1n the previous section, a testbed for research
on visual servoing and catching of moving objects was
developed, including a CCD camera located above a
table and 2 PCs linked by the local Ethernet network.
One of the PCs interfaces the CCD camera through
an ISA bus card. PUMA motion control algorithms
run on the other PC, interfacing the PUMA through
ISA bus cards. The image processing PC sends set
points periodically to the motion control PC using
TCP/IP sockets. The set points represent the pre-
dicted catching points.

locate ball remaining # runs (operator driven)

ext "start_buttol ext Aimage_sampling_tick

O—

movezball int/ready2catch ooppay) ext “ball_catched (crossfire sensor)

standby

Figure 1: Petri net representation of the visual servo-
ing and object catching task, with initial marking cor-
responding to a 4 runs experiment. The 'int” and ’ext’
label prefixes represent internal and external events,
respectively.

An example of an interpreted Petri net represent-
ing a visual servoing and object catching task by a
robotic manipulator, currently running in our Lab-
oratory, is depicted in Figure 1. The manipulator
must catch, at its closest end of the table, rolling
ping-pong balls. An individual throws the ball at the
other end of the table towards the manipulator. The
vision subsystem tracks the ball motion and extracts
its relevant motion parameters. From this informa-
tion, the prediction subsystem iteratively estimates
the ball trajectory and the coordinates, in the ma-
nipulator base frame, of the point where 1t will leave
the table. The manipulator motion controller moves
the manipulator gripper, with the correct orientation,
to this point and, equipped with a cup, catches the
ball.

An operator may interact with task execution by
setting the number of times the task will run au-

Figure 2: The mobile robot competition track.

tonomously. This is accomplished by token removal
from or insertion into the remaining number of runs
place in the example.

In the figure, some of the events are internal, others
are external. The latter might become internal, but in
some cases this might cause problems. For instance,
the ball catched event might become internal to the
catchball primitive task. However, should the image
sampling tick event become internal to the locate ball
primitive task, this would prevent the control of the
number of runs by the operator.

Mobile Robot Task

We have been participating in the last few years in
a robotic competition, held in France. The objective
is to build a robot whose task consists of following
a bem wide track painted on a chessboard-like sur-
face, composed of 2m side squares of alternating black
and white colors. The track has the opposite color of
the corresponding background square (see Figure 2)
and is composed of 2 meter straight lines and one-
fourth of a circle arc segments with 1 meter radius.
There are track interruptions somewhere along the
path, obtained by replacing the corresponding back-
ground square by one with the same color but with
no track segment painted on. The robot must detect
the interruption, and recover the track at the clos-
est segment, for instance by following a cylindrical
retroreflector, located 1 meter above the point where
the track resumes. The end of the track is signaled
by a T-shaped pattern.

A more complex interpreted Petri net is required to
model the robot task in this example. It is depicted
in Figure 3. In this case all events are internal. No-
tice that there are several conflicts in the Petri net,
but they all correspond to events linked to boolean
variables whose value 1s changed within the precedent
primitive tasks. The conflicts correspond always to a
binary choice dependent on the variable value.

As in the previous example, neither error recovery
branches nor the primitive actions associated to each
primitive tasks are represented in the figures.

Figure 3: Petri net representation of a mobile robot
task.

7 Conclusions and Future

Work

This paper introduced some novel concepts regarding
robotic task modeling by Petri nets, namely the use of
different Petri net types to model distinct views of the
robotic task model, as well as the task performance
quantification and the use of learning to improve per-
formance over task execution.

One of the issues not yet tackled i1s the qualitative
performance evaluation of robotic tasks using ordi-
nary Petri nets. Boundedness, properness and live-
ness properties, which can be determined from the
ordinary Petri net model, can be mapped to robotic
task properties, such as stability, error recoverability
and controllability. We intend to clarify those rela-
tions in the near future.

Quantitative performance evaluation concerning
time-related properties is another topic to be devel-

oped. Even though the cost measure referred in the
paper is based on the task execution time, so far only
the reliability related issues have been studied in more
detail. We also believe that more specific time-based
cost measures can be used and intend to further study
this topic.

Finally, even though the mapping between the
robotic task model and the Petri net has been defined,
an analytical formulation of this mapping would be
desirable, as well as a clear definition of primitive
tasks and events. The latter would improve signifi-
cantly the design of complex robotic tasks.

References

[1] R. David and H. Alla. Petri Nets for modeling of
dynamic systems. Automatica, 30(2):175-202, 1994.

[2] K. S. Fu and J. M. Mendel. Adaptive, Learning and
Pattern Recognition Systems: Theory and Applica-
tions. Academic Press, 1970.

[3] P. U. Lima and G. N. Saridis. Design of Intelligent

Control Systems Based on Hierarchical Stochastic Au-
tomata. World Scientific Publ., 1996.

[4] K. Najim and A. S. Poznyak. Learning Automata:
Theory and Applications. Pergamon Press, Oxford,
1994.

[5] K. S. Narendra and M. A. L. Thathachar. Learning
Automata — an Introduction. Prentice Hall, 1989.

[6] P. J. Ramadge and W. M. Wonham. The control
of discrete event systems. Proceedings of the IFEE,
77(1), 1989.

[7] N. Vishwanadham and Y. Narahari. Performance

Modelling of Automated Manufacturing Systems.
Prentice Hally, 1992.

[8] Fei-Yue Wang and G. N. Saridis. Task translation
and integration specification in Intelligent Machines.
IEEE Transactions on Robotics and Automation, RA-
9(3):257-271, 1993.

