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Abstract

This paper describes three implementations of an
emotion-based agent architecture previously described
in (Ventura & Pinto-Ferreira 1998a; Ventura, Custddio,
& Pinto-Ferreira 1998a; Ventura & Pinto-Ferreira
1998b; Ventura, Custédio, & Pinto-Ferreira 1998b).
This architecture is based upon the Damasio findings
on the neurophysiological foundations of human emo-
tions (Damasio 1994). The underlying model is briefly
described in the first two sections. Then, the imple-
mentations are presented, along with some experimen-
tal results.

Introduction
According to Damasio (Damasio 1994), some aspects

of human intelligence, namely the ability to make
appropriate decisions in dynamic, complex, and un-
predictable environments, depend on emotions. This
paper follows previous theoretical work (Ventura &
Pinto-Ferreira 1998a; Ventura, Custédio, & Pinto-
Ferreira 1998a; Ventura & Pinto-Ferreira 1998b; Ven-
tura, Custddio, & Pinto-Ferreira 1998b) on develop-
ing a prescriptive model of emotion-based agents. This
model is distinguished from the descriptive model pre-
sented by Damasio, which as a consequence, is much
more abstract and complex, in the sense of attempting
to describe the human brain.

To validate the referred theoretical framework, three
implementations were constructed and experimented,
using different approaches. The obtained results are
presented, showing some aspects of the proposed model.

The seminal publications of Sloman (Sloman &
Croucher 1981) and Minsky (Minsky 1988) stated the
need to research emotions in the context of Artificial In-
telligence. However, the field of artificial emotions (or
affective computing, as Picard prefers to name it) only
started to gain some momentum after the publication
of the influential books of Damasio (Damasio 1994) and
Goleman (Goleman 1996).

Some current related work in this field can be found
in (Velasquez 1997), where the approach is based on the
Minsky’s Society of Mind paradigm (Minsky 1988). His
work has evolved thereafter to include Damasio (Dama-
sio 1994) ideas (Velasquez 1998a; 1998b; 1998c). Tak-

ing a robotic learning approach, Gadanho (Gadanho &
Hallam 1998b; 1998a) came up with a model also based
on the Damasio work (Damasio 1994). The OCC the-
ory of emotions (Ortony, Clore, & Collins 1988) has
also served as an inspiration for several Al models of
emotions, such as the Em module of OZ project (Reilly
& Bates 1992; Bates, Loyall, & Reilly 1992), and the
TABASCO architecture (Staller & Petta 1998), based
on the emotion appraisal theory. On the side of affec-
tive computing (Picard 1997), i.e., the human-machine
interaction on an emotional basis, Picard (Picard 1995;
Vyzas & Picard 1998) and Canamero (Canamero 1997)
have developed some interesting research paths.

There are several aspects that distinguish the model
developed by the authors and other approaches. On
the one hand, the model is oriented towards the emer-
gence of artificial emotional behavior from a particular
architecture, without an a priori definition of human-
like emotions. There are a reason for this: the objective
of this research is not explaining human emotions (and
feelings, in the Damasio definition (Damasio 1994)) but
rather creating a theoretical and abstract framework
uncompromised with human emotions. On the other
hand, besides and beyond mimicking emotional behav-
ior, this approach aims at covering more generic aspects
of intelligence, such as primordial meaning (Ventura &
Pinto-Ferreira 1998b), relevance assessment (Ventura,
Custddio, & Pinto-Ferreira 1998a), and decision mak-
ing under partial ignorance. A final concern also in-
cludes efficient response to the environment (Ventura
& Pinto-Ferreira 1998a).

In the following section, the foundations of the model
are briefly described. In section 3, the model is pre-
sented, which will be used in section 4. This papers
ends with some conclusions and related work.

Foundations

The intelligence that distinguishes humans from other
mammals is related with cognitive functions, such as
reasoning, planning, and so on. These abilities are com-
monly associated with the neocortex. But according to
Damasio, even these higher cognitive abilities use emo-
tions to function properly (Damasio 1994).

To explain the role of emotions in rationality, Dama-



sio raises the somatic marker hypothesis (Damasio
1994): certain experienced events left an association
between the perceptual stimulus' and the response it
elicited in the body (e.g., gut feeling). In other words,
some images perceived during the event became marked
with a representation of the body state at that time.
Furthermore, the establishment of somatic marks may
not require the actual presence of stimuli eliciting a
body state. Previous somatic marks can be propa-
gated through associations, for instance. The way this
propagation occurs is not explicit in Damasio litera-
ture (Damasio 1994). While it is essential to a pre-
scriptive model, it may be considered secondary for a
descriptive one.

The Model

The model presented in this paper is based on a double-
representation paradigm previously discussed in (Ven-
tura & Pinto-Ferreira 1998a; Ventura, Custddio, &
Pinto-Ferreira 1998b; 1998a). It is hypothesized that
stimuli are processed under two different perspectives.
The first one extracts a cognitive image aimed at pat-
tern matching and it is rich enough to allow a fairly
good reconstruction of the original stimulus, and the
second one creates a perceptual image that is a sim-
ple, small, reduced set of essential features which are
“meaningful” to the agent in the sense that they form
the built-in substratum (e.g., a vector of features like
size, fast movement, quick approach, dominant color,
etc.). This double representation spawns a major divi-
sion of the model into a cognitive and a perceptual layer
(see figure 1). It is important to stress that although
the term “perceptual” is being assigned to the percep-
tual layer, both layers do respond to perceived stimuli.
The use of the term “perceptual” aims at distinguishing
it from the cognitive kind of processing. The perceptual
processing is centered on a small set of basic features
extracted from an input stimulus.

Besides the perceptual image, there is another rep-
resentation in the perceptual layer termed Desirability
Vector (DV for short). Each one of the DV compo-
nents represents a basic kind of assessment of a stim-
ulus. Each component can be either activated or neu-
tral (varying either discretely or continuously). Neutral
components mean no assessment. But when a certain
component is activated, it means that the stimulus trig-
gers a specific basic assessment, e.g., is it good? is it
bad? Certain basic stimuli are able to trigger, at a first
level, certain components of the DV. For instance, a
threatening stimulus, may activate a “fear” DV com-
ponent, which ultimately generates a fear behavior.

Here follows a summary of how the model works: in
response to an external stimulus, the cognitive and the
perceptual layer process it in parallel. At the perceptual
layer, there is a direct map between stimuli and the DV.

!Also termed image in this paper, including not only
visual images, but also information originating from other
sensors, such as auditory, tactile, and so on.
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Figure 1: The complete picture of the proposed model,
containing all the components discussed in the above
sections.

When the agent is built, a part of this mapping must
already exist, in order to allow it to bootstrap. Further-
more, this map is able to be adaptive. This forms a kind
of implicit memory, termed perceptual memory. On the
other hand, the cognitive processor looks for matches
in the main memory. This memory contains experi-
enced associations, but unlike the perceptual memory,
these associations are individually stored as represent-
ing events?. These associations contain both the cogni-
tive image, the corresponding DV, and the perceptual
image. The origin of this DV comes primarily from
the perceptual layer, but one can also consider propa-
gating DV instances from other associations. This is a
way to allow the agent to associate cognitive images to
DV instances, even when faced with a situation where
the input stimulus does not deliver (in the perceptual
mapping) a significant DV. This memory is here termed
main memory. The working memory holds the input
cognitive image, the DV (and optionally the percep-
tual image), as well as the results from the matching
process (or any other higher-level cognitive processes).
The action, in response to the stimulus (if any) comes
primarily from the DV, although there is provision for
actions originating from the cognitive layer. If the agent
decides on any action, it may produce alterations in the
environment, which can be perceived by the agent as a
feedback stimulus. This new stimulus tells the agent
the result of its action. It is fed into the architecture,
in order to make the agent learn. This learning can be
accomplished at several levels: at the perceptual layer,
it can adapt the perceptual map to be sensible to new
stimuli, and at the cognitive layer, it can mark (one
or more) cognitive images with the DV, along with the
action that led to the environment feedback.

Implementation

This section describes three implementations of the pro-
posed model. The common ground for the implemen-
tations is an episodic environment. Each episode starts
with a stimulus applied to the agent, followed by the

?Note that in the future, other kinds of representations
other than events may take place in this memory.
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Figure 2: Architecture of the damasio implementation.

agent decision/action, and possibly a response from the
environment in the form of a second stimulus.

The damasio implementation

The first implementation is called damasio and it aims
at experimenting the marking mechanism described in
the previous section. To understand the basic idea, pic-
ture a person being frightened by the occurrence of a
thunder. After a quick flash of light, (s)he is stricken by
the scary sound of a thunder. Assume that the group
lightning and thunder can be considered as a single,
complex stimulus because of the short time lapse sepa-
rating these two events. Furthermore, assume that the
lightning is far away from the observer, and as con-
sequence, it only has a relevant cognitive image (low
perceptual relevance) whereas the thunder contains a
strong perceptual impression (because of its intensity).
Of course each of these aspects of the complex stimulus
can be considered as having both cognitive and percep-
tual parts. According to the model, (s)he then forms an
association between the flash of light (cognitive part)
and the thunder (perceptual part). Then, every time
(s)he senses the flash of light alone, the memory of a
thunder is recalled, indicating the scary nature of the
stimulus.

In this implementation, stimuli are delivered to the
agent pairwise: a cognitive stimulus and a perceptual
stimulus, both implemented using bidimensional real
vectors. The rationale is to view the absolute posi-
tion of the vector in the 2D real plane as a cognitive
representation, and to interpret the perceptual vector
in an hardwired fashion: the first and second compo-
nents denote “amounts” of positiveness and negative-
ness of the stimulus. For instance, the stimulus pair
<(2,4);(0.9,0) > denotes a very positive stimulus (con-
sidering the perceptual vector components ranging from
0 to 1) consisting of a point in the plane with coordi-
nates (2,4).

The architecture of this implementation is shown in
figure 2. The agent perceives external stimuli through
two channels: the cognitive part of the stimulus (e.g.,
shape of the lightning), and the perceptual one (e.g.,
the thunder). There is a (short-term) working memory,
where the present input is used to recall past associ-
ations, and an output is obtained; and a (long-term)

main memory, where associations are stored throughout
the agent life. The recalled associations are combined
with the environment input to derive a body response
(labeled “somatic mark”). This body response (labeled
“somatic response”) is used to trigger a decision (pos-
itive or negative, for simplicity — “is it good?” or “is
it bad?”), and to update the association, depending on
its similitude to the stimulus.

The system works as follows: each stimulus corre-
sponds to a pair (cognitive, perceptual) of vectors. The
cognitive vector is copied into the working memory, and
the main memory is browsed for similar vectors. For
simplicity, all associations from the main memory are
considered, but only a pre-defined number of the most
similar ones are chosen and copied to the working mem-
ory. In the working memory, these associations form
frames. A frame contains the recalled association (the
cognitive vector and a mark vector), and the similarity
measure. Next, each of these frames are combined with
the perceptual input. Figure 3 shows this mechanism
in detail.
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Figure 3: Marking mechanism in the damasio imple-
mentation. A body response (“somatic response”) and
an updated mark is computed, from the perceptual in-
put, the old mark, and a similarity measure.

Using the perceptual image, the mark, and the sim-
ilarity measure (termed “relevance”), a body (“so-
matic”) response and an updated mark are computed.
This mark is associated to the originating association,
and supersedes the corresponding association in the
main memory. Note that the incoming stimulus always



forms a new frame in the working memory, and its mark
is initially put to zero (null vector), and the similar-
ity measure put to 1 (maximum similarity). For each
frame F,, (n = 1,2,...), these operations are performed
according to the formulas

R, =Mp+ (1 Ns, M, (1)

M;, =ns, R, (2)

where Ip stands for the perceptual image, M,, and s,
for the frame mark and its similarity measure, R,, the
body response, and M), for the updated mark value.
The rationale behind equation (1) is to linearly inter-
polate between the present perceptual image and the
body response marked on the recalled image, weighted
by the similarity measure s (relevance), which ranges
from 0 (not similar at all) and 1 (maximum similar-
ity). This interpolation is controlled by the A coeffi-
cient (0 < A < 1). The role of s, is to allow the
recalled mark to influence the outcoming somatic re-
sponse R,,, depending on the similarity found between
the present stimulus and the recalled one. Strong marks
on very similar stimulus should elicit higher body re-
sponses than less similar ones. This similarity measure
Sn accounts not only for the cognitive image similari-
ties, but also for the perceptual image. With respect
to (2), the idea is to update the new mark M}, accord-
ing to two coeflicients: the similarity measure (the more
similar the stimulus is, the more it should be updated)
and a learning rate 7.

As it was previously noted, both the cognitive and
perceptual images are bidimensional vectors, as well as
the referred marks. The similarity measure is evaluated
using the following expression:

3

d(u,v) = exp [t\/(u1 Cus)? (o - UQ)Z} (3)

where v = (u1,us) and v = (vy,v2) are the considered
images. The constant ¢ < 0 conditions the decay rate as
u and v become apart. This constant can be interpreted
as a tolerance value  “how much shall I consider this
(non-identical) image pair similar?”. The expression
used for measuring mark similarities is the same. The
total similarity, between the stimulus and the recalled
frame is weighted by £ (0 < & < 1) between these two
measures:

s = &d(Io, 1) + (1 - €)d(Ip, M,) (4)

where Ic and (1) denote the input and the recalled
cognitive images.

The experimental setup for this implementation com-
prises three phases. First, a set of four stimuli was pre-
sented, two of them strongly positive, and the other two
strongly negative. These stimuli are called A1-, A2+,
A8+, and AJ-. The ending signal is + or - depending
on whether they are positive or negative. The location

of the stimuli in the Cartesian plane is shown in fig-
ure 4 as bullets. Positive stimuli have perceptual image
Ip = (0.8,0) while the negative ones have I'p = (0,0.8).
The agent was sequentially stimulated with this set of
four stimuli four times, in order to get them clearly
marked in the agent memory.
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Figure 4: Location of the stimulus cognitive image vec-
tors in the damasio experiment. See text for the exper-
iment description, as well as the used notation.

Next, a series of four stimuli with null perceptual im-
age I'p = (0,0) were applied. These stimuli are denoted
Bi1+, B2-, B3+, and B4-, where the signal now repre-
sents the agent assessment, ¢.e., whether the strongest
classification is positive or negative. As expected, these
results are consistent with the closest stimuli experi-
enced in the first phase. This shows that after the agent
being submitted to a set of “strong” stimuli, it learnt,
and when stimulated with null perceptual image stim-
uli, the agent was able to classify them according to
its previous experience. The output of the implemen-
tation can be seen below, where for each stimulus, the
“strongest” frame n is shown:

o [t 14 [s [ |D]
(7.8) | 0,0 | 89 |03 (02540 | +
(10,9) | (0,0) || (10,8) | 0.494 | (0,0.319)
(0,00 | (0,0) || (-22) | 0247 | (0.160,0) | +
(-1-1) | (0,0) || (-2-3) | 0.286 | (0,0.184)

Finally, an experiment to test the expert discrimi-
nation capability of the agent. A stimulus CI- with
null perceptual image was applied, and as expected,
the agent answered with a negative assessment (closest
to A4-). Then, a positively marked stimulus C2+ was
applied (Ip = (0.8,0)). Two “colorless” (Ip = (0,0))
stimuli, C8+ and C4-, were applied, resulting in a pos-
itive to the first and negative to the second. Given a
new scenario with the new stimulus C2+, the agent an-



swered coherently, showing its ability to discriminate
between C3+ and C4-:

o |t |14 [s [B [D]
0,-3) | (0,0) || (-2,-3) | 0.308 | (0,0.173) | —
0,-3) | (8,0) | (0-3) |1 0.80) |+
(0,-2.5) | (0,0) || (0-3) | 0.685 | (0.384,0) | +
(-2,-2.5) | (0,0) | (-2,-3) | 0.685 | (0,0.332) | —

These experiments were performed setting the pa-
rameters A = 0.3, n = 1, and the working memory
was limited to 5 frames. These constants condition
the behavior of the agent in ways that allow some
interesting considerations on possible interpretations.
For instance, taking the A parameter, which interpo-
lates the somatic response between the perceptual im-
age and the recalled mark, when significantly reduced
(say, A = 0.05), makes the agent less sensible to the
perceptual image, relying more on its past experience
than in present reality. Consider that right after the ini-
tial sequence of stimuli A1 to A4, is applied a stimulus
with cognitive image (10,9) (same as B2) and percep-
tual image set to (0.4,0) (mild positive). With A = 0.3
the agent accepts the new stimulus, assigning a positive
classification (it disregards the “negative experience” of
Al-):

T
| (10,9) | 040) [ 109) [ 1 [ 040) ] + |

om0

But when the A parameter is reduced to 0.05, the agent
disregards now the positive perceptual image, assessing
the stimulus as negative (due to the influence of A1-):

e [ 1 |s [ D
| (10,9) | (0.40) || (10,8) [ 0.404 | (0.0200.433) | - |

How can this behavior be interpreted? The A parame-
ter plays an interesting role of making the agent more
or less trustful of the perceptual, when faced with a
contradictory past experience. This result has some
similarity with a “superstitious” behavior.

This implementation deals only with the marking
mechanism. The stimuli are very basic, not reflecting
the complex nature of the cognitive memory. Further-
more, there is no action (and consequently no percep-
tual feedback). Associations are always done, filling the
agent memory with data that may not be relevant. But
the results are interesting, in the sense of showing the
marking and the memory retrieval mechanisms.

The faces Implementation

This implementation presents several sophistication
over the preceding one. The objective is to experiment
with more complex stimuli models, as well as the envi-

ronment feedback. So, the stimuli (equal to the cogni-
tive images) are a square set of polychromatic pixels (16
by 16). The mapping between the stimulus and the DV
is fixed by design. In fact, the perceptual map discussed
in the section used the perceptual image as an interme-
diate representation. This perceptual image contains a
set, of basic features extracted from the stimulus. These
features are then mapped into the DV. Both maps are
hard-wired.

The agent perception of the environment is limited to
the 16 by 16 pixel images. Each pixel is one of blank
(background), black, green, or red. The agent can
have one of three decisions: none (inaction), accept, or
reject. The perceptual features extracted are: number
of red pixels (assessment of “redness”), number or green
pixels (assessment of “greenness”), and total number of
non-blank pixels (measure of object size). The DV has
three components: three boolean components, indicat-
ing whether or not the stimulus is “good,” “bad,” or
“deadly” (i.e., very dangerous). The perceptual image
is mapped into the DV using a set of thresholds. For
instance, if the total number of pixels is above a pre-
determined threshold, and the number of green pixels is
above another threshold, the “good” components of the
DV is activated. In this implementation, the presence
of green pixels corresponds to a “good” stimulus, while
red pixels denote a “bad” one.

The model of this implementation is depicted in fig-
ure 5. The cognitive layer uses both the cognitive and
the perceptual images to search for a memory match.
The perceptual image is first used to select a limited
set of candidate memory associations (termed memory
frames). Note that this is an implementation of an in-
dexing mechanism raised in the section . From those,
the cognitive image selects the best match. If three
conditions hold, the frame action is selected. Other-
wise, the direct perceptual path is used to derive the
action. These conditions are: there is a match, the dif-
ference measure between the cognitive image and the
memory frame is below a certain threshold. This differ-
ence measure is simply the Hamming distance between
the two images®.

Iee;ining
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Figure 5: Architecture of the faces implementation.

A memory frame contains the cognitive and percep-
tual images, the DV, and an action list. This list con-
sists of pairs (action, future frame), and is used to de-

#The Hamming distance is the number of pixels differing
between the two images. See (Ullman 1996) for a definition
and related issues.
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Figure 6: Screenshot of the faces implementation: a smiling face with some green pixels.

cide on the next action, based on the past experience.
When a memory frame is selected as a match for the
current stimulus, its action list is browsed, and the ac-
tion that leads to the most favorable scenario is cho-
sen. Each scenario is evaluated according to its DV
(the positive component means +1, the negative -1, and
the “deadly” -10; the heuristic to be minimized is the
sum of the values of the corresponding activated com-
ponents). If no match is found, or there is no action
list, the agent acts accordingly to a built-in DV action
map (negative or “deadly” leads to a reject, positive
to an accept, and none otherwise).

After the agent action, the feedback stimulus is ap-
plied to the system, and the resulting memory frame is
stored in the main memory. Furthermore, the action list
of the original stimulus frame (before the action be per-
formed) is updated/set, pointing to the feedback frame.
Next time the agent faces a similar situation where this
frame is recalled, it will know what to expect from the
corresponding action.

An illustrative experiment will be presented below,
consisting of a sequence of stimuli. In the following
screenshots, green pixels are denoted by (B), and red
pixels by (H#). Prior to the agent first stimulus, the
memory is blank. The first stimulus (figure 6) consists
in a smiling face silhouette with some green pixels (a
perceptual positive DV). The agent uses the perceptual
assessment indicating an accept action. The environ-
ment responds with a all-green face (i.e., positive DV).
The corresponding association is formed and stored in
memory.

Next, a colorless face, which is similar to the first one,
is presented (figure 7). The agent recalls the previous
association, and chooses to accept the stimulus. How-
ever, if this stimulus were presented without the former
association, the action would be none — the stimulus
would be mapped by the perceptual layer to a null DV.

An interesting result is obtained when now, a simi-
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Figure 7: Screenshot of the faces implementation: a
similar smiling face all in black.

lar face is shown, containing some red pixels (figure 8).
In this case, the recalled association is used to override
the perceptual impulse to reject the stimulus, so a
accepting it. This case illustrates the role of the cog-
nitive layer in providing a refined response, than the
basic perceptual one. Using the same line of reason-
ing, if this stimulus were shown prior to the first of the
sequence, the agent would reject it.
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Figure 8: Screenshot of the faces implementation:
a similar smiling face but with some red pixels (the
“eyes”).

At last, a different face is shown (with some red pixels,
figure 9), and unlike the previous stimulus, because this
face is “unknown” to the cognitive layer, the action is
reject, following the perceptual negative assessment.

Other experiments were performed with the archi-
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Figure 9: Screenshot of the faces implementation: a
distinct face with some red pixels.

tecture, showing another interesting results. For in-
stance, if the acceptance of the stimulus of the figure 6
had a negative response (e.g., a very “red” face), next
time that same stimulus was presented, the agent would
reject it. When the action resulting from a given stim-
ulus is answered with a negative response, the agent will
not repeat the mistake  other actions are “tried” in a
seek for a better response. The frame that this action
points to has a negative DV, making the agent to avoid
it.

It is very clear in this implementation, the role of the
built-in knowledge. The mechanism that is behind the
agent behavior facing environment stimuli, is encoded
in the perceptual layer. Namely in the perceptual map-
ping between stimuli and the DV. It is on top this layer
that the cognitive layer works. When the simplicity of
the perceptual layer is not enough to cope with a com-
plex environment, the cognitive one jumps in, providing
the “knowledge” gained from past experience.

The decks Implementation

The objective of the decks implementation is to repro-
duce the results of the deck game (figure 10) described
by Damasio ((Damasio 1994) page 212), using the pro-
posed model. This game consists of four decks A
through D. The subject is asked to turn a card, from
a deck of her/his choice, then the (s)he is told whether
that card made her/him lose or gain a certain amount
of (fake) money (from a start loan of $2,000).

In a simplified version of the original game (Bechara
et al. 1994; 1997), decks A and B usually give $100
except for a few cards that make the player lose -$1250,
while decks C and D usually give a lower value of $50
where there are more frequent losses of -$250. The net
profit of decks A and B is negative, while decks C and
D provide a positive one.

In the original experiment (Damasio 1994) normal
people usually started the game trying each one of the
decks, but soon after taking note of the high losses re-
sulted from the A and B decks, they converged taking
cards only from decks C and D. However, patients with
prefrontal lobes lesions, kept on taking cards from the
apparently more profitable decks A and B, insensitive
to the high losses that, now and then, cards from those
decks undertook (figure 10). These patients were unable
to recall the risk of choosing A or B deck cards (i.e.,

its somatic marker), and kept on choosing the imme-

diate higher value of these decks. Damasio called this
phenomenon “myopia for the future” (Damasio 1994).
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Figure 10: Number of selections from each of the decks,
in normal subjects and frontal patients. (From (Dama-
sio 1994) page 215, reprint by courtesy of the author.)

In terms of the implementation, the environment is
episodic, with an environment feedback phase. First,
four stimuli are simultaneously presented to the agent
(four symbols, corresponding to the four decks: A, B,
C, and D; if a deck is empty, it is not presented to
the agent). The agent action is simply the choice of a
deck. The environment responds with the amount of
money gained/lost. Each stimulus encompasses a pair
of symbol and money amount gained (negative, if lost).
In the first phase, the second components of all stimuli
are null (the card amount is obviously hidden). Ounly
after the action the reward associated with the chosen
card is revealed. The perceptual layer only extracts the
money amount (the perceptual image), while the cog-
nitive layer extracts the symbol. The DV has only two
(boolean) components, one for positive and other for
negative assessment of the deck. The mapping between
the perceptual image and the DV activates the posi-
tive component if the amount greater than zero, or the
negative component when it is less than zero.

The model of this implementation is identical the one
represented in figure 1. An important innovation facing
the previous two implementations is the adaptability of
the perceptual layer. Both kinds of learning are im-
plemented: the cognitive event-based learning, and the
perceptual mapping-based learning. When the agent is
faced with the four decks, the perceptual layer is able to
give an immediate assessment of the desirability of each
deck, while the cognitive layer browses the memory for
past events associated with each deck. With all this
information in the working memory, the agent decides
which deck to choose.

The working memory is organized in clusters of
frames. Each cluster corresponds to a specific deck,
and contains the input stimulus (the deck symbol only),



the perceptual frame (the expected perceptual image
and the expected DV, or in other words, the expected
amount of gain/loss), and the frames recalled from
memory (obtained by the cognitive layer). When each
frame is complete, a representative frame is chosen for
each cluster. Then, all the clusters with a negative DV
are rejected, and a deck is randomly chosen from the
remaining ones. In fact, the perceptual value is used to
weight this random choice, in order to make the agent
prefer higher value cards. But if all clusters are re-
jected, then the action is randomly chosen from all the
available decks, also using a weight factor.

After choosing the deck, the environment responds
with a feedback stimulus, now containing not only the
symbol of the deck, but also the amount of money
gained/lost. This information is used to update the
perceptual map (according to a learning rate), and to
add the frame to the main memory, associating the cog-
nitive and the perceptual images, along with the DV
(mapped from the perceptual image, i.e., the amount
of money). This perceptual image can be interpreted
here as the expected gain. In the perceptual layer learn-
ing, the update rule of this expected value is simply:

Vi =0V, + (1 =)V, (5)

where the new memory frame expected value V!, is in-
terpolated between its former value V,,, and the feed-
back value V},, using the learning rate 7.

In order to simulate the behavior of the frontal (ab-
normal) patients playing this game, the agent was pre-
vented from recalling memory frames. Then, the per-
ceptual layer was left alone to decide which deck to
choose, preferring the decks A and B, because of the
most frequent $100 cards. As an example, setting the
learning rate parameter to = 0.001, the obtained re-
sults, shown in figure 11, are similar with the Damasio
experiments results of figure 10.
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Figure 11: Results from the decks implementation.
The average number of picks for each deck is shown.
The average was taken over 200 experiments of 100
turns each. The n parameter was set to 0.001.

These results illustrate the distinct natures of the
learning process performed by each layer. But they are

not to be considered separately. Although the percep-
tual layer is able to work by itself, the same cannot be
said about the cognitive layer. This is because the cog-
nitive layer uses the perceptual representation, in order
to contribute to an overall enriched behavior.

Conclusions and Future Work

One of the interesting results got from the implemen-
tation of the theoretical model is that the developed
agents exhibit a behavior that can be seen as “emo-
tional.” This assertion deserves some explanation. It
was assumed by the authors that the endeavor of for-
mally defining the concept of emotion is not worth pur-
suing  at least in what concerns “artificial emotions.”
(For instance, it is a waste of time to create a defi-
nition of intelligence in order to explain whether an
agent exhibits artificial intelligence or not). From a
behavioral point of view, all the three implementations
show the ability of dealing with unpredictable stimuli,
making adequate decisions efficiently, i.e., without the
need of wasting time in exhaustively analyzing the cog-
nitive aspect of the stimuli. Recall that efficiency is a
characteristic of emotional decision systems (Damasio
1994). This quick response to the environment should
not be confused with the one exhibited by reactive sys-
tems. Although the latter uses the environment as the
sole representational mechanism, the former is able to
build its own associations to learn with the environ-
ment. Other characteristic which can be associated
with emotional decision making is the ability of con-
structing a certain kind of meaning bootstrapped on
top of a basic set of built-in associations. This basic as-
sociations were essential to ensure the adequacy of the
implemented agent decision making process. For exam-
ple, recall that in the decks implementation the agent
decided based on the “semantics” of the perceptual im-
age previously associated with losses and gains.

It is important to note that this model is still unable
to explain certain “high-level” emotions, such as shame
and guilt. The rationale behind the development of this
model is to first cover the most basic aspects of emo-
tions, according to Damasio. In the presented model,
the DV is directly related with action, which it seems it
is not, the case with shame or guilt. It is assumed that
only after most basic aspects of the model are mastered,
one can worry about these “high-level” emotions, which
are more indirectly connected with the agent action.

The model presented in this paper along with the de-
scribed implementations leave open a variety of ques-
tions, possibly leading to some interesting research
paths. In the last implementation, two distinct kinds of
learning were implemented: one in the perceptual layer,
which resembles reinforcement learning in the aspect
of updating through time a set of parameters accord-
ing to a feedback from the environment, and another
at the cognitive layer, which is basically an instance-
based kind of learning (Mitchell 1997). However, these
two learning processes are not independent: they work
together. It would be useful to study the theoretical



implications of having these two learning processes in-
tertwined this way. A second path of research is related
with the inclusion of more complex emotions (e.g., guilt,
shame) which are indirectly related to the agent ac-
tion. Finally, it is necessary to move out of the simple
episodic environments used in the described implemen-
tations, either by applying the model to environments
requiring some elaborative abilities, or by experiment-
ing with real robots in the physical world. In either
case, some useful lessons can be taken from the work of
Piaget (Piaget & Inhelder 1969). His research on child
development provide interesting cues on how progres-
sively complex cognitive abilities appear on top of more
basic ones.

The ultimate goal of this research is to build agents
(namely embodied in physical robots) that are able to
cope with the dynamic and complex environments hu-
mans live in, learn to interact with them, and to show
intelligent behavior in domains for which it was not
specifically programmed. Picture for instance teaching
a robot to play chess, not by developing search algo-
rithms and fine-tuning heuristics, but by showing it an
actual chess board, the pieces, the rules, and allow-
ing it to develop itself by playing, rather than simply
programming it in a way that reflects the ideas of the
programmers.
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