SocRob — A Society of Cooperative Mobile Robots*

Rodrigo Ventura, Pedro Aparicio, Pedro Lima, Carlos Pinto-Ferreira
Instituto de Sistemas e Robdtica/Instituto Superior Técnico
Av. Rovisco Pais, 1; 1096 Lisboa Codex ; PORTUGAL

E-mail: {aparicio,yoda,pal,cpf}@Qisr.ist.utl.pt

Abstract

The SocRob project was born as a challenge for multi-
disciplinary research on broad and generic approaches
for the design of a cooperating society of robots, in-
volving Control, Robotics and Artificial Intelligence
researchers. In this paper we introduce some of the
hardware options already taken by the group in the
design of a robotic soccer team, chosen as our first
case study. Each robot of the population is endowed
with several sensors. The most important of them is
vision. The others are linked to the main processing
unit (a Pentium motherboard) by an i2¢ bus. Con-
ceptual issues regarding the functional architecture
of the team are also discussed. We propose a 3-level
architecture, consisting of a set of context-switchable
behaviors, each of them resulting of the composition
of low-level task primitives.

1 Introduction

Multi-agent systems have become very popular in re-
cent years, especially as a research area in Distributed
Artificial Intelligence (DAI) [12]. Simultaneously,
several robotic systems based on a fleet of robots have
been developed, as an alternative to single-robot sys-
tems common in the past [16]. Therefore, it seems
that a promising research direction will result from
joint work between researchers interested in DAI and
Intelligent Robotics.

The Artificial Intelligence and Manufacturing Sys-
tems and the Intelligent Control laboratories of the
Instituto de Sistemas e Robdtica at the Instituto Su-
perior Técnico (ISR/IST) have started one year ago
a joint project on Cooperative Robotics, to foster re-
search on methodologies for the definition of func-

*This work has been supported by grants from the fol-
lowing Portuguese institutions: Fundagdo Calouste Gul-
benkian, Fundacao para a Ciéncia e a Tecnologia, PRAXIS
XXI1/BM/12937/97.

Figure 1: Two of ISocRob Team members.

tional, hardware and software architectures to sup-
port intelligent autonomous behavior and evaluate
performance of a group of real cooperative robots,
either as a society and as individuals. The robots are
developed from scratch, so that both conceptual and
implementation issues are considered. It is assumed
that each robot of the population is fully autonomous,
i.e., even though its behavior is conditioned by the
goals of the collective, there is physical autonomy and
no on-line centralised planner or controller is used.

Special attention is taken to cooperation-oriented
communication issues, such as the type of informa-
tion that must be shared and how to distribute that
information. This work relies on past experience of
both groups regarding topics relevant to robot devel-
opment [3] and DAT [13].

A case study on Robotic Soccer involving a team
of 3 robots (the ISocRob Team), two of which are
shown in Figure 1, is currently underway. At the time
this paper is being written, the team is preparing to
compete at the World Cup of Robotic Soccer, the
RoboCup98, to be held in Paris, France.

This technical report is organized as follows: Sec-
tions 2 and 3 describe the details of each robot
Hardware and Software Architectures, respectively.

The Functional Architecture, presented in Section 4,
wraps up the whole picture, relating conceptual is-
sues to the two physical architectures explained in
the previous sections. Section 5 presents preliminary
results and conclusions of the work done so far.

2 Hardware Architecture

To interact with the real world, a mobile robot must
have the ability to sense the environment, process
that information and then actuate on the world. Each
robot hardware is divided in four main blocks: sen-
sors; main processing unit; actuators and communi-
cations. In this section, the global hardware architec-
ture is detailed and each module is presented. Cur-
rently, from the hardware architecture standpoint,
the population is composed of homogeneous mobile
robots. Figure 2 depicts a block diagram of the hard-
ware architecture.

RF ISA —| Moator Control
Ethernet [1 Ethernet

PC i

Motherboard

Linux :

ISA
[bumping | [proximity | [sound | [pose |

bottom power e

Figure 2: Hardware Architecture.

2.1 The Processing Unit

Each robot has an on-board PC motherboard, a net-
work adaptor, a video adaptor, a motor control board
and interface boards with the sensors. The main pro-
cessor is an AMD K6, running at 200MHz. The sys-
tem has 16Mb of RAM and a 1.2Gb hard drive.

The PC motherboard was chosen because it gives
the best performance/price rate. Another major ad-
vantage is the ease of getting software and hardware
to work with.

2.2 Sensorial Systems
The sensors of each robot are divided in two main
groups:

e vision sensors: virtual sensors which extract
information from the images acquired by a video

camera and its interface board. One physical
transducer (the video camera) leads to many
(virtual) sensors.

e pose, bumping, bottom, proximity, power
and sound sensors, each of them physically
associated to one transducer.

All transducers but the video camera interface the
processing unit through an i2c bus. From the sen-
sors side, this interface is implemented on PIC micro-
controllers, used to gather and process sensor data.
This is intended to improve system modularity, sim-
plicity and robustness. Data is provided to the central
processing unit noiseless and in a convenient format
to be used by the primitives. Each sensor has a unique
i2c¢ identification.

The details of the different sensors/transducers are
described in the sequel, with the exception of the
sound and power sensors, due to their specificity [7].
Those sensors detect a whistle blow (e.g., to start the
game) and power failures, respectively.

Video Camera — The video camera is a Phillips
X(C731/340 interfacing the motherboard through
a PCI Captivator board. This combination al-
lows the acquisition of 640x480 images at a
frame-rate of 50 interlaced frames per second.
Image is used for several purposes, namely, to
identify and/or follow/catch the team mates, the
opponents, the ball and the goals. The digi-
tal camera interfaces with the processing units
through the PCI bus interface.

Pose Sensor — Depending on the type of applica-
tion involved, each robot of the society may need
to regularly update its current pose with respect
to a reference frame (e.g., located in the field cen-
ter). This is especially important regarding the
cooperation between the team members, so that
each robot can tell the others where it is. This
may be accomplished based on the triangulation
principle: from the measurement of the angles
between the robot longitudinal axis and the di-
rection of maximum signal reception from infra-
red (IR) beacons whose location in the reference
frame is known, the robot is able to compute its
pose relative to that frame.

The IR beacons are active, each emitting a sig-
nal of unique frequency, modulating a 40kHz car-
rier in amplitude. Each beacon frequency is set
in a local micro-controller, to simplify mainte-
nance and modification. Three beacons must be

O

N Vi

Figure 3: On the left, some possible beacon locations
for triangulation, and on the right, the micro-switch
sensor (bumpers) placement around the robots.

simultaneously visible at any location, so that
the vehicle can locate itself. Possible locations
regarding the RoboCup challenge are shown in
Figure 3. The receiver block corresponds to a ro-
tating IR receiver (SHARP GPU158Y decoder),
placed at the same height of the emitters, on the
top of each robot.

When the triangulation algorithm finishes its
loop execution, the micro-controller has two vec-
tors in memory, that keep the angular position
and the identification of each beacon found. This
information is available through the i2¢ sensor
bus.

Bumping Sensors — Bumping sensors are the last
resort for a mobile robot, in the presence of em-
inent danger. They detect the collision of the
robot with an obstacle in the environment. In
the soccer application, they can also be used to
sense contact with the ball. Figure 3 presents a
possible location of the bumping sensors around
the vehicle (horizontal plane). These sensors are
made with micro-switches, arranged in a serial
connection, divided in 4 sets of 4 micro-switches.

Proximity Sensor — Proximity sensors are also
based on IR technology. They use the same
IR detector modules of the pose sensor, with
a small modification. The modification allows
the measure of an analog value proportional to
the object distance (depending on the material
reflectance). The six emitter/receiver pairs are
equidistantly located around the vehicle, point-
ing outside, in order to detect objects in the near
vicinity. The typical range of this sensor goes
from 20 cm to 2 m.

Bottom Sensor — This is another type of IR-based

sensors. In some applications, it is important to
know if there is floor under the robot and, if so,
its color, notably distinguising black from white
(digital signals could be used in this case). In the
soccer application this information may help the
robot to obtain its gross localization, by checking
the crossings of the field main lines.

The bottom sensors are deployed as shown in
Figure 4.

Figure 4: Bottom sensors location.

The working principle of IR sensors (both prox-
imity and bottom) is depicted in Figure 5.

OSC. 40kHz —

andog

I

digital
output

oor / Object

.l
\

Threshold

Figure 5: Working principle of IR sensors.

2.3 The Actuators

Each robot has a differential drive kinematic config-
uration. This implies that it has two independent
(DC) motors, one for each wheel. The robot speed
and heading are set by independently controlling the
wheels speed. This is done in closed loop, using two
National LM629 motor controller chips. A special
board was built to interface the motor controllers
with the motherboard, through the ISA bus. The

motor controllers have two inputs: the wheels cur-
rent speed, measured with incremental encoders; and
the velocity set points, established by the central pro-
cessing unit. The output is a PWM signal and a bit
indicating the direction of rotation for each wheel.
Those signals go to the power amplifier, based on a
LM18200 H-bridge. The motor controller outputs to
the power amplifiers are optically isolated, in order
to prevent malfunctions caused by motor-generated
spikes. As such, the vehicle has two batteries, one for
motor power and the other for the electronics.

2.4 Communications

A wireless RF Ethernet link (WaveCell from Aaron
Tech.) was chosen to support communications
between the robots. The devices work on two
possible switch-selectable frequencies: 2.4GHz and
2.4835GHz. The bandwidth is about 2Mbps, and a
range of 150m is covered, inside an office environment.

3 Software Architecture

Each robot’s software runs under the Linux [1] op-
erating system. The reasons for this choice were:
robustness, lightweight multitasking, scalability, net-
working facilities, and availability of programming
languages compilers, as well as easy integration of
programming languages (e.g., Lisp and C).

In order to support the robots’ custom hardware
(motor controllers, sensors, etc.), kernel-level devices
were developed, except for the i2¢ driver [14]. The
separation provided by the kernel between device
drivers and user code made their development and
bug tracking less problematic than usual. The design
strategy was to consider these devices as usual UNIX
special files (/dev/*), and communicate with them
via ioctl() system calls [4].

The video frame grabber is handled by third party
software (bttv driver [11]), which provides an API
similar to the one described above. The grabbing
process runs on a frame by frame basis: an appropri-
ate ioct1l() call dumps a complete video frame to a
pre-allocated (non-swappable) memory region. The
vision processing code then works on this memory
area.

A set of libraries are provided in order to hide most
of these device handling details from higher level soft-
ware modules. On top of these libraries, a fairly
platform independent software layer implements a set
of primitives. Examples of primitives may include

avoiding opponents, finding a teammate, ball track-
ing, forward/backward motion and so on.

The top-level software, which is responsible for each
robots’ behavior is implemented in an agent program-
ming language — RUBA — developed by one of the
authors in previous work[13]. Brieflyy, RUBA is a
language that implements a society of agents, that
communicate between them and with the exterior,
by the means of a blackboard structure. The soft-
ware underlying RUBA was re-implemented in the
Scheme programming language [2], computationally
lighter and structurally cleaner than the original ver-
sion, written in Common Lisp. The whole team
is viewed as a single agent society with a common
blackboard (distributed among them, but considered
as being unique). Additionally, each robot has an
individual blackboard (as RUBA supports multiple
blackboards) to handle issues related to it as an indi-
vidual. In the next section it will be explained how
all these pieces can be put together under a com-
mon conceptual framework. The RUBA language is
based on production rules interleaved with state ma-
chine (multiple machine states are supported) state-
ments, i.e., the rules can be grouped together in a
specific state of a state machine. The expressions
that fill the IF, THEN and ELSE fields are essentially
Scheme expressions with the extension to the prim-
itives referred above. This mechanism bridges the
gap between high-level agent programming and spe-
cific robot actions/sensing.

4 Functional Architecture

From a functional standpoint, the whole robot soci-
ety is composed of functionally heterogeneous robots.
The functional architecture is scalable regarding the
number of robots (or agents) involved. This means
that, when a new robot joins the society, no changes
have to be made to the overall system. The new robot
can have its own capabilities, which are automatically
taken into consideration during the interplay with the
other robots. Even though modular agents working
concurrently are considered, a functional hierarchy is
established comprising three levels: organizational,
relational, and individual. This division was first es-
tablished by Drogoul [5, 6]. We interpreted it as fol-
lows:

e the organizational level handles context-
switching issues, which are implementable in
RUBA by grouping the rules according to the
environment state;

e the relational level involves cooperation be-
tween robots and behavior specification as a
composition of primitives;

e the individual level refers to each robot, en-
compassing its individual primitives which com-
pose the collective and individual behaviors.

The rest of this section will be devoted to a more
detailed description of each layer in the context of
this work.

4.1 Organizational level

This level deals with the issues unconditionally com-
mon to the whole society. In the soccer robotics con-
text, these are:

e the state of the game according to the rules (be-
fore kick-off; in-game; off-side;) and the way the
team must behave to follow them;

e the global strategy of the team (time to re-
positioning of the team; time to attack; time to
defend;).

These issues involve context-switching. Therefore,
they can be implemented using RUBA’s feature of
rule grouping. The rules may be grouped according
to game states. This implies that the system must be
capable of detecting the occurrence of events which
signal state changes.

4.2 Relational level

In a cooperative robotics context, in order to accom-
plish useful cooperation, relationships between robots
have to be accomplished. This involves an important
characteristic of the agent concept: social ability [15],
meaning that one given agent has to be aware of the
existence of other agents like him, with whom it has
to negotiate. This is where the relational level comes
into play: at this level, groups of agents negotiate and
eventually come to an agreement about some objec-
tive (common or not). The issues involving the for-
mation of groups and its disbanding are handled at
this level. The key idea of this process is negotiation
among agents. The blackboard structure provides the
common medium through which the necessary com-
munication circulates.

In any soccer team (human or robotics, hopefully)
this kind of commitments are essential if a fruitful re-
sult from teamwork is desired. Therefore it plays a
decisive role as far as net result of the soccer robotic
team is concerned. For instance, if one robot wants

to pass a ball to another player (of the same team,
hopefully), it has to find someone available and suf-
ficiently well positioned. The ball pass is arranged
via a negotiation process, and after an agreement is
reached, the pass is performed. In fact, this is what
happens in human soccer — the eye glimpse between
two soccer players (and several years of experience).

The behavior concept is also introduced at this
level. We define behavior as a composition of prim-
itives (see below). Either individual or collective be-
haviors can be considered. An example of collective
behavior is the ball pass described above. In this
case, assuming that initially the robot possesses the
ball, the behavior primitive would be choose team-
mate — move to correct pose — shoot the ball for one
robot, and prepare to receive the ball — catch the ball
for the other. Individual behaviors might be that of a
goalkeeper defending its goal (following the ball until
it is too close — shoot the ball — return to the goal) or
that of an attacker continuously following a ball and
shooting when it is close enough.

We claim that most (if not all) individual behaviors
can be based on local perception (e.g., finding the goal
posts, following the ball, avoiding a foe). However,
cooperative behaviors usually require each robot to
be capable of locating itself, so that it can inform the
others of its location. Therefore, pose sensors play an
important role at this level.

4.3 Individual level

This level encapsulates each robot as an entity, com-
prising all aspects of a robot as an individual. This in-
cludes the individual primitives, regardless of whether
they are invoked by the relational level (e.g., path
planning, shoot the ball) or are generated by the robot
itself (e.g. avoid collision).

The individual level is responsible for accomplish-
ing each behavior, running the sense-think-act loop of
its primitives. This involves processing vision (as well
as other sensors) data and driving the motors accord-
ing to the desired behavior. Behaviors, comprising
individual primitives, are generated at the relational
level. However, there are exceptional cases (e.g., col-
lision avoidance), which demand quick action from
the robot. Under such scenarios, the execution of the
related primitives must be triggered directly at this
level.

5 Preliminary Results and

Conclusions

This paper described implementation and conceptual
issues concerning the development of a society of co-
operative mobile robots, with special emphasis on a
case study on robotic soccer.

Currently, our robots are capable of relatively sim-
ple behaviors, such as following a ball or defending
the goal, using vision-based sensors. The production-
rules-based RUBA language is also operational. We
are now moving towards the development of more
primitives, including those which require information
from sensors other than vision, as well as establishing
the link between rules and primitives, so that behav-
iors can be specified and implemented.

The work has been carried out in a bottom-up fash-
ion, since we believe that many conceptual issues can
be raised from and are strongly constrained by the
actual implementation problems. Nevertheless, the
basic framework described in the paper, concerning
hardware, software and functional architectures, was
defined in the beginning of the project and has been
essentially kept unchanged so far.

The functional 3-level hierarchical architecture cho-
sen allows the propagation of performance measures,
such as reliability and cost, applicable to the different
subsystems involved, helping to decide on-line among
conflicting alternatives. This was a research subject
for one of the authors in the past [10] and will be
applied to this work.

The detection of events signaling environment state
changes has been pursued by other researchers in re-
cent years (e.g., [8, 9]) and will also be the subject of
further research by our group, due to its importance
at the organizational level.

References

[1] Linux online. URL: http://www.linux.org, 1998.

[2] H. Abelson, G. J. Sussman, and J. Sussman. Struc-
ture and Interpretation of Computer Programs. MIT
Press and McGraw-Hill, 1985.

[3] Pedro Aparicio, Joao Ferreira, Pedro Raposo, and
Pedro Lima. Barbaneta - A Modular Autonomous
Vehicle. In Preprints of the 8rd IFAC Symposium on
Intelligent Autonomous Vehicles, March 1998.

[4] M. J. Bach. The Design of the Uniz Operating Sys-
tem. Prentice Hall, New York, 1986.

[5]

[6]

[12]

Alex Drogoul and C. Dubreuil. A distributed ap-
proach to n-puzzle solving. In Proceedings of the
Distributed Artificial Intelligence Workshop, 1993.

Alex Drogoul and J. Ferber. Multi-agent simulation
as a tool for modeling societies: Application to social
differentiation in ant colonies. In Actes du Workshop
MAAMAW’92, 1992.

RoboCup Federation, editor. RoboCup Papers at
ICRA98 and DARSY98. IEEE 1998 Int. Conf. on
Robotics and Automation, 1998.

G. E. Hovland and B. J. McCarragher. Hidden
Markov Models as a Process Monitor in Robotic As-
sembly. The International Journal of Robotics Re-
search, 17(1), 1998.

J. Koseckd and R. Bajcsy. Discrete Event Systems
for Autonomous Mobile Agents. Journal of Robotics
and Autonomous Systems, (12):187-198, 1994.

P. U. Lima and G. N. Saridis. Design of Intelli-
gent Control Systems Based on Hierarchical Stochas-
tic Automata. World Scientific Publ., 1996.

Ralph Metzler. Bttv — a linux driver
for bt848 Dbased frame grabbers. URL:
http://www.thp.uni-koeln.de/"rjkm/linux/
bttv.html, 1998.

Peter Stone and Manuela Veloso. Multiagent Sys-
tems: A Survey from a Machine Learning Per-
spective. Technical Report CMU-CS-97-193, CMU,
School of Computer Science, Carnegie Mellon Uni-
versity, May 1997.

Rodrigo M. M. Ventura and Carlos A. Pinto-Ferreira.
Problem solving without search. In Robert Trappl,
editor, Cybernetics and Systems 98, pages 743-748.
Austrian Society for Cybernetic Studies, 1998. Pro-
ceedings of EMCSR-98, Vienna, Austria.

Simon G. Vogl. I?C — bus for linux. URL:
http://www.tk.uni-linz.ac.at/"simon/-
private/i2c, 1998.

Mike Wooldridge and Nick Jennings. Intelligent
agents: Theory and practice. Knowledge Engineering
Review, 10(2), 1995.

Alex S. Fukunaga Y. Uny Cao, Andrew B.

Kahng, and Frank Meng. Cooperative
Mobile Robotics: Antecedents and Direc-
tions. In hitp://www.cs.ucla.edu:8001/-

Dienst/UI/2.0/Describe/-
nestrl.ucla-cs %2f95004 92abstract=Cooperation,
December 1995.

