
Autonomous Distributed Control of aPopulation of Cooperative Robots?Pedro Apar��cio and Pedro Lima??Instituto de Sistemas e Rob�otica / Instituto Superior T�ecnicoAv. Rovisco Pais, 1, Torre Norte1096-001 LisboaPORTUGALAbstract. Current and planned work on autonomous (i.e., with power supply and all computational power on-board)distributed control of a population of communicating cooperative robots is presented. A case study on Robotic soccerillustrates the main concepts involved.1 IntroductionMobile Robots can be found nowadays in factories, storage areas, universities, hospitals, nuclear plants,private homes and even on Mars. Multi-robot populations [4] [12] [11] are becoming increasingly popularamong researchers. Many competitions are held regularly, where populations of mobile robots work towardsthe accomplishment of a given (common) task (e.g., AAAI Robotic Contest [5] and RoboCup [8]). Froma commercial/industrial standpoint, this distributed implementation of a robot is an interesting solution.Several robots working together, to move heavy and hazardous loads [1], to deliver mail and small parcelsin o�ce environments [7], to transport food and medicines inside hospitals [9], are an advantageous solutionregarding price and robustness, with respect to a one-robot system.

Fig. 1.: Developed Robot populationBuilding Multi-Agent Robotic Systems (MASR) is a challenging task as many options are open to thedesigner, regarding almost every issue involved, from the kinematic structure to the control architecture.Only recently, the robotics and arti�cial intelligence research communities have focused on the syntheses andcontrol of this type of populations. This area gathers knowledge from many �elds (like distributed systems)and therefore progresses very quickly.When compared with single-agent systems, MARS o�er a number of advantages. According to Stone [10]and Arkin [3], those include:? This work has been supported by the following Portuguese institutions: Funda�c~ao Calouste Gulbenkian, Funda�c~aopara a Ciência e a Tecnologia, PRAXIS XXI/BM/12937/97.?? Email: faparicio,palg@isr.ist.utl.pt



{ Robustness { Being distributed and parallel systems by nature, MARS are less prone to failures. Even if anagent is damaged, the overall performance will not be compromised (provided that there is redundancy);{ Scalability { MARS are open systems. One may introduce extra agents without major changes to theoverall system;{ Broad geographic area - The agents can be separated over a wide geographic area, i.e., MARS canaccomplish tasks that a single robot could not;{ Divide and Conquer { Many problems are well suited to be solved by several mobile robots;{ Simplicity { MARS are modular, simplifying the programming and testing of the individual sub-systems.Albeit the advantages, MARS have some drawbacks:{ Coordination between the agents is di�cult;{ The performance of a robotic team is not easy to measure and therefore improvements are di�cult tomeasure;{ Robot hardware is unreliable and as a result, it is very hard to maintain a team of operational robots.This paper presents the development of a population of autonomous mobile robots (see Figure 1), endowedto perform cooperative tasks. The population hardware and functional architectures were designed withcooperation and modularity in mind.1.1 A Case Study on Robotic Soccer { RoboCupA case study on Robotic Soccer was set up to test and demonstrate the validity of the developed population,including the participation in RoboCup contests. RoboCup is the Robotic Soccer Wold Cup, organized in anannual basis by the RoboCup International Federation [8]. It is a contest that fosters Arti�cial Intelligenceand Robotics research by providing a standard problem whose solution requires research on the integrationof a wide range of technologies by using suitable architectures and performance measures. The design ofa team to participate in RoboCup includes autonomous agents design principles, multi-agent collaboration,real-time reasoning, and sensor-fusion, to name a few. The developed population (ISocRob) [2] is composed ofthree homogeneous robots (regarding hardware). The robots have a di�erential drive mobility con�guration,a video camera, infra-red distance sensors and RF Ethernet modems for inter-robot communications.Figure 2 presents a functional division of the soccer �eld in several regions. These are zones used tosimplify the location of the robots inside the �eld, during the game.
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Fig. 2.: The �eld division in actuation areas.Besides Defense (D), MidDefense (MD), MidForward (MF) and Forward (F), further divisions are intro-duced to increase the �eld resolution. Along the �eld longitudinal axes, the �eld is divided in Left (L), Center(C) and Right (R) parts. Note that the goal area correspond to the G zone. Being used only by one player,it is not represented in Figure 2. The color scheme de�ned in the RoboCup rules indicates that the �eld 
ooris green, one goal is blue, the other is yellow, the robots are mostly black, the ball is orange and the wallsare white. No global view of the �eld is allowed, and processing must be done on-board the robots.The team is compliant with the RoboCup mid-size league rules and has been presented in RoboCup98,with a participation in RoboCup99 envisaged.



1.2 OutlineSection 2 goes through the population functional architecture. Its implementation details are presented inSection 3. Preliminary conclusions supported by currently achieved results are presented in Section 4.2 Team Functional ArchitectureThe population control architecture de�nes the way the robot population, as a whole, senses, processesinformation and acts. It has a strong e�ect on the system performance. It is used as an abstraction to handlecomplexity.The team architecture chosen to control the population is inspired on a 3-level functional hierarchy,�rst proposed by Drogoul and Collinot [6]. This architecture comprises three levels of competence. Ourparticularization for the control of a team of autonomous robots follows (see Figure 3):{ Organizational: This level establishes the strategy to be followed by the whole team, given the worldstate.{ Relational: At this level, groups of agents negotiate and eventually come to an agreement about somegoal. At this level, based on the strategy prescribed by the organizational level, behaviors are distributedby the di�erent agents, according to some tactics. Agreements are based on robots abilities, state and onthe result of negotiation.{ Individual: This level encompasses all the available behaviors. Those include the primitive tasks (e.g.,path planning, motion with collision avoidance) and their relations. All low level control issues are handledat this level.
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Fig. 3.: Team Functional architecture2.1 Organizational LevelThe organizational level level is responsible for the overall control of the population. It decides on the strategyto be followed according to a given world state and application. In the soccer domain, the world state iscomposed of information regarding the players and the game state. The strategy comprises concepts suchas defend, counter-attack and attack. Note that the di�erent strategies are abstract concepts, i.e., noprescription on the individual behaviors of an agent is done at this level.Although the organizational level is a central decision system, it di�ers from the common ones in thesense that it may be replaced by another (dormant in normal operation) if an exception arises. This level isimplemented in all robots of the population, but only one of the robots has this level active at a time. Inmany applications, it is essential to have, at any time, an agent responsible for maintaining an overview ofthe world, in order to detect events which can be only determined from information aquired by the wholeteam. This is the robot where the organizational level is active.



2.2 Relational LevelThe relational level is responsible for the translation of the orders sent from the organizational level (strategiesto be followed) into executable actions (tactics). Tactics represents a mapping between strategies and teamcon�guration pre-determined tactics (that correspond to pairs position/behavior in the soccer domain). Thislevel runs simultaneously in all team members. It also gives the agents the capabilities to interact with others.Given the strategy to follow (e.g., defend in the soccer domain), the active agents implement the prescribedtactics, using negotiation at relational level, to decide who should move where and what behavior to exhibitin that position. The possible con
icts between agents are presented and solved at this level. Note that, whendoing task translations, a special care should be made in order to minimize changes in player behaviors andposition. For instance, it would be a bad idea to have a goal-keeper and a forward player changing positionsduring a soccer game because it would open the goal for the duration of the change.Besides the translations, all negotiations between agents go through the relational level in order to keepthe group of agents as a team. For instance, in the soccer domain, if two forward players are trying to getthe ball simultaneously, they should come to an agreement, at relational level, determining who should go forthe ball in the �rst place (probably, the best positioned). This kind of agreement has local scope (only theagents involved are aware of it) and it is stopped after a given time. Another example is a ball pass situation,where a player who has the ball asks one of its team mates to receive it.2.3 Individual LevelIn each agent, the individual level implements a behavior (and also a position in the soccer domain) that wasprescribed at the relational level. Control issues related to sensor readings, data processing and actuation arehandled at this level. Issues related with collision avoidance are also dealt with at this level.Possible behaviors in the soccer robot concept include Goal-Keeper, Defender, MidField and Forward.3 Implementation Issues3.1 Data DistributionData should stay close to the processes that use it most of the time, therefore, all team data is distributedover the robots. This concept was chosen because it increases the system robustness, i.e., if one of the robotshas a malfunction, the team will continue to work. It also simpli�es the process of adding agents to the team.Besides the physical distribution, a conceptual distribution was also envisaged. The data is stored atdi�erent levels of abstraction, according to the control levels that use it. For example, in order to decide thestrategy to be followed, the organizational level does not need to know the exact position of the players or ifany of them is colliding with another. Instead, it uses information such as which team has ball control andcurrent score.Figure 4 presents a schematic view of the data 
ow through the di�erent control levels and robots. Theorder in which the data items appear is not related to its importance or usefulness. Note that the organizationallevel data is only stored in one of the robots. This comes from the fact that this level is active in only oneof the robots at a single time. It acts like a team captain in real soccer. Should this particular player havea malfunction and stop, another team player would rise as captain (chosen by computational performancebenchmarking). In such a case, it would have to gather the organizational level information from scratch, i.e.,the data stored in the stopped player would be lost.Figure 5 presents the di�erent processes running simultaneously in each robot and the data 
ow betweenthem. The arrows represent the data dependencies that exist between processes. For example, the statemachine processes need information from the sensors (e.g. image) and from the vision process (e.g., ballposition in image) in order to work.Note that all information gathered by the di�erent processes is stored in a common repository, accessibleby all processes, not represented in Figure 5. The crossed boxes shown next to the di�erent modules representa set of FLAGS associated to each process. Depending on the task being executed, a given information maynot be necessary and therefore, there is no need to aquire and process it. This mechanism aims at reducingthe computation time.
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Fig. 5.: Processes and data 
ow.3.2 Organizational LevelThis state is implemented as a state machine whose states correspond to strategies sent to the relational leveland whose transitions are traversed by changes in the world state.The information stored in the world state at the organizational level results from the pre-processing ofraw data (see Figure 4). From the organizational level point of view, its states can be segmented in twomain categories: Game situations (e.g.,kick-off, end-of-game, penalty-for, penalty-against) and gameevaluation (e.g., ball-our-field, ball-our, elapsed-time, current-score).As a result of the two categories in the world state, the scenarios are divided in two main classes: pre-programmed scenarios for game situations and dynamic strategies such as attack, defend and counter-attack.As stated before, the transitions between states are traversed by changes in the world state.Figure 6 presents a partial, schematic view of the organizational level implementation. The dynamicstrategies are shown in the �gure.For the di�erent world states, actions are prescribed to the relational level. Those are passed in the form
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Fig. 6.: Organizational Level State Machine.of a strategy, i.e., the organizational level passes to the relational level the recipe that should be applied to agiven situation. For example, if our team state is defense and the ball is in our �eld and one of our playershas the ball, the counter-attack strategy should be prescribed to the relational level. This prescriptionshould lead the team to move up in the �led (move into the opponents �eld) and try to score a goal.3.3 Relational Level
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An example mapping presented in Table 1. It shows the zones and the behaviors that a number of playershave to exhibit in order to implement a given tactic (assuming a team composed by four robots).Tactics Number of Players Assigned Zone1 GDefense & 2 DGame Start 1 MD1 GCounter Attack 1 D1 MD1 F1 GAttack 1 MD1 MF1 FTable 1.: Position mapping between Strategy and TacticsThe pre-de�ned possible zones are presented in Figure 8.
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d) Forward actuation zone.Fig. 8.: Actuation Zones3.4 Individual LevelIn order to implement the individual level of the functional architecture depicted in Section 2, the architectureshown in Figure 9 is implemented in each robot of the population. The Behavior Coordinator (top layer),selects the correct behavior for the robot, based on the tactics provided by the relational level. When abehavior is selected, a corresponding spatial supervisor is also activated. Di�erent behaviors are associated todi�erent in
uence areas, corresponding to �eld zones. The spatial supervisor ensures that the robot alwaysstays inside its assigned area.A behavior corresponds to a set of purposive (i.e., with a goal) states sequentially and/or concurrentlyexecuted. A state is composed by a primitive task and a list of 3-tuples. A 3-tuple consists of three components(logical condition; next state; priority). A primitive task consists of sense-think-act loops (STA loops).STA loops are a generalization of a closed loop control system which may include, motor control, balltracking or trajectory following control loops. They are composed of the following key components:
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Fig. 9.: Individual Level.{ goal: the objective to be accomplished by the primitive task (e.g., a position set-point, an object to befound in the image, location with respect to an object in the image);{ sense: sensor data required to accomplish the goal (e.g., distance to an object, object position in animage);{ think: the actual algorithm which, using the sensor data, does what is required to accomplish the goal(e.g., motion controller, ball visual servoing);{ act: the actions associated to the think algorithm (e.g., moving the wheel motors).STA loops provide the behavior designer with a set of high-level functionalities to use. Those are closelyconnected to the system hardware as they are built upon the set of system functions.The 3-tuples de�ne the conditions to be met in order to make a state transition in the behavior execution.One or more conditions may exist on each state leading to di�erent states. The priorities de�ne a policy thatensures that the transitions are consistently transposed, without implementation dependencies. This conceptis illustrated in Figure 10.
Environ.
Robot/

G T A

S Environ.
Robot/

G T A

S

Environ.
Robot/

G T A

S

(LCond1, STATE1, 1)

State1

State2

State3

(LCond1, STATE1, 1)

(LCond1, STATE2, 2)

(LCond1, STATE3, 1)

(LCond1, STATE3, 2)

(LCond1, STATE2, 2)

(LCond1, STATE2, 3)Fig. 10.: Behavior State Machine.Each 3-tuple in the list is composed of the following key components:logical condition { Logical conditions are de�ned over a predicate set and check the value of a vari-able or a past event (both types are stored in the world model) (e.g., see(ball) & near(ball) ;lastseen(ball)=right);next state { The next state is the state reached upon the validation of the logical condition (e.g. KICKBALL);priority { The priority disambiguates the next state to be reached if two logical conditions are true inthe same evaluation (e.g., 1). The behavior designer should not assign the same priority to any pair of3-tuples. Nevertheless, if priorities are omitted, the next state will be choosen randomly;



Presently, the available primitive tasks to the design of behaviors comprise:{ SrcBall - orient the robot towards the ball;{ SeekBall - orinet the robot towards the ball and follow its movments, rotating around the robot axis;{ FlwBall - follow the ball;{ RotDeg - rotate n degrees;{ ShootBall - shoot the ball;{ KickBall - kick the ball and return to original position;{ RndMove - random move;{ RotRight - rotate continuously to the right;{ RotLeft - rotate continuously to the left;{ Prepare - manoeuvre in order to have the ball between the robot and the opponent goal.At RoboCup98, two behaviors were implemented: Forward and GoalKeeper.
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b) Goal-Keeper behaviorFig. 11.: Forward and Goal Keeper behavior in RoboCup98The forward behavior, depicted in Figure 11-a), starts by searching the ball. When the ball is found, therobot moves towards it until a prede�ned distance is reached. Then, the forward players manoeuvres to getthe ball between it and the goal. When that happens, the robot shoots the ball.The Goal-Keeper behavior presented in Figure 11-b) is very simple. The robot looks for the ball, and iffound, it follows it, rotating around its axis. If the ball approaches more than a given value, it tries to kick itaway. If the ball is not visible, it starts rotating to the side the ball was seen for the last time. If the ball isnot found but the own goal is, it starts rotating in the opposite direction. This simple behavior proved verye�cient during the competition.To better illustrate the STA loop and 3-tuple concepts, the the primitive task GK SEEKBALL, present inthe Goal-Keeper behavior (see Figure 11-b)) is detailed.For this STA, the following key components are de�ned:goal - Keep the ball in the center of the captured image (e.g., XREF = 0);sense - Acquire and image to memory (e.g., CaptureImage(img)) and determine ball posiiton in image(e.g. GetBall(img));think - Compute the speed set-points (e.g., vd=(xc - XREF)/DSCALE; vc = 0);act - Move the robot (e.g., motSetVel(vc + vd, vc - vd));where XREF represents the reference x coordinate in the image (e.g., central pixel), xc is the x coordinate ofthe ball in the image and DSCALE is a gain. vc and vd are the vehicle common and di�erential velocities.The following 3-tuples are de�ned:{ (see(ball) & near(ball), GK KICKBALL,2);{ ( see(ball) & lastseen(ball) = left, GK ROTLEFT, 1);{ ( see(ball) & lastseen(ball) = right, GK ROTRIGHT, 1);Note that equal priorities mean that the next state is choosen randomly.
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