
Problem Solving without SearchRodrigo M. M. Ventura and Carlos A. Pinto-FerreiraInstituto de Sistemas e Rob�oticaInstituto Superior T�ecnicoRua Rovisco Pais, 11096 Lisboa CodexPortugalemails: fyoda,cpfg@isr.ist.utl.ptAbstractIn this paper the approach to problem solv-ing using societies of agents is discussed. Al-beit being a very promising topic in Arti-�cial Intelligence, it seems to lack strongtheoretical and methodological foundationsand easy-to-use implemented systems in or-der to prove its usefulness and adequacy.This is the reason a methodology for prob-lem solving based on societies of agents ispresented. The approach to some problemsusing the implemented system | RUBA| and the corresponding results follows.The source code and documentation ofRUBA is available at the project's web page:http://www.isr.ist.utl.pt/~yoda/ruba.1 IntroductionA very frustrating aspect in the study and implemen-tation of classical problem solving algorithms is therecognition that most of their \intelligence" was a pri-ori incorporated by their developers. As a result, littleroom is left for surprise as their outcomes are, in mostcases, predictable (in fact, an unexpected result corre-sponds, almost always to some bug in the program...).Another uninteresting characteristic of such systems istheir reiteration behavior, as they usually return thesame output, over and over again, given the same setof initial conditions. The third negative aspect deserv-ing consideration is their opacity as their recipe-likecode is only understandable when an adequate transla-tion | from the how to the why | is performed. Andthe last, their modi�cation is very di�cult given thefact that, even a simple change demands new codingas these implemented algorithms are, in most cases,completely in
exible and not reusable.On the other hand, problem solving methods basedon societies of agents are intended to exhibit charac-teristics which are dual of the mentioned ones: solu-tion emergence, instead of predictability | as thereis no algorithm running | outcome variety, instead

of reiteration | as the complexity of the interactionamong agents seldom allows the same answer twice |readability, instead of opacity | if agent behavior isdescribed by a rule-base mechanism, and �nally, easyincremental updating, as it is always possible to createand run new agents to take care of the new aspects ofa problem.The basic idea underlying this new problem solvingparadigm is that, instead of considering the solutionof a problem as the result of a process of searchingin a state space, it departs from the premise that aproblem is nothing but a set of restrictions to be (par-tially) met. Some of them are structural and conse-quently should be strictly respected | for instance,it is not possible to put di�erent objects in the verysame place | and some are not structural and, as aconsequence, can be relaxed. When it is possible tocreate a society of agents, each one taking care of itssubset of restrictions, the \global" problem is suitableof being handled by agent oriented problem solvingmethods and, instead of search, it is solved by a pro-cess of negotiation. What is particularly interestingin this approach is the fact that di�erent agents canrepresent di�erent (and possibly) con
icting interestswhich should be taken care of (imagine, for example,the process of constructing a timetable for a school).Now assume, for instance, that after the interactionamong the agents it is found out that the solution isnot satisfactory. As this corresponds to the fact thatthere is a particular interest which are not being con-sidered yet, it is simply necessary to introduce one(or more) agents responsible for the set of these newconstraints, and restart the interaction (for instance,if the solution of the timetable problem is consideredpoor because of being resource consuming, an agentin charge of the resource administration should be in-tegrated in the system).Finally, it is important to point out that thismethod is not a panacea: on the one hand, it is notsuited for optimization problems | as it usually al-lows the �nding out of pragmatical solutions for real-world problems | and, on the other hand, it is not

adequate for solving puzzle-like problems where vari-ables are inextricably linked: interestingly, these twoclasses of problems are poorly handled by human be-ings.2 Nature of AI problems andsolutionsConsider a division of AI problems in two classes, ac-cording to their solving methods. The �rst one in-cludes the problems usually addressed by classical AIsearch methods. These problems must have a unam-biguous speci�cation and the solutions sought are few(if not unique, in optimization problems). Therefore,it makes sense to use state-space search based tech-niques. The order of complexity of these problems canbe quite high, but the solution is in itself simple (inthe sense of being de�ned by a small number of vari-ables). The search for the best solution to the trav-eling salesman problem illustrates this kind of prob-lems and solutions. What makes this problem hardto solve is the search for an optimal solution, ratherthan a reasonable one (as humans do). Combinatorialexplosion, which can make things quite di�cult is acommonplace on this kind of problems.The second class of problems comprises real-lifeproblems, the ones that humans usually solve in rela-tively short time, everyday. Unlike the ones outlinedabove, these problems have a more complicated spec-i�cation and the optimality of the solution is of smallconcern. The speci�cation has usually a certain degreeof
exibility. But most important of all, a satisfycingsolution is desired rather than an optimal one, whichis intractable in this context. The issue of satisfycingversus optimizing has been introduced by Simon [Si-mon, 1959]. It is well known that human reasoning ismuch more related with the search for a solution thatmeets their needs, rather than looking for an optimalone. No traveling salesman is known to be solvingNP-complete problems.3 MethodologyThe purpose of this paper is to present a methodologyto allow AI applications to be scalable in complexity.The term complexity is used here not to denote com-putational complexity but as speci�cation complexity(in variety of restrictions). The proposed approach isto shift from the classical AI approaches to the prob-lem itself to be solved. Before proceeding, two as-sumptions are made: �rst, that the increase in com-plexity does not always invalidate the decompositionof the problem in small and tractable parts (the di-vide and conquer principle). Note that no assumptionis made on the nature of these parts. Next, it is as-sumed that the linkage of these parts is weak, i.e.,the increase in complexity does not a�ect (much) thenature of the interactions of the parts. For instance,

consider the classical scheduling problem. A naturaldivision in parts de�nes the events to be scheduled.Although each part may contain a considerable degreeof complexity (restrictions both on time and place),the basic principle that two events cannot occur atthe same time at the same place is maintained. Andthis principle binds these parts from the start.Let us now focus on these parts, which in thismethodology are represented by agents. The problemspeci�cation is thus distributed over several agents.Furthermore, the control strategy (the centralized en-tity that drives the problem solving process from thestart to the end) is also distributed over all agents.Note that this idea does not invalidate any hierarchi-cal relationships among them. One agent can still beresponsible for a central control strategy, totally orpartially.It seems clear that a single agent by itself doesn'tlook much interesting from the operational point ofview, in what problem solving is concerned. Instead,the result of a set of interacting agents (societies) areable to enlarge the usefulness of the idea. This fol-lows from the fact that the agent concept is de�nedfrom an external point of view, namely the interac-tion with the environment. No reference is made tothe inner workings of an agent, allowing interestingcombinations of quite heterogeneous agent societies.One key concept underlying agent societies is distri-bution. This paradigm is a strong one. It has foundedan AI �eld (DAI) and inspired several other areas, likeneural networks (see [Lippmann, 1987] for instance).The Minsky's classic \Society of Mind" [Minsky, 1988]makes extensive use of this concept.The question that immediately follows the conceptof agent societies is how exactly agents do interactamong them. If they are all pursuing the same globalproblem (despite the fact that each one tries to solveits particular local problem), and if there are re-strictions inherent to the problem, between the partsagents represent, then a negotiation model becomesnecessary. In this model the agents exchange mes-sages in order to negotiate one or more issues rele-vant to the problem to be solved (see [Zoltkin andRosenschein, 1996] for a thoughtful study on agentnegotiation). Each agent has both to secure his ownpositions and to be
exible enough in order to con-cede some of his points. Note that in a strategy likethis one, no one is particularly responsible for the out-come of the negotiation. There is also no guaranteethat this outcome is optimal in any sense, not evensub-optimal. But the relevant aspect of this idea isthat the solution emerges from the agent society in-teractions. This emergence is one of the main issues ofthis paper. Brooks' pioneering work ([Brooks, 1989])has demonstrated the relevance of this issue in thecontext of robotics. The solution is not given througha closed form as an algorithm, but what is proposed is

to program the agents and let them solve the problem.Note the distinction between building an algorithm tosolve a problem, where the solving task was indeed ac-complished by the algorithm designer, and this notionof solution emergence. In this case, the agents are re-sponsible for solving the problem together. No agentis embodied with the knowledge for solving it (other-wise it would solve the problem by itself). It is thegroup concept which allows the solution to emerge.Underlying any formulation of problem solving,there is a concept of state-space search. But thisapproach based on agent negotiation has no explicitstate-space search scheme. Yet, there is a process ofnegotiation between the agents, which can be seenas another paradigm of search. Picture a situationwhere a set of agents is negotiating an issue of theglobal problem. Although each individual agent hasno concern with the global state of the system, fromthe outside the agent society is running an implicitstate-space search. Note that there is no explicit (orcentralized) representation of the global state of thesystem. This state is distributed over all agents. Andsince no particular agent behaves with explicit regardto the evolution of the global state, this search proce-dure produces solution emergence.When considering state space searching, combinato-rial explosion arises from the irrelevant combinationsconsidered by a centralized search algorithm. If theproblem complexity scales up, the search procedureusually becomes intractable. This fact results from theimplicit assumption (when de�ning the state space)that all parts of the problem are mutually dependent.Assume that the state S can be represented as theconcatenation of k sub-states: S = (p1; p2; : : : ; pk). Ifthe sub-state space for each pi is Pi, the total statespace of S becomes the Cartesian product of thesesub-spaces: S = P1 � : : : � Pk. A search algorithmbased on this state space S contains all possible com-binations of the sub-states, forcing the search algo-rithm to look for a solution in this space. From thesearch algorithm point of view, all combinations areequally relevant from the start. From the DAI point ofview, the situation is the opposite. When distribut-ing the problem among the agents, the more inde-pendent these parts are, more independently agentswill be able to work on a solution, thus maintainingthe resolution complexity not higher than each agent'sone. Going back to the above state representationS = (p1; p2; : : : ; pk), consider that each part pi canbe assigned to each agent Ai. Then, in the best casescenario, i.e., all parts pi are independent, each agenthas just to work with the sub-state space Pi. As theparts become more and more dependent, negotiationopens the state space to partial Cartesian products.For instance, negotiation between agents Al and Amgenerate a Pl � Pm sub-space. As agents negotiatebetween them, sub-spaces are expanded into larger

ones, but the implicit search remains constrained tothese sub-spaces, including just the relevant agents foreach negotiation. One can conclude that while searchmethods assume that the problem parts are depen-dent, the DAI methods assume the opposite, and startfrom there, using dependency as needed, thus avoidingcombinatorial explosions.In order to put the above ideas into practice, a de-velopment environment was created. This system iscalled RUBA, and will be brie
y presented in section5. The idea behind RUBA was to provide the pro-grammerwith the framework described in this section.One �nal point which deserves a note concerns pro-gramming language levels. What makes the di�erencebetween several programming languages is its proxim-ity to the human level of representation and reason-ing. Programming languages are designed to be readby humans, rather than by machines, since they don'tcare about semantics of the words used in source code[Abelson et al., 1985]. The adequacy of a languageis function of the application the programmer has inmind. But most of all, the gap between the concep-tual level and the language level is desirable to be assmall as possible. Of course agent societies can comeclose to human's conceptual level if one pictures agentsas small human emulators. The idea is to imagine asociety of human-like beings, and emulate their be-havior by agents. Agents are not supposed to emulatefully-featured human beings, but only to emulate howhuman beings would behave (in a simpli�ed fashion)in a particular society solving a particular problem.It is reasonable to ask in what way these ideas con-tribute to solve complicated real-life problems outlinedat the beginning of this section. Two ideas to answerthe question are proposed. The �rst one is the dis-tribution of the problem over several agents. Eachagent represents a part of the problem to be solved.The �ne tuning of an agent, in order to adapt itselfto a particular aspect of the problem is localized tothe agent, simplifying the process of adapting the sys-tem to problem speci�cation updates. It is the agent'sautonomy that makes this localization possible.To illustrate this methodology, consider the prob-lem of timetabling. This is a typical real-life prob-lem this methodology is aimed at. The formulationis extremely complex, considering all practical con-straints that all intervening parts have (teachers, stu-dents, space allocation, etc.) to take care of. Search-based methods have di�culty in complying with allthis complexity, but human beings, with far less bruteforce computational resources have practical ways ofaccomplishing the task. The usual scenario for manualschedule building is a meeting between all interestedparts (teachers, school clerks, etc.) with a blackboardcontaining a schedule proposal (for instance, the lastyear's one). The ones that have problems with theirschedules (some lecture they can not give), start nego-

tiating with others, trying to exchange lecture hours.After some time, and some concessions in order toaccommodate each others lectures, a �nal solution isreached. The state space is the same, but the fact thatthe search is distributed, without any central controlstrategy, allows the problem to be solved in a reason-able amount of time. The methodologies discussed inthe above paragraphs can be naturally applied to thisproblem, assigning an agent to each interested part,and using a negotiation strategy similar to the onehumans use.4 FrameworkIn this section a framework capable of implementingthe ideas outlined above is presented.First the mechanisms that underlie agent interac-tion are focused. In this agent-oriented problem solv-ing scenario, there are at least two kinds of entitiesagents communicate with. The �rst ones correspondsto the other agents and the second respects to externalentities responsible for providing the agents with allinformation regarding the problem, as well as retriev-ing the results. From an agent's point of view, thereis no point in making the communication di�erent. Itcan use the same mechanism.An agent society is de�ned by a rich interactionamong the participating agents. They not only ex-change information in one-to-one basis, but also re-quire a mechanism to broadcast information to allagents. A blackboard was chosen to allow this inter-action, mainly because it provides
exible means ofcommunication [Erman et al., 1980]. This blackboardis able to ensure all the information exchange mecha-nisms stated above. The communication is based onatomic messages which are posted on the blackboard,and can be seen by all agents. The messages includethe information that speci�es to whom is the messagesent. The destination of a message can be a speci�cagent, a group of agents, or all agents that have ac-cess to the blackboard. Note that there is no needfor inter-agent communication mechanisms. Agentscan exchange private messages with any other agent(that shares a common blackboard) without knowingof each others existence, prior to this interaction.Note that a blackboard may not be unique withinan environment. Groups of agents can share di�er-ent blackboards. The scope of a blackboard is limitedto the agents which are able to exchange messageswith. On the other hand, agents themselves can bedivided into several sub-societies. The agent conceptunleashes imagination to think of quite complex struc-tures based on agent societies.In the previous section it was stated that agents ex-ist in an environment. In this case, the environmentthese agents live in is primarily one of more black-boards. It is however possible to build more complex

environments. Agents can be embodied with mecha-nisms that allow them to interact with complex envi-ronments. However, the blackboards can still be thebasic communication mechanism.5 ImplementationIn this section an overview of an implementation ofa system devoted to create agent societies, under theperspective presented in this paper, will be presented.The system is called RUBA1 and comprises a set oftools built in a LISP (with CLOS) environment.The programming model of RUBA is quite simple.It comprises two types of (CLOS) objects: agents andblackboards. A blackboard is simply a data structurewhich holds messages. Messages can be posted or re-moved at will by agents. An agent contains three ele-ments:� A set of variables that forms the current agent'sstate. These variables are normal programmingvariables, and can contain for instance agent'sknowledge or data related with the problem inhand;� A set of rules, which de�ne the agents behav-ior. Each one is a production rule IF-THEN-ELSE.These rules can be further organized into sub-sets, in order to work as a state machine. One(or more) variable(s) can be assigned to repre-sent a state in this sense (it will be called mstatethereafter, to avoid confusion). Then, only rulesub-sets marked with that mstate are considered.The THEN or ELSE part can optionally indicate towhat mstate the agent must switch, dependingon the logic value of the IF part. This embeddedstate machine has no fundamental role in RUBA,but it simpli�es agent programming and improvesthe rules readability;� A set of links to blackboards the agent has contactwith;Both the rules' antecedent and consequent are ei-ther calls to RUBA primitives, or LISP expressions.The RUBA primitives are lambda expressions (func-tions) which are executed in the agent's context(agent's variables and blackboards). The expressionsthat appear in the rules use these primitives, althoughdirect access to LISP functions is possible (but notdesirable, for readability reasons). These primitiveshide the implementation aspects from the rule con-struction. These rules must be as (human) readableas possible. This way, agent rules can be written withgreat readability, simplifying the process of translat-ing the human emulation behavior into RUBA rules.1The name RUBA is the acronym of \Rule BasedAgents". This name doesn't capture the main featuresof the system, but remained so for historical reasons.

6 ResultsFour examples were initially explored with the RUBAsystem. The �rst one is an experiment on negotiation,where the agents can trade objects, in order to get adesired one. The negotiation model is quite simple.There are three kinds of messages exchanged betweenthe agents:1. Complaints, stating the need for the acquisitionof a certain object;2. Proposals, containing a proposal of a trade;3. Trades, stating the acceptance of a proposal.Each agent behaves as a state machine, inspired onhow humans would negotiate given this operators.The second example is the classic n-queens problem.The goal is to deploy n chess queens on a normal chessboard, in a way that no queen attacks any other. It'sa complex combinatorial problem2. Each agent repre-sents a single queen, that can be in one of two states:in or out of the board. Initially, each agent (queen)is placed outside the board. Then, each one tries tomove to a vacancy on the board, i.e., a place whereno other queen is attacked (and therefore, no otherqueen attacks it). If no vacancy is found, a specialmessage is sent to the common blackboard (with thename \shake") in order to cause a small perturbationin the board3. The interesting result was that sucha simple strategy allowed the system to �nd a solu-tion in a small amount of time. But the main pointis not how long it took to reach a solution, but ratherthe true emergence of this solution! Some results forboard sizes ranging from 4 to 15 can be found in �g-ure 1. This graphic shows how the system scales wellgiven hard combinatorial problems. There is neitheran explicit search algorithm running nor an evaluationfunction. In fact, this approach is quite close to thehuman way of solving the problem. No one picturesin his mind a complex search tree. Instead, the rea-sonable human approach is to move each piece, onceat a time, in the hope that a solution is found.Next, a simple resource allocation problem was ap-proached. Each agent represents a resource unit withthe ability of exchanging products with other agents.Instead, the agents were given a simple strategy in or-der to reduce the waste on resource utilization. As itwas stated earlier in this paper, the objective is notto optimize, but rather to �nd a satisfycing solution.The point is that the problem was distributed overthe agent society, where the solution emerges, albeit2Constraining the search space to the ones with onlyone queen in each row and in each column, there are n!combinations.3In fact, the agent that receives the \shake" messagetries to move to other vacancy, after getting out of theboard, and removes the message from the blackboard.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

3 4 5 6 7 8 9 10 11 12 13 14 15 16
n (board size)

of tokens
of moves

n! (state space size)

Figure 1: Some results from the n-queen problem, fora range of board sizes (n). The state space size is thenumber of combinations of n queens in an n�n chessboard, constrained to the fact that there can only beone queen in each row and one in each column. Thisvalue gives an idea of the combinatorial complexity ofthe problem. The other two graph represent averagesover 20 runs of the RUBA system. The number ofmoves denotes the number of times any queen moves,both entries to the board and moves within the board,until a solution is found. Each time an agent is (ran-domly) activated, it is called a token. The third graphrepresents the number of tokens given.the na��ve strategy embodied in each agent. It wouldbe trivial to devise a classic greedy algorithm in or-der to solve the problem. The question is, how muche�ort would be necessary if the problem formulationwere more complex. And how easy it would be tocope with the new complex algorithm. This agent'sapproach brings two fundamental points: �rst, theproblem representation remains simple, because it'sdistributed among the agents, and second, there is nodanger of combinatorial explosion, since there is nei-ther explicit search nor iterative algorithms. Resolu-tion complexity is therefore less sensitive to complex-ity of the problem statement.The fourth example explored with RUBA was a sim-pli�ed jobshop scheduling problem. As in the last ex-ample, a simple strategy was used for each agent. Inthis case it resembles a cards game, where the agents(players) represent machines and the cards representthe products. The solution is built on the blackboardas time goes by, as agents (machines) try to exchangecards (products) with the other agents, according toeach one's interests. No agent has any knowledge con-cerning other agent's interests, keeping therefore theproblem distributed among all agents. Most of the re-marks made in the last example can be applied to thisone.

7 Conclusions and related workIn this paper an agent based methodology for problemsolving was discussed. The problem statement is dis-tributed over several agents that constitute an agentsociety. The role of each agent is to represent an entitywhich is relevant to the problem in hand, but insteadof designing a global strategy, each agent is embod-ied with an adequate individual behavior. The ideais to emulate how a human being would behave un-der such circumstances. When several agents are puttogether, each one following its own strategy, the out-come is unpredictable. Furthermore, if a solution forthe problem is ever found, it will emerge. This is animportant point. However, one cannot expect that asolution will be optimal (or sub-optimal) in any way,not even that it will be found at all. Optimality wasnot a concern here. As it was stated at the begin-ning of the paper, as the nature of problems that thismethodology aims at are real-life problems. In thiskind of problems, it is often good enough that any so-lution is found at all. Optimality issues are usuallyintractable at this level.The proposed approach is to provide the agents withthe means that allow them to seek for a solution forthemselves, not knowing that a global solution is be-ing sought. The fundamental di�erence is that in thisapproach, the ones that work out a solution are theagents themselves. There is no pre-de�ned algorithm,from which theorems can be derived regarding the so-lution reachability or the solution optimality. In thislast case, the one that actually solved the problem wasthe algorithm developer. In an agent society scenario,the responsibility for seeking a solution is completelydeployed on the agents.There are several streams of work similar to thisone. Some interesting results on solving the n-puzzleand more generally on methodological issues can befound in [Drogoul and Ferber, 1992] and [Drogoul andDubreuil, 1993]. The former paper claims to have the�rst published results on solving n-puzzles with sizesover 100, using distributed agent methodologies. Athrough analysis on negotiation mechanisms can befound in [Zoltkin and Rosenschein, 1996]. Some is-sues on teamwork and cooperation can be found in[Tambe, 1997], using operators that spawn over groupsof agents, representing commitment to joint plans. Asurvey on multiagent systems can be found at [Stoneand Veloso, 1997], focusing at the learning aspects.8 AcknowledgmentsAuthors would like to thank Nuno Gon�calves andMiguel Gar�c~ao for their useful contribution to the de-sign and implementation of RUBA.

References[Abelson et al., 1985] H. Abelson, G. J. Sussman, andJ. Sussman. Structure and Interpretation of Com-puter Programs. MIT Press and McGraw-Hill, 1985.[Brooks, 1989] R. A. Brooks. A robust layered controlsystem for a mobile robot. IEEE Journ. of Roboticsand Automation, RA-2(1):14{23, March 1989.[Drogoul and Dubreuil, 1993] A. Drogoul andC. Dubreuil. A distributed approach to n-puzzlesolving. In Proceedings of the Distributed Arti�cialIntelligence Workshop, 1993.[Drogoul and Ferber, 1992] A. Drogoul and J. Ferber.Multi-agent simulation as a tool for modeling so-cieties: Application to social di�erentiation in antcolonies. In Actes du Workshop MAAMAW'92,1992.[Erman et al., 1980] L. D. Erman, F. Hayes-Roth,V. R. Lesser, and D. R. Reddy. The HEARSAY-II speech-understanding system: Integrating knowl-edge to resolve uncertainty. Computer Surveys,12(2):213{253, 1980.[Lippmann, 1987] R. P. Lippmann. An introductionto computing with neural nets. IEEE ASSP maga-zine, April 1987.[Minsky, 1988] M. Minsky. The Society of Mind.Touchstone, 1988.[Simon, 1959] H. A. Simon. Theories of decision mak-ing in economics and behavioural science. AmericanEconomic Review, 49:253{83, June 1959.[Stone and Veloso, 1997] P. Stone and M. Veloso.Multiagent systems: A survey from a machinelearning perspective. (under review), 1997.[Tambe, 1997] M. Tambe. Towards
exible teamwork.Journal of Arti�cial Intelligence Research, 7, 1997.[Zoltkin and Rosenschein, 1996] G. Zoltkin andJ. Rosenschein. Mechanisms for automated ne-gotiation in state oriented domains. Journal ofArti�cial Intelligence Research, 5, 1996.

