Problem Solving without Search

Rodrigo M. M. Ventura and Carlos A. Pinto-Ferreira

Instituto de Sistemas e Robdtica

Instituto Superior Técnico

Rua Rovisco Pais, 1
1096 Lisboa Codex
Portugal

emails: {yoda,cpf}@isr.ist.utl.pt

Abstract

In this paper the approach to problem solv-
ing using societies of agents is discussed. Al-
beit being a very promising topic in Arti-
ficial TIntelligence, it seems to lack strong
theoretical and methodological foundations
and easy-to-use implemented systems in or-
der to prove its usefulness and adequacy.
This is the reason a methodology for prob-
lem solving based on societies of agents 1s
presented. The approach to some problems
using the implemented system RUBA

and the corresponding results follows.
The source code and documentation of
RUBA is available at the project’s web page:
http://www.isr.ist.utl.pt/ yoda/ruba.

1 Introduction

A very frustrating aspect in the study and implemen-
tation of classical problem solving algorithms 1s the
recognition that most of their “intelligence” was a pri-
ortincorporated by their developers. As a result, little
room is left for surprise as their outcomes are, in most
cases, predictable (in fact, an unexpected result corre-
sponds, almost always to some bug in the program...).
Another uninteresting characteristic of such systems is
their reiferation behavior, as they usually return the
same output, over and over again, given the same set
of initial conditions. The third negative aspect deserv-
ing consideration 1is their opacity as their recipe-like
code is only understandable when an adequate transla-
tion from the how to the why is performed. And
the last, their modification i1s very difficult given the
fact that, even a simple change demands new coding
as these implemented algorithms are, in most cases,
completely inflexible and not reusable.

On the other hand, problem solving methods based
on societies of agents are intended to exhibit charac-
teristics which are dual of the mentioned ones: solu-
tion emergence, instead of predictability as there

is no algorithm running outcome wvariety, instead

of reiteration as the complexity of the interaction
among agents seldom allows the same answer twice

readability, instead of opacity if agent behavior is
described by a rule-base mechanism, and finally, easy
meremental updating, as it is always possible to create
and run new agents to take care of the new aspects of

a problem.

The basic idea underlying this new problem solving
paradigm is that, instead of considering the solution
of a problem as the result of a process of searching
in a state space, it departs from the premise that «
problem is nothing but a set of restrictions to be (par-
tially) met. Some of them are structural and conse-
quently should be strictly respected for instance,
it is not possible to put different objects in the very
same place and some are not structural and, as a
consequence, can be relaxed. When it 1s possible to
create a society of agents, each one taking care of its
subset of restrictions, the “global” problem is suitable
of being handled by agent oriented problem solving
methods and, instead of search, it 1s solved by a pro-
cess of negotiation. What is particularly interesting
in this approach is the fact that different agents can
represent different, (and possibly) conflicting interests
which should be taken care of (imagine, for example,
the process of constructing a timetable for a school).
Now assume, for instance, that after the interaction
among the agents it is found out that the solution 1s
not satisfactory. As this corresponds to the fact that
there is a particular interest which are not being con-
sidered yet, it i1s simply necessary to introduce one
(or more) agents responsible for the set of these new
constraints, and restart the interaction (for instance,
if the solution of the timetable problem is considered
poor because of being resource consuming, an agent
in charge of the resource administration should be in-
tegrated in the system).

Finally, it is important to point out that this
method is not a panacea: on the one hand, 1t 1s not
suited for optimization problems as 1t usually al-
lows the finding out of pragmatical solutions for real-

world problems and, on the other hand, it is not

adequate for solving puzzle-like problems where vari-
ables are inextricably linked: interestingly, these two
classes of problems are poorly handled by human be-
ngs.

2 Nature of AT problems and
solutions

Consider a division of AT problems in two classes, ac-
cording to their solving methods. The first one in-
cludes the problems usually addressed by classical AT
search methods. These problems must have a unam-
biguous specification and the solutions sought are few
(if not unique, in optimization problems). Therefore,
it makes sense to use state-space search based tech-
niques. The order of complexity of these problems can
be quite high, but the solution is in itself simple (in
the sense of being defined by a small number of vari-
ables). The search for the best solution to the trav-
eling salesman problem illustrates this kind of prob-
lems and solutions. What makes this problem hard
to solve is the search for an optimal solution, rather
than a reasonable one (as humans do). Combinatorial
explosion, which can make things quite difficult is a
commonplace on this kind of problems.

The second class of problems comprises real-life
problems, the ones that humans usually solve in rela-
tively short time, everyday. Unlike the ones outlined
above, these problems have a more complicated spec-
ification and the optimality of the solution is of small
concern. The specification has usually a certain degree
of flexibility. But most important of all, a satisfycing
solution is desired rather than an optimal one, which
is intractable in this context. The issue of satisfycing
versus optimizing has been introduced by Simon [Si-
mon, 1959]. Tt is well known that human reasoning is
much more related with the search for a solution that
meets their needs, rather than looking for an optimal
one. No traveling salesman is known to be solving
NP-complete problems.

3 Methodology

The purpose of this paper is to present a methodology
to allow AT applications to be scalable in complexity.
The term complexity is used here not to denote com-
putational complexity but as specification complexity
(in variety of restrictions). The proposed approach is
to shift from the classical AT approaches to the prob-
lem itself to be solved. Before proceeding, two as-
sumptions are made: first, that the increase in com-
plexity does not always invalidate the decomposition
of the problem in small and tractable parts (the di-
vide and conquer principle). Note that no assumption
is made on the nature of these parts. Next, it is as-
sumed that the linkage of these parts 1s weak, 7.e.,
the increase in complexity does not affect (much) the
nature of the interactions of the parts. For instance,

consider the classical scheduling problem. A natural
division in parts defines the events to be scheduled.
Although each part may contain a considerable degree
of complexity (restrictions both on time and place),
the basic principle that two events cannot occur at
the same time at the same place is maintained. And
this principle binds these parts from the start.

TLet us now focus on these parts, which in this
methodology are represented by agents. The problem
specification 1s thus distributed over several agents.
Furthermore, the control strategy (the centralized en-
tity that drives the problem solving process from the
start to the end) is also distributed over all agents.
Note that this idea does not invalidate any hierarchi-
cal relationships among them. One agent can still be
responsible for a central control strategy, totally or
partially.

Tt seems clear that a single agent by itself doesn’t
look much interesting from the operational point of
view, in what problem solving is concerned. Tnstead,
the result of a set of interacting agents (societies) are
able to enlarge the usefulness of the idea. This fol-
lows from the fact that the agent concept is defined
from an external point of view, namely the interac-
tion with the environment. No reference is made to
the inner workings of an agent, allowing interesting
combinations of quite heterogeneous agent societies.
One key concept underlying agent societies 1s distri-
bution. This paradigm is a strong one. Tt has founded
an AT field (DAT) and inspired several other areas, like
neural networks (see [Lippmann, 1987] for instance).
The Minsky’s classic “Society of Mind” [Minsky, 1988]
makes extensive use of this concept.

The question that immediately follows the concept
of agent societies 1s how exactly agents do interact
among them. If they are all pursuing the same global
problem (despite the fact that each one tries to solve
its particular local problem), and if there are re-
strictions inherent to the problem, between the parts
agents represent, then a negotiation model becomes
necessary. In this model the agents exchange mes-
sages in order to negotiate one or more issues rele-
vant to the problem to be solved (see [Zoltkin and
Rosenschein, 1996] for a thoughtful study on agent
negotiation). FEach agent has hoth to secure his own
positions and to be flexible enough in order to con-
cede some of his points. Note that in a strategy like
this one, no one is particularly responsible for the out-
come of the negotiation. There is also no guarantee
that this outcome is optimal in any sense, not even
sub-optimal. But the relevant aspect of this idea is
that the solution emerges from the agent society in-
teractions. This emergence is one of the main issues of
this paper. Brooks’ pioneering work ([Brooks, 1989])
has demonstrated the relevance of this issue in the
context of robotics. The solution is not given through
a closed form as an algorithm, but what is proposed 1s

to program the agents and let them solve the problem.
Note the distinction between building an algorithm to
solve a problem, where the solving task was indeed ac-
complished by the algorithm designer, and this notion
of solution emergence. In this case, the agents are re-
sponsible for solving the problem together. No agent
is embodied with the knowledge for solving it (other-
wise it would solve the problem by itself). Tt is the
group concept which allows the solution to emerge.

Underlying any formulation of problem solving,
there is a concept of state-space search. But this
approach based on agent negotiation has no explicit
state-space search scheme. Yet, there is a process of
negotiation between the agents, which can be seen
as another paradigm of search. Picture a situation
where a set of agents is negotiating an issue of the
global problem. Although each individual agent has
no concern with the global state of the system, from
the outside the agent society 1s running an implicit
state-space search. Note that there is no explicit (or
centralized) representation of the global state of the
system. This state is distributed over all agents. And
since no particular agent behaves with explicit regard
to the evolution of the global state, this search proce-
dure produces solution emergence.

When considering state space searching, combinato-
rial explosion arises from the irrelevant combinations
considered by a centralized search algorithm. Tf the
problem complexity scales up, the search procedure
usually becomes intractable. This fact results from the
implicit assumption (when defining the state space)
that all parts of the problem are mutually dependent.
Assume that the state S can be represented as the
NUSERI
the sub-state space for each p; is P;, the total state

concatenation of k sub-states: S = (p1,po, ...

space of S becomes the Cartesian product of these
sub-spaces: § = Py x ... X P. A search algorithm
based on this state space § contains all possible com-
binations of the sub-states, forcing the search algo-
rithm to look for a solution in this space. From the
search algorithm point of view, all combinations are
equally relevant from the start. From the DAT point of
view, the situation is the opposite. When distribut-
ing the problem among the agents, the more inde-
pendent, these parts are, more independently agents
will be able to work on a solution, thus maintaining
the resolution complexity not higher than each agent’s
one. Going back to the above state representation
S = (p1,p2---
be assigned to each agent A;. Then, in the best case

,Pk), consider that each part p; can

scenario, i.e., all parts p; are independent, each agent
has just to work with the sub-state space P;. As the
parts become more and more dependent, negotiation
opens the state space to partial Cartesian products.
For instance, negotiation between agents A; and A,,
generate a P; x Py, sub-space. As agents negotiate

between them, sub-spaces are expanded into larger

ones, but the implicit search remains constrained to
these sub-spaces, including just the relevant agents for
each negotiation. One can conclude that while search
methods assume that the problem parts are depen-
dent, the DAT methods assume the opposite, and start
from there, using dependency as needed, thus avoiding
combinatorial explosions.

In order to put the above ideas into practice, a de-
velopment environment was created. This system is
called RUBA | and will be briefly presented in section
5. The 1dea behind RUBA was to provide the pro-
grammer with the framework described in this section.

One final point which deserves a note concerns pro-
gramming language levels. What makes the difference
between several programming languages is its proxim-
ity to the human level of representation and reason-
ing. Programming languages are designed to be read
by humans, rather than by machines, since they don’t
care about semantics of the words used in source code
[Abelson et al., 1985]. The adequacy of a language
is function of the application the programmer has in
mind. But most of all, the gap between the concep-
tual level and the language level is desirable to be as
small as possible. Of course agent societies can come
close to human’s conceptual level if one pictures agents
as small human emulators. The idea is to 1magine a
society of human-like beings, and emulate their be-
havior by agents. Agents are not supposed to emulate
fully-featured human beings, but only to emulate how
human beings would behave (in a simplified fashion)
in a particular society solving a particular problem.

Tt is reasonable to ask in what way these ideas con-
tribute to solve complicated real-life problems outlined
at the beginning of this section. Two ideas to answer
the question are proposed. The first one is the dis-
Fach
agent represents a part of the problem to be solved.
The fine tuning of an agent, in order to adapt itself

tribution of the problem over several agents.

to a particular aspect of the problem is localized to
the agent, simplifying the process of adapting the sys-
tem to problem specification updates. Tt i1s the agent’s
autonomy that makes this localization possible.

To illustrate this methodology, consider the prob-
lem of timetabling. This is a typical real-life prob-
lem this methodology is aimed at. The formulation
is extremely complex, considering all practical con-
straints that all intervening parts have (teachers, stu-
dents, space allocation, etc.) to take care of. Search-
based methods have difficulty in complying with all
this complexity, but human beings, with far less brute
force computational resources have practical ways of
accomplishing the task. The usual scenario for manual
schedule building is a meeting between all interested
parts (teachers, school clerks, etc.) with a blackboard
containing a schedule proposal (for instance, the last
year’s one). The ones that have problems with their
schedules (some lecture they can not give), start nego-

tiating with others, trying to exchange lecture hours.
After some time, and some concessions in order to
accommodate each others lectures, a final solution is
reached. The state space is the same, but the fact that
the search 1s distributed, without any central control
strategy, allows the problem to be solved in a reason-
able amount of time. The methodologies discussed in
the above paragraphs can be naturally applied to this
problem, assigning an agent to each interested part,
and using a negotiation strategy similar to the one
humans use.

4 Framework

In this section a framework capable of implementing
the ideas outlined above is presented.

First the mechanisms that underlie agent interac-
tion are focused. Tn this agent-oriented problem solv-
ing scenario, there are at least two kinds of entities
agents communicate with. The first ones corresponds
to the other agents and the second respects to external
entities responsible for providing the agents with all
information regarding the problem, as well as retriev-
ing the results. From an agent’s point of view, there
is no point in making the communication different. Tt
can use the same mechanism.

An agent society is defined by a rich interaction
among the participating agents. They not only ex-
change information in one-to-one basis, but also re-
quire a mechanism to broadcast information to all
agents. A blackboard was chosen to allow this inter-
action, mainly because it provides flexible means of
communication [Erman et al., 1980]. This blackboard
is able to ensure all the information exchange mecha-
nisms stated above. The communication is based on
atomic messages which are posted on the blackboard,
and can be seen by all agents. The messages include
the information that specifies to whom is the message
sent. The destination of a message can be a specific
agent, a group of agents, or all agents that have ac-
cess to the blackboard. Note that there is no need
Agents
can exchange private messages with any other agent

for inter-agent communication mechanisms.

(that shares a common blackboard) without knowing
of each others existence, prior to this interaction.

Note that a blackboard may not be unique within
an environment. Groups of agents can share differ-
ent, blackboards. The scope of a blackboard is limited
to the agents which are able to exchange messages
with. On the other hand, agents themselves can be
divided into several sub-societies. The agent concept
unleashes imagination to think of quite complex struc-
tures based on agent societies.

In the previous section it was stated that agents ex-
ist in an environment. In this case, the environment
these agents live in is primarily one of more black-
boards. Tt is however possible to build more complex

environments. Agents can be embodied with mecha-
nisms that allow them to interact with complex envi-
ronments. However, the blackboards can still be the
basic communication mechanism.

5 Implementation

In this section an overview of an implementation of
a system devoted to create agent societies, under the
perspective presented in this paper, will be presented.
The system is called RUBA' and comprises a set of
tools built in a TLISP (with CT.OS) environment.

The programming model of RUBA 1is quite simple.
Tt comprises two types of (CT.OS) objects: agents and
blackboards. A blackboard is simply a data structure
which holds messages. Messages can be posted or re-
moved at will by agents. An agent contains three ele-
ments:

e A set of variables that forms the current agent’s
state. These variables are normal programming
variables, and can contain for instance agent’s
knowledge or data related with the problem in

hand;

e A set of rules, which define the agents behav-
ior. Each one is a production rule IF-THEN-ELSE.
These rules can be further organized into sub-
sets, in order to work as a state machine. One
(or more) variable(s) can be assigned to repre-
sent a state in this sense (it will be called mstate
thereafter, to avoid confusion). Then, only rule
sub-sets marked with that mstate are considered.
The THEN or ELSE part can optionally indicate to
what mstate the agent must switch, depending
on the logic value of the IF part. This embedded
state machine has no fundamental role in RUBA |
but it simplifies agent programming and improves
the rules readability;

e A set of links to blackboards the agent has contact
with;

Both the rules” antecedent and consequent are ei-
ther calls to RUBA primitives, or LISP expressions.
The RUBA primitives are lambda expressions (func-
tions) which are executed in the agent’s context
(agent’s variables and blackboards). The expressions
that appear in the rules use these primitives, although
direct access to LISP functions is possible (but nof
desirable, for readability reasons). These primitives
hide the implementation aspects from the rule con-
struction. These rules must be as (human) readable
as possible. This way, agent rules can be written with
great readability, simplifying the process of translat-
ing the human emulation behavior into RUBA rules.

'The name RUBA is the acronym of “Rule Based
Agents”. This name doesn’t capture the main features
of the system, but remained so for historical reasons.

6 Results

Four examples were initially explored with the RUBA
system. The first one is an experiment on negotiation,
where the agents can trade objects, in order to get a
desired one. The negotiation model is quite simple.
There are three kinds of messages exchanged between
the agents:

1. Complaints, stating the need for the acquisition
of a certain object;

2. Proposals, containing a proposal of a trade;
3. Trades, stating the acceptance of a proposal.

Fach agent behaves as a state machine, inspired on
how humans would negotiate given this operators.

The second example is the classic n-queens problem.
The goal 1s to deploy n chess queens on a normal chess
board, in a way that no queen attacks any other. Tt’s
a complex combinatorial problem?. Each agent repre-
sents a single queen, that can be in one of two states:
in or out of the board. Tnitially, each agent (queen)
is placed outside the board. Then, each one tries to
move to a vacancy on the board, 7.e., a place where
no other queen is attacked (and therefore, no other
queen attacks it). Tf no vacancy is found, a special
message is sent to the common blackboard (with the
name “shake”) in order to cause a small perturbation
in the board®. The interesting result was that such
a simple strategy allowed the system to find a solu-
tion in a small amount of time. But the main point
is not how long it took to reach a solution, but rather
the true emergence of this solution! Some results for
board sizes ranging from 4 to 15 can be found in fig-
ure 1. This graphic shows how the system scales well
given hard combinatorial problems. There is neither
an explicit search algorithm running nor an evaluation
function. Tn fact, this approach is quite close to the
human way of solving the problem. No one pictures
in his mind a complex search tree. Instead, the rea-
sonable human approach is to move each piece, once
at a time, in the hope that a solution is found.

Next, a simple resource allocation problem was ap-
proached. Fach agent represents a resource unit with
the ability of exchanging products with other agents.
Instead, the agents were given a simple strategy in or-
der to reduce the waste on resource utilization. As it
was stated earlier in this paper, the objective is not,
to optimize, but rather to find a satisfycing solution.
The point 1s that the problem was distributed over
the agent society, where the solution emerges, albeit

2Constraining the search space to the ones with only
one queen in each row and in each column, there are n!
combinations.

*Tn fact, the agent that receives the “shake” message
tries to move to other vacancy, after getting out of the
board, and removes the message from the blackboard.

T T T T T T T T T T T T

le+15 # of tokens <—
of moves -+-

le+l4 - n! (state space size) -8--]
le+13 B

le+12 B4
le+11 | = .
1e+10 |- o 1
1e+09 - .
1e+08 | - N
1e+07 + -
1e+06 - e .
100000 |- .
10000 - L y
1000 -
100 F
10 F
1

9 10
n (board size)

Figure 1: Some results from the n-queen problem, for
a range of board sizes (n). The state space size is the
number of combinations of n queens in an n x n chess
board, constrained to the fact that there can only be
one queen in each row and one in each column. This
value gives an idea of the combinatorial complexity of
the problem. The other two graph represent averages
over 20 runs of the RUBA system. The number of
moves denotes the number of times any queen moves,
both entries to the board and moves within the board,
until a solution is found. Each time an agent is (ran-
domly) activated, it is called a token. The third graph
represents the number of tokens given.

the naive strategy embodied in each agent. Tt would
be trivial to devise a classic greedy algorithm in or-
der to solve the problem. The question is, how much
effort would be necessary if the problem formulation
were more complex. And how easy it would be to
cope with the new complex algorithm. This agent’s
approach brings two fundamental points: first, the
problem representation remains simple, because it’s
distributed among the agents, and second, there is no
danger of combinatorial explosion, since there is nei-
ther explicit search nor iterative algorithms. Resolu-
tion complexity is therefore less sensitive to complex-
ity of the problem statement.

The fourth example explored with RUBA was a sim-
plified jobshop scheduling problem. As in the last ex-
ample, a simple strategy was used for each agent. In
this case 1t resembles a cards game, where the agents
(players) represent machines and the cards represent
the products. The solution is built on the blackboard
as time goes by, as agents (machines) try to exchange
cards (products) with the other agents, according to
each one’s interests. No agent has any knowledge con-
cerning other agent’s interests, keeping therefore the
problem distributed among all agents. Most of the re-
marks made in the last example can be applied to this
one.

7 Conclusions and related work

In this paper an agent based methodology for problem
solving was discussed. The problem statement 1s dis-
tributed over several agents that constitute an agent
society. The role of each agent is to represent an entity
which 1s relevant to the problem in hand, but instead
of designing a global strategy, each agent is embod-
ied with an adequate individual behavior. The idea
is to emulate how a human being would behave un-
der such circumstances. When several agents are put
together, each one following its own strategy, the out-
come 1s unpredictable. Furthermore, if a solution for
the problem is ever found, it will emerge. This is an
important, point. However, one cannot expect that a
solution will be optimal (or sub-optimal) in any way,
not even that it will be found at all. Optimality was
As it was stated at the begin-
ning of the paper, as the nature of problems that this
methodology aims at are real-life problems. In this

not a concern here.

kind of problems, it is often good enough that any so-
lution is found at all. Optimality 1ssues are usually
intractable at this level.

The proposed approach is to provide the agents with
the means that allow them to seek for a solution for
themselves, not knowing that a global solution is be-
ing sought. The fundamental difference is that in this
approach, the ones that work out a solution are the
agents themselves. There is no pre-defined algorithm,
from which theorems can be derived regarding the so-
lution reachability or the solution optimality. Tn this
last case, the one that actually solved the problem was
the algorithm developer. Tn an agent society scenario,
the responsibility for seeking a solution is completely
deployed on the agents.

There are several streams of work similar to this
one. Some interesting results on solving the n-puzzle
and more generally on methodological issues can be
found in [T)rogou] and Ferber, 1992] and [T)rogou] and
Dubrenil, 1993]. The former paper claims to have the
first published results on solving n-puzzles with sizes
over 100, using distributed agent methodologies. A
through analysis on negotiation mechanisms can be
found in [Zoltkin and Rosenschein, 1996]. Some is-
sues on teamwork and cooperation can be found in
[Tambe, 1997], using operators that spawn over groups
of agents, representing commitment to joint plans. A
survey on multiagent systems can be found at [Stone
and Veloso, 1997, focusing at the learning aspects.

8 Acknowledgments

Authors would like to thank Nuno Gongalves and
Miguel Garcao for their useful contribution to the de-
sign and implementation of RUBA.

References
[Abelson et al., 1985] H. Abelson, GG. J. Sussman, and

J. Sussman. Structure and Interpretation of Com-
puter Programs. MTT Press and McGraw-Hill, 1985.

[Brooks, 1989] R. A. Brooks. A robust layered control
system for a mobile robot. TEFEE Journ. of Robotics
and Automation, RA-2(1):14 23, March 1989.

[T)rogou] and Dubrenil, 1993] A.
C. Dubreuil.
solving. In Proceedings of the Distributed Artificial
Intelligence Workshop, 1993.

Drogoul and
A distributed approach to n-puzzle

[Drogoul and Ferber, 1992] A. Drogoul and J. Ferber.
Multi-agent simulation as a tool for modeling so-
cieties: Application to social differentiation in ant

In Actes du Workshop MAAMAW 92,

colonies.

1992.

[Erman et al., 1980] T.. D. Erman, F. Hayes Roth,
V. R. Lesser, and D. R. Reddy. The HEARSAY-
IT speech-understanding system: Integrating knowl-

edge to resolve uncertainty. Computer Surveys,

12(2):213 253, 1980.

[Lippmann, 1987] R. P. Lippmann. An introduction
to computing with neural nets. TKFEFE ASSP maga-
zine, April 1987.

[Minsky, 1988] M. Minsky.
Touchstone, 1988.

The Society of Mind.

[Simon7 1959] H. A. Simon. Theories of decision mak-
ing in economics and behavioural science. American
Fconomic Review, 49:253 83, June 1959.

[Stone and Veloso, 1997] P. Stone and M. Veloso.
Multiagent systems: A survey from a machine
learning perspective. (under review), 1997.

[Tambe, 1997] M. Tambe. Towards flexible teamwork.
Journal of Artificial Intelligence Research, 7, 1997.

Zoltkin and
Mechanisms for automated ne-

[Zoltkin and Rosenschein, 1996] G.
J. Rosenschein.
gotiation in state oriented domains. Journal of

Artificial Intelligence Research, 5, 1996.

