
Instituto de Sistemas e Robótica

Pólo de Lisboa

Agent-Based Programming Languagefor Multi-Agent TeamsRodrigo Ventura Pedro Apar��cio Pedro LimaMarch 1999RT-701-99, RT-401-99
ISR-Torre NorteAv. Rovisco Pais1096 Lisboa CODEXPORTUGAL

Este trabalho foi �nanciado pela Funda�c~ao Calouste Gulbenkian - Servi�co de Ciência.

AbstractThis report speci�es a programming language for multi-agent teams. The languageaims at providing an abstract level approach to the programming of teams composedof either software or hardware agents (e.g., robots), encapsulating the lower level im-plementation details (e.g., graphical primitives for icon animation, robot motion prim-itives) and providing an abstraction level appropriate for multi-agent systems.The overall architecture of the multi-agent team, the language speci�cations and anexample of application to robotic soccer are included.

Keywords: Cooperative Robotics, Multi-Agent Systems, Distributed Arti�cialIntelligence, Robotic Soccer

(tactics)

strategy

world state

WORLD

Relational Rules

Behavior11 Behavior12 Behavior1M

BehaviorN1 BehaviorN2 BehaviorNM

act sense act sense

negotiation requests

(strategy prescription)

Organizational State-Machine

(behavior prescription, temporary behavior modification)

world + team state

Behavior ij : behavior i of agent j

behavior
selection

Figure 1: The functional architecture of the ISocRob team.1 PurposeThe purpose of this report is to specify a programming language for multi-agent teams.The language aims at providing an abstract level approach to the programming of teamscomposed of either software or hardware agents (e.g., robots), encapsulating the lowerlevel implementation details (e.g., graphical primitives for icon animation, robot motionprimitives) and providing an abstraction level appropriate for multi-agent systems.The language speci�cations intend to be comprehensive, but they are inspired byhardware agents, namely soccer robot teams.We begin by de�ning in Section 2 the main concepts involved in the architectureunderlying the language speci�cations, such as agent behavior, agent state, functionallevels, world model. Section 3 provides the detailed speci�cation of the language,including the way the above concepts are actually implemented. Finally, in Section 4an application to soccer robots illustrates the main concepts and their implementationusing the language.2 Architecture and Main ConceptsThe team architecture is depicted in Figure 1, and its mapping onto the actual hard-ware of the ISocRob team is shown in Figure 2. It is based on a 3-level functionalhierarchy [1]: 1

Relational

rules

Organizational

rules

Selected

behavior

BB

Sensors Actuators

Relational

rules

Selected

behavior

BB

Sensors Actuators

Relational

rules

Selected

behavior

BB

Sensors Actuators

Captain

BB: blackboard

comms comms

comms

Figure 2: The mapping between the functional architecture and the actual hardwareof the ISocRob team (3 homogeneous robots { from the hardware standpoint).� Organizational: establishes the strategy to be followed by the whole team,given the world and the team state (e.g., game plus team state in robotic soccer).In the soccer team context, game states can be grouped in two main categories:1. game situations reached upon the application of RoboCup tournament rules(e.g., kicko�, end-of-game, penalty-for, penalty-against);2. evaluation of current game status, as perceived by the team members (e.g.,symbolic, such as losing & close to the end of the game, ball close to our goal,or numerical evaluations);Strategies can be divided in, at least, two major categories:{ pre-programmed scenarios for game situations in game state category 1above;{ dynamic strategies (e.g., defend, attack, counter-attack), corresponding togame state category 2 above. 2

� Relational: to accomplish useful cooperation, relationships between agents mustexist. This involves an important characteristic of the agent concept: socialability, meaning that one given agent has to be aware of the existence of otheragents like him, with whom it has to negotiate. At this level, groups of agentscooperate and eventually come to an agreement about some objective (common ornot). Also, based on the strategy prescribed by the organizational level, behaviorsare distributed by the di�erent agents.For instance, in the robot soccer context, if one robot is willing to pass a ballto one of its teammates, it must �nd one of them available and su�ciently wellpositioned. The ball pass is arranged via a negotiation process, and after an agree-ment is reached, including the knowledge of relative positions and orientations,the pass is performed. Another example is the situation where two teammatesactively try to get the ball. In such a case, one of them should signal the otherits intention. A negotiation process would follow, where the teammates woulddetermine their distances to the ball to decide which one should pursue it.Negotiation among agents at the relational level may result in temporary mod-i�cations to the current strategy established by the organizational level (e.g., aplayer acting as a Forward might temporarily refrain from doing so, in order notto con
ict with one of its teammates while pursuing the ball).� Individual: encompasses all the available behaviors of each agent. Those includethe primitive tasks (e.g., path planning, motion with collision avoidance) andtheir relations.A behavior corresponds to a set of purposive (i.e., with a goal) primitive taskssequentially and/or concurrently executed. The primitive tasks consist of sense-think-act loops (STA loops), a generalization of a closed loop control system which mayinclude motor, ball tracking or trajectory following control loops.STA loops are composed of the following key components:� goal: the objective to be accomplished by the primitive task (e.g., a positionset-point, an object to be found in the image, localization with respect to anobject in the image);� sense: sensor data required to accomplish the goal (e.g., image, infra-red data);� think: the actual algorithm which, using the sensor data, does what is requiredto accomplish the goal (e.g., motion controller, ball visual servoing);� act: the actions associated with the think algorithm (e.g., move the wheel mo-tors).Notice that some of the components might not be used in some cases (e.g., a pathplanning primitive task does not need sensors and actuators).3

The sequence of primitive tasks is traversed as the logical conditions associatedwith the connections between them become true. The logical conditions are de�nedover a predicate set. There are two predicate classes:� predicates which check the value of a given variable (e.g., the variable goal inlastseen-left(goal));� predicates which check the past occurrence of a given event (e.g., the see(ball)predicate checks whether the ball became visible). It is assumed that the oppositeevent must occur in order to modify the predicate's truth value.A world model is required to provide the necessary information to the organizationallevel. Since all computation is supposed to be distributed by the team members,with no external storage available, a distributed world model representation is needed,containing all the relevant variables for negotiation between agents, and in general theresult of processing raw data, for primitive tasks usage.3 Language Speci�cation3.1 Language RequirementsThe language should provide the means to let the team strategist (e.g., the coach, inrobotic soccer) program the population in order to achieve the strategic objectives.Those are implicit in the selected behaviors, for each behavior and in the primitivetask STA loops.We propose the following implementation for each of the above concepts:� the strategy is described at the organizational level by a state-machine whosetransitions are traversed upon the matching of speci�c world states, and whosestates prescribe the current strategy;� the tactics, including behavior selection, negotiation, and temporary behaviorsmodi�cation, is implemented by production rules at the relational level;� a behavior consists of a state-machine, where each state corresponds to an STAloop and each transition has associated logical conditions de�ned over the predi-cate set described in Section 2;The organizational state machine must run in one of the team members, designatedas the captain. Whenever the captain does not signal that it is live for more than atimeout period, a new captain should take control of the team.A blackboard implements global shared memory and event1-based communication.1Event is here interpreted in the context of a computational model.4

3.2 Computational ModelThe computational model for the language consists in two classes of objects: agents,and blackboards. A blackboard forms the only communication medium among agents,either to communicate among themselves, or between them and the external world.This follows the RUBA [4] paradigm of a multi-agent system (MAS). However, thecurrent language speci�cations propose several improvements over RUBA, such as theextension of the blackboard for a distributed system, e�cient blackboard indexingusing a hierarchical name-space, and event-driven programming. The goal of theseimprovements is to tailor the language to a robotic application.3.3 Distributed BlackboardThis is a conceptually centralized repository of data, but is distributed among theagents. The blackboard is a mapping of symbols hierarchically organized in nestedname-spaces, e.g. robot0.sensors.collision.2, to variables. This scheme is sup-posed to abstract a myriad of possible semantics, such as message passing, sharedmemory, distributed data, local variables, and so on. A blackboard is implementedwith an hash table of names to variables. Each variable has the following attributes:scope : global vs local, i.e., whenever its creation is re
ected in all blackboard mem-bers, or not;location : remote vs local, i.e., whether it is an index to a blackboard in anothermachine, or it is local to this machine;policy : broadcast vs indexed, i.e., whether variable updates are broadcast to allblackboards or not;type : static vs hook vs closure, i.e., whether it is a variable, a event hook triggeredwhen the variable is changed, or a closure that is called whenever that variableis read. This closure is called in a de�ned agent context;lock : If the variable is locked, it cannot be modi�ed, until unlocked. This featuremust be used carefully to avoid deadlock conditions;The access semantics for each variable is supported by the primitives:read : reads the value of the variable;write : sets the variable to a value;hook : adds a closure to be called whenever the variable changes | which will becalled event here and henceforth, under the context of the computational model(not to confuse with events mentioned in the previous section).lambda : de�nes a closure to be called in order to obtain the variable value, in thecontext of the de�ning agent; 5

3.4 Agent ProgrammingThe agent programming is based on three elements: rules, states, and events. Eachagent has a private set of variables, which usually start with a / for clarity. The syntaxof the language is based on LISP. Each one of these elements are de�ned by clauses.All RUBA keywords start with a : sign. The syntax of a rule is(:if expression:then clauses1 :go-state state-spec1:else clauses2 :else-state state-spec2)being interpreted as usual | if expression returns true, clauses1 is evaluated whilestate-spec1 speci�es a state transition. Otherwise, clauses2 and state-spec2 are takeninto account. Any one of these keywords are optional. If expression is omitted, it is asif it was true. A state transition speci�cation has the syntax:state | (variable state)The latter form speci�es what variable is supposed to hold the state, while the formeruses a default variable name (say, variable /state).The state clauses have the syntax:(:on-state state-cond [clause]*)which simply takes into account the contained clauses when the state satis�es thestate-cond condition. This condition has the following syntax:([[:varvariable] [state]*:not[state]*]+)The event concept is new to RUBA, and corresponds to the interactive nature ofrobotic applications, which sense-think-act loops are a much more natural approachthan the classical functional recursive decomposition paradigm [3, 2]. The syntax ofan event clause is(:on-event event-spec :do clauses1 :scope clauses2)where the contained clauses are taken into account only when an event satisfying theevent-spec speci�cation occurs. Its syntax is:(type [variable] [clause]*)meaning that when an event of kind type arrives, it is stored in variable, and thecontained clauses (clauses1) are taken into account. The scope of the link between theevent and the clauses is limited to clauses2.The execution model is di�erent from that in RUBA, in the sense that the rules areonly scanned once, when the agent is created. These clauses may trigger state changes,which makes the agent scan other clauses. This can be understood as an event basedmodel, which is an implicit loop model. 6

3.5 Low-level IntegrationIn a real-robot context, the issue of integrating high-level programming and the hard-ware interface arises. One possible form of doing so consists of using an FFI (foreignfunction interface). However, there is a cleaner alternative, which avoids the cross func-tion calling overhead | a low-level access to the blackboard. From the MAS point ofview, the low-level interface looks just like any other agent(s) transacting informationwith the blackboard, reading and writing from/to variables in the blackboard. Forinstance, a C library that provides this interface must exist.3.6 How to Implement SocRob Functional ArchitectureThis section describes how the above language can be used to implement the architec-ture of a robotic soccer team. Each robot has a blackboard and an agent, with theexception of the team captain which will have an additional agent to implement theorganizational state machine.� Organizational state machine | this state machine determines the global strategyof the team, stating it in the blackboard. Whenever the strategy changes, thecorresponding variable is changed. This change is controlled by the rules, basedon changes in certain blackboard variables, relevant to the case. Each robot willhave a dormant captain agent, except for one. This allows fault-tolerant behavior:whenever it stops functioning, another robots takes over as captain;� Relational rules | these rules support the negotiation processes in order to copewith all con
icting situations. A list of these situations have to be speci�ed. Thenegotiation paradigm follows two phases: a statement of interest state, whereeach agent states its point of view, \no strings attached," and a second phase,where the issue is settled in an unambiguous fashion to all;� Behaviors (state machines) | the behaviors are de�ned as state machines andrules in each robot agent. Each state means something in terms of sensor-actuators mapping, and a transition is triggered when a speci�ed condition isreached;� STA loops |These loops implement the sensor-actuator loops. Speed is essentialhere, therefore only low-level programming languages are allowed. In a �rst phaseof the project, these STA's can be monolithic blocks of code. In the future,it is our desire to separate them in smaller inter-linked processes, with smallinteraction latency. The way these processes relate to each other is previouslyde�ned in a declarative language. The switching between STA loops is controlledby blackboard variables;� Communication between agents for negotiation | The blackboard is the solemedium of communication between the agents, supporting the message exchange7

needed to perform negotiation. This negotiation has to be designed in such away that it take a minimal number of steps. There is a �rst phase to assert eachagent position, and a second phase to settle the result;� Handling the user interface | In order to monitor the team status, an additionalagent can be connected to the blackboard network, from the outside. This agentwould have access to all or some of the blackboard variables. Additionally, eachagent would add monitoring variables to the blackboard, allowing external agentsto sneak into the robot status;4 Application to a Soccer Robot Team4.1 The Field DivisionFigure 3 presents a functional division of the �eld in several regions. These are zoneswhere robots try to locate themselves inside the �eld, according to their assignedbehaviors, e.g., defenders should stay inside the D zone and Forward players shouldstay inside the F zone. This division helps the assignment of in
uence areas to players.
L

C

D MD MF F

R

X

Y

Figure 3: The �eld division in actuation areas.Besides Defense (D), MidDefense (MD), MidForward (MF) and Forward (F), fur-ther divisions are introduced to increase the �eld resolution. Along the �eld longi-tudinal axes, the �eld is divided in Left (L), Center (C) and Right (R) parts. Thisdivision is particularly useful when the team has more than one player acting in thesame functional area (e.g., two defenders).4.2 Player BehaviorsSeveral behaviors must be implemented in the ISocRob soccer team. These includethe following: 8

� GoalKeeper { Defends the goal. To do that, it continuously looks for the ball and,if necessary, leaves the goal area and kicks it away. The in
uence zone is de�nedby the goal area lines and is shown in Figure 4.
D MD MF

L

C

F

R

Y

X

Figure 4: Goal-Keeper in
uence area.� Defender { The defender mission is to move the ball from the vicinity of our goalto the opponents �eld. If possible, it should try to move the ball to the vicinity ofthe MidField or MidForward player. The idea is to return to its original position(D) when the ball is once again in the opponents area (see Figure 5).
D MD MF

L

C

F

R

Y

X

Figure 5: Defender actuation area.� MidField { Like in real soccer, the Mid�eld position player is able to play in avariety of positions. Its in
uence zone lies within the MD and MF areas. Thisplayer natural ability is to receive the ball from its own team �eld and decidewhat to do, based on the other players availability. If a Forward is in the nearvicinity of the opponents goal (F area), the MF should try to pass the ball to it.� MidForward { This player moves between our �eld and the opponents �eld. Al-though its natural in
uence area is MF, it is allowed to follow the ball into our9

L

C

D MD MF F

R

X

Y

Figure 6: MidField players in
uence zone.�eld (see Figure 7). If a Forward player is in a good position, is should try topass the ball to it (if possible).
D MD MF

L

C

F

R

Y

X

Figure 7: MidForward actuation zone.� Forward { The Forward behavior induces the player to be in the F zone (seeFigure 8). If the ball goes into our �eld, the F players mission is to keep trackof the ball, although it should not move out of its zone by own initiative. Whenthe ball moves into the F zone, it must try to take control over it and kick it intothe opponents goal. An alternative consists of letting the Forward players moveup and down the �eld, not across it.Some general considerations:� During the game the players must stay inside their in
uence zones. If anotherteammate is assigned to the same area, the players should be able to negotiate aposition, so that each of them has a well de�ned operation area. This should notprevent players from entering the other area if necessary.10

D MD MF

L

C

F

R

Y

X

Figure 8: Forward actuation zone.� When a pass is not aimed at a player, the corresponding kick should be orientedtowards the emptiest area, i.e., it should try to keep the ball away from theopponent players.4.3 Game StateThe game state refers to either situations reached as a result of the application ofRoboCup rules or to an evaluation of the current game status. State changes areinduced by the time
ow and teams actions during the game.Examples of game states are as follows:Game situations� game-start { This happens in the beginning of the game, after a goal or when thegame restarts after a break.� penalty-for, penalty-against { There are several situations where a penalty shouldbe awarded to one of the teams (check the rules).� game-end { This is signaled by an external event (e.g., two whistle blows).Symbolic evaluation of game status� ball-our-o�eld { The ball is in our possession, i.e., one of our players has ballpossession. The ball is in our �eld.� ball-nour-o�eld { The ball is not in our possession, i.e., none of our players hasball possession. The ball is in our �eld.� ball-our-t�eld { The ball is in our possession, i.e., one of our players has ballpossession. The ball is in the other team �eld.11

� ball-nour-t�eld { The ball is in our possession, i.e., one of our players has ballpossession. The ball is not in our �eld.� losing & close to the end of the game.� ball close to our goal.4.4 Scenarios for Game SituationsPre-de�ned scenarios are usually associated with the game states corresponding togame situations (see above). Examples are:� In a game-start situation the players must move to their pre-determined startpositions (see Figure 9). Precise positioning of players must be accomplished atthis state as they must be correctly positioned prior to the start of the game.After positioning, the players will wait for the external kicko� signal (e.g., awhistle blow) that signals the start of the game.� In the penalty-for situation, the player in charge of penalties must move to thepenalty-shoot position and wait for the start signal, after which it will trigger apre-de�ned penalty-shooting behavior.� When game-end is signaled, all the players must immediately stop.
L

C

D MD MF F

R Figure 9: Players position at game start-up.4.5 Dynamic Strategies and TacticsDuring the game the ball moves in and out of our �eld. Depending on the ball positionand movement direction, the current game state, the result, the number of availableplayers and their behaviors, the opponents positions and the elapsed time, a strategyis de�ned. This is inspired by real soccer. The possible strategies are the following:12

� defense { The ball must be prevented from entering our �eld. If it enters, it mustbe moved into the opponents �eld and ultimately, into its goal. Several defensetactics exist. The one to use is chosen based on some criteria, dependent on thegame state.{ Strong Defense (SD) { This strategy points to creating a continuous, physi-cal barrier between the ball and our goal. It is aimed at avoiding opponentplayers from moving towards our goal; The captain moves all players intodefense positions, i.e., Mid-�elders behavior is changed to Defender behav-ior and Forward players are changed to Mid�eld behavior. Defenders arestill defenders, although some re-positioning may be necessary. When re-positioning, the Defender players should try to avoid to occlude the Goal-Keeper visibility of the �eld, i.e., the DC zone should be free of players (seeFigure 10).
L

C

D MD MF F

R Figure 10: Strong defense positions.{ Medium Defense (MD) { Points towards a strong defense and a good re-covery mechanism, essential for counter-attack. The concept is illustratedin Figure 11. The di�erence between the SD and the MD is that in MDnot all players are moved into our �eld. This gives the possibility of makingthe transition to Counter-Attack easier, as one of the players stays in theopponent �eld.� counter-attack { A counter-attack happens if the team is positioned to move theball quickly into the opponent �eld and score a goal. It requires a Defender, toprevent a possible intersection of the ball by an opponent, a Medium, to passthe ball into the Forward area, and a Forward player to kick the ball into theopponent goal. If the movement is performed without major opposition (i.e.,it does not start moving towards our �eld), it should be changed to an attackmovement. The counter-attack scheme is presented in Figure 12.13

L

C

D MD MF F

R Figure 11: Medium defense positions.

L

C

D MD MF F

R Figure 12: Counter attack and lose defense position.
14

L

C

D MD MF F

R Figure 13: Close attack on the opponents goal.� attack { In an attack movement all team is moved to the front. Besides the GK,there is only one player in our �eld (see Figure 13). This movement requires twoMid�eld players (one in the MD zone and another in MF zone), and one Forward.The idea is to have the ball passed from the M zone into the F zone, where aForward player is to pick it up and kick at the goal.

15

References[1] Alex Drogoul and C. Dubreuil. A distributed approach to n-puzzle solving. InProceedings of the Distributed Arti�cial Intelligence Workshop, 1993.[2] Lynn Andrea Stein. Preaching what we practice: How ai is changing the conceptof computation. AAAI-97 Invited Presentation, July 1997.[3] Lynn Andrea Stein. Interactive Programming In Java. Morgan Kaufmann, 2001.(to appear).[4] Rodrigo M. M. Ventura and Carlos A. Pinto-Ferreira. Problem solving withoutsearch. In Robert Trappl, editor, Cybernetics and Systems '98, pages 743{748.Austrian Society for Cybernetic Studies, 1998. Proceedings of EMCSR-98, Vienna,Austria.

16

