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Chapter 1

Introduction

This report presents and derives the Kalman filter and the Extended Kalman filter
dynamics. The general filtering problem is formulated and it is shown that, un-
der linearity and Gaussian conditions on the systems dynamics, the general filter
particularizes to the Kalman filter. It is shown that the Kalman filter is a linear,
discrete time, finite dimensional time-varying system that evaluates the state esti-
mate that minimizes the mean-square error.

The Kalman filter dynamics results from the consecutive cycles of prediction
and filtering. The dynamics of these cycles is derived and interpreted in the frame-
work of Gaussian probability density functions. Under additional conditions on
the system dynamics, the Kalman filter dynamics converges to a steady-state fil-
ter and the steady-state gain is derived. The innovation process associated with
the filter, that represents the novel information conveyed to the state estimate by
the last system measurement, is introduced. The filter dynamics is interpreted in
terms of the error ellipsoids associated with the Gaussian pdf involved in the filter
dynamics.

When either the system state dynamics or the observation dynamics is non-
linear, the conditional probability density functions that provide the minimum
mean-square estimate are no longer Gaussian. The optimal non-linear filter prop-
agates these non-Gaussian functions and evaluate their mean, which represents an
high computational burden. A non optimal approach to solve the problem, in the
frame of linear filters, is the Extended Kalman filter (EKF). The EKF implements
a Kalman filter for a system dynamics that results from the linearization of the
original non-linear filter dynamics around the previous state estimates.



Chapter 2

The Filtering Problem

This section formulates the general filtering problem and explains the conditions
under which the general filter simplifies to a Kalman filter (KF).

--------------------------------
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Figure 2.1: Typical application of the Kalman Filter

Figure 2.1, reproduced from [4], illustrates the application context in which
the Kalman Filter is used. A physical system, (e.g., a mobile robot, a chemical
process, a satellite) is driven by a set of external inputs or controls and its outputs
are evaluated by measuring devices or sensors, such that the knowledge on the
system’s behavior is solely given by the inputs and the observed outputs. The
observations convey the errors and uncertainties in the process, namely the sensor
noise and the system errors.

Based on the available information (control inputs and observations) it is re-
quired to obtain an estimate of the system’s state that optimizes a given criteria.
This is the role played by a filter. In particular situations, explained in the follow-
ing sections, this filter is a Kalman Filter.
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The general filtering problem may formulated along the following lines. Let

w(k+1) = fla(k),u(k), w(k)) (2.1)
y(k) = hlaz(k),v(k)) (2.2)

be the state dynamics of a general non-linear time-varying system, where

e r € R"is the system state vector,

e f(.,.,.) defines the system’s dynamics,

e u € R™ is the control vector,

e w is the vector that conveys the system error sources,

e y € R" is the observation vector,

e A(.,.,.)is the measurement function,

¢ v is the vector that represents the measurement error sources.
Given

- f, h, the noise characterization, the initial conditions,

- the set of controlsy(0), u(1), ..., u(k —1),
- the set of measurementisg,l), y(1), y(2), ..., y(k),
obtain

- thebest estimateof = (k).

Any type of filter tries to obtain an optimal estimate of the desired quantities
(the system’s state) from data provided by a noisy environment. The concept of
optimality expressed by the worbtiest estimatecorresponds to the minimization
of the state estimation error in some respect.

Taking a Bayesian viewpoint, the filter propagates the conditional probabil-
ity density function of the desired quantities, conditioned on the knowledge of
the actual data coming from the measuring devices, i.e., the filter evaluates and
propagates the conditional pdf

p(z(k)|y(1),...,y(k),u(0),...,u(k —1)) (2.3)
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for increasing values df. This pdf conveys the amount of certainty on the knowl-
edge of the value of (k).

Consider that, for a given time instahtthe sequence of past inputs and the
sequence of past measurements are denoted by

U(I)C_l = {u()a Ui, .- - 7uk—1} (24)
Vo= {yn e, ) (2.5)

The entire system evolution and filtering process, may be stated in the follow-
ing steps, [1], that considers the systems dynamics (2.1)-(2.2):

e Givenzg

- Nature applywy,

- We applyuo,

- The system moves to state,
- We make a measuremept.

e Question: which is the best estimate of ?
Answer: is obtained fromp(z1|Y, UY)

Nature applywy,

- We applyu,

- The system moves to state,
- We make a measuremeyt.

e Question: which is the best estimate 0f?
Answer: is obtained fromp(zz|Y2, Ug)

e Question: which is the best estimate of._?
Answer: is obtained fromp(zy,_, |YF 1, UF™?)
- Nature applywg_1,
- We applyuy.1,
- The system moves to state,

LAlong this textu(i) = u;, y(i) = y; andz (i) = ;.
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- We make a measuremeyt.

e Question: which is the best estimate of,?
Answer: is obtained fromp(zy| Y, UF™)

Therefore, aiming at obtaining the best state estimate, the filter propagates the
conditional pdf for increasing values &f and for eaclk, it obtains the estimate
7, that optimizes a chosen criteria, as represented in the following diagram.

p(x0)

p($1|Y117 U(SJ) -
p(xa| Y, Up) —
: —
ploa |V UF?) —
px Y, UG —

Tg—1
Ty,

Different optimization criteria may be chosen, leading to different estimates
of the system’s state vector. The estimate can be

e themean i.e., the center of the probability mass, corresponding to the min-

imum mean-square error criteria,

e themodethat corresponds to the valuemothat has the highest probability,
corresponding to the Maximum a Posterior (MAP) criteria,

e themedian, where the estimate is the valuexo$uch that half the probabil-
ity weight lies to the left and half to the right of it.

For the conditional pdf represented in Figure 2.2 these criteria leads to different
state estimates. So far, we formulated the general filtering problem. Under a set
of particular conditions related with the linearity of the system (state and obser-
vation) dynamics and the normality of the random vectors involved (e.g., initial
condition, state and measurement noise), the conditional probability density func-
tions propagated by the filter are Gaussian for ekeryhe involved pdf are thus
completely characterize by the mean vector and the covariance matrix. Rather
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Figure 2.2: General conditional pdf

than propagating the entire pdf, the filter only propagates (recursively) the first
and second moments of the conditional pdf. The general filter simplifies to what
is known as the Kalman filter, whose dynamics is be derived in Section 4.

The Kalman filter dynamics will be derived as a general random parameter
vector estimation. The KF filter evaluates the minimum mean-square error esti-
mate of the random vector that is the system’s state.

Results on the estimation of a general random parameter vector are presented
in Section 3.



Chapter 3

Estimation of Random Parameters.
General Results

This section presents basic results on the estimation of a random parameter vector
based on a set of observations. This is the framework in which the Kalman filter
will be derived, given that the state vector of a given dynamic system is interpreted
as a random vector whose estimation is required. Deeper presentations of the
issues of parameter estimation may be found, for example, in [3], [5], [10].
Let
0 e R" (3.2)

be a random vector, from which the available information is given by a finite set
of observations

Vi =[y(1), y(2),..., y(k = 1), y(k)] (3.2)
with no assumption on the dependency betwgghand6.
Denote by

p(0,Y"), p(O]Y}) e p(Y})
the joint probability density function (pdf) df and Y}, the conditional pdf of)
givenY}, and the pdf ofv’}, respectively.

3.1 Problem Formulation

The estimation problem of the random vectbrs stated, in general terms, as
follows: given the observationg1), y(2), ..., y(k), evaluate an estimate 6fi.e.,

0(k) = fly(i), i=1,.. K (3.3)
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that optimizes a given criteria. Common optimization criteria are:
e the mean square error,
e the maximum a posterior.

In the sequel we will consider the mean-square error estimator, and therefore,
the estimated value of the random vector is such that the cost function

JI6(k)] = B[O(k)" 6(k)] (3.4)
is minimized, wherd (k) stands for the estimation error given by
(k) 20— (k). (3.5)
According to the above formulated problem, the estirﬂ@kf) is given by
(k) = argminE[(0 — 0(k))" (6 — 6(k)]. (3.6)

We now show that minimizingZ[0(k)76(k)] relative tod(k) is equivalent to
minimize the condition mea® [0 (k)T 0(k)|Y}] relative tod(k). In fact, from the
definition of the mean operator, we have

/ / p(0,Y)dodY}F (3.7)

wheredf = df,dfs...dd,, anddY} = dy,dy,...dy. Using the result obtained from
Bayes law, (see e.g., [8])

p(8,Y}") = p(8]Y")p(Yy) (3.8)
in (3.7) yields:

E0(k)76( / V 0(k) 0(k)p(0|YF)dd| p(YF)dYE.
Moreover, reasoning about the meaning of the integral inside the square brackets,
results

o0

E[0(k)"0(k)] Z/_ E[0(k)T0(k) Y p(Y})dY".

Therefore, minimizing the mean value of the left hand side of the previous equality
relative tod(k) is equivalent to minimize, relative to the same vector, the mean
value E[A(k)T0(k)|Y] on the integral on the right hand side. Consequently, the
estimation of the random parameter vector can be formulated in a different way,
as stated in the following subsection.



3.2 Problem Reformulation

Given the set of observationg1),y(2), ..., y(k), the addressed problem is the
derivation of an estimator d@f that minimizes the conditional mean-square error,
i.e.,

0(k) = argminE[0 (k)70 (k)[Y7F). (3.9)

Result 3.2.1: The estimator that minimizes the conditional mean-square error is
the conditional mean, [5], [10],

(k) = E[0|Y}). (3.10)

Proof: From the definition of the estimation error in (3.5), the cost function in
(3.9) can be rewritten as

J = E[(6—0(k)" (0 —0(k))|Y}"] (3.11)

or else,
J = E[0T0—0T0(k) —0(k)T0+ 0(k)T0(k)| Y (3.12)
E[676|Y}] — E[07[Y}0(k) — 6(k)T E[0]Y] + E[0(k)T0(k)[Y}]. (3.13)

The last equality results from the fact that, by definition (see (3&)) is a
function of Y/* and thus ) A
E[0(k)|Y!] = 0(k).

If we add and subtradf[67|Y}] E[0]Y}] to (3.13) yields
J = E[0"0)Y{] - EW"[YNEBY] + [0(k) — BBV 0(k) — E[]Y]

where the first two terms in the right hand side do not depend(bn The de-
pendency of/(k) on J results from a quadratic term, and therefore it is immediate
that.J achieves a minimum when the quadratic term is zero, and thus

b(k) = B0V,

which concludes the proof.
O

Corollary 3.2.1 : Consider thatf(Y;") is a given function of the observations
Y. Then, the estimation error is orthogonal f§Y}), 6 — 6(k) L f(Y), this
meaning that R

E[(0 = 0(k))f" (Y)] =0. (3.14)
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Proof: For the proof we use the following result on jointly distributed random
variables. Let: andy be jointly distributed random variables ap,) a function
of y. Itis known that, [8]

Elzg(y)] = E [E(z]y)g(y)] (3.15)

where the outer mean-value operator in the right hand side is defined relative to
the random variablg. Using (3.15) in the left hand side of (3.14) results

E(k) f* (Y] = E[E@F)[YF) 7 (Y]). (3.16)

Evaluating the mean value of the variable inside the square brackets in (3.16)
leads to

El0(k)|YY] = E[0]Y}] — 0(k) (3.17)
becausd (k) is known whenY}* is given. Therefore, (3.17) is zero, from where
(3.14) holds, this concluding the proof.

O
The particularization of the corollary for the case whé(g}) = d(k) yields,

(3.18)

Figure 3.1: Minimum mean-square error orthogond (te)

Figure 3.1 presents a graphical interpretation of the meaning of Corollary 3.2.1
and of its particularization. The space spanned’bys represented by the yellow
area. The parameter vector exact valiyes not known. The information we have
to estimatel is exclusively given by the set of observations, and thereﬁ@k:e
lies in the space generated By 1*. The minimum-mean square error estimator
is such that the estimation error is minimized. From the figure it is evident that
the error is minimum Whe@(k) is the orthogonal projection df in the space
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spanned by Therefore, the estimation erréfk) is orthogonal to the space of
the observations, as expressed in (3.18).

The results derived so far, made no assumptions on the type of the probability
density functions involved. In the next subsection the previous results are partic-
ularized for the Gaussian case.

3.3 Particularization for Gaussian Random Vectors

The Result 3.2.1 is valid for any joint distribution 6fandY}, i.e., it does not
particularize the joint pdf of these variables.

It is well known from the research community dealing with estimation and
filtering theory that many results simplify when assuming that the involved vari-
ables are Gaussian. This subsection discusses the simplifications resulting from
considering thaf andY} in Result 3.2.1 are jointly Gaussian.

Result 3.3.11f # e Y}* are jointly Gaussian random vectors, then,

BIO|YF] = El0] + Ryp B YT — B[V, (3.19)

where
Ryyr = E[(0—E0)(Y — E(Y{)T, (3.20)
Ryryr = E[(Y] = E(Y")(YF = E(Y])']. (3.21)

The previous result is very important. It states that, wheny* are jointly
Gaussian, the estimatior 6that minimizes the conditional mean-square error is a
linear combination of the observations. In fact, note that (3.19) may be rewritten
as

k
E0|Y{] = f(E(0), E(Y)) + > Wi, (3.22)
=1
making evident the linear combination of the observations involved.
Whend andY}, are not jointly Gaussian then, in general terda§]|Y}*] is a
non linear function of the observations.

Result 3.3.2In the situation considered in Result 3.301k) is an unbiased esti-
mate of9, i.e., R
E0(k)] = EF). (3.23)
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Result 3.3.3In the situation considered in Result 3.301k) is a minimum vari-
ance estimator.

Result 3.3.4 In the situation considered in Result 3.391) andd (k) are jointly
distributed Gaussian random vectors.

For the proofs of the three previous results see [5]. A result, related with
Result 3.3.1, is now presented.

Result 3.3.5 Consider that? e Y;* are not jointly Gaussian, butF[¢], E[Y}"],
Rykyr and Ry are known. Then, thinear estimator that minimizes the mean
square error is (still) given by

(k) = E[] + Roy Ryt (Y = BIY!]) . (3.24)

Note that the minimization in Result 3.3.5 is subject to the constraint of having
a linear estimator while in Result 3.3.1 no constraint is considered. If the linear
estimator constraint in Result 3.3.5 was not considered, the minimum mean square
error estimator will generally yield an estima?ték) as anon-linear function of
the observations.
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Chapter 4

The Kalman Filter

Section 2 presented the filtering problem for a general nonlinear system dynamics.
Consider now that the system represented in Figure 2.1 has a linear time-varying
dynamics, i.e., that (2.1)-(2.2) particularizes to,

ye = Crap+vp 4.2)

wherez(k) € R™, u(k) € R™, w(k) € R",v(k) € R", y(k) € R", {wx} and
{vi } are sequences of white, zero mean, Gaussian noise with zero mean

Elwy] = Efv] =0, (4.3)

and joint covariance matrix

E K ”‘5: > (w,{U,{)] = { %’“ ng } . (4.4)
The initial state;,, is a Gaussian random vector with mean
Elzo] = %o (4.5)
and covariance matrix
E[(xo — Zo)(z0 — To)'] = 0. (4.6)

The sequencéu, } is deterministic.
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The problem of state estimation was formulated in Section 2. It can also be
considered as the estimation of a random parameter vector, and therefore the re-
sults in Section 3 hold.

For the system (4.1)-(4.2), the Kalman filter is the filter that obtains the min-
imum mean-square state error estimate. In fact, whénis a Gaussian vector,
the state and observations noise$) andv(k) are white and Gaussian and the
state and observation dynamics are linear,

1. the conditional probability density functiopér;,)| Y}, U ™') are Gaussian
for anyk,

2. the mean, the mode, and the median of this conditional pdf coincide,

3. the Kalman filter, i.e., the filter that propagates the conditionabpef) |Y;*, UF ™)
and obtains the state estimate by optimizing a given criteria, is the best filter
among all the possible filter types and it optimizes any criteria that might be
considered.

Let
plai)|YF, Ug™") ~ N (@(k[k), P(k|k)) (4.7)
represent the conditional pdf as a Gaussian pdf. The state estifiate is the
conditional mean of the pdf and the covariance maktiX|k) quantifies the un-
certainty of the estimate,

i(klk) = Elx(k)Yy, U]
P(klk) = EBl(x(k) — @(klk))(x(k) — 2 (k|k) "IV, U5,

Therefore, rather than propagating the entire conditional pdf, the Kalman filter
only propagates the first and second moments. This is illustrated in Figure 4.1.
Subsection 4.1 derives the filter dynamics in terms of the mean and covariance
matrix of the conditional pdf, i.e., it shows how the filter propagates the mean and
the covariance matrix. This dynamics is recursive in the sense that to evaluate
z(k + 1|k + 1), the Kalman filter only requires the previous estimaig;| k) and
the new observation(k + 1).

4.1 Kalman Filter dynamics

Whenuwy, w, andz, are Gaussian vectors, the random vectorszy, 1, Y/* are
jointly Gaussian. As discussed before, the Kalman filter propagates the Gaussian
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general filter Kalman-filter

P(xo) P(xq)
pOX, Y/, U7) Elx, | Y, U= %(1]1) PA|1)

p(x, | Y:,UD) E[x, | Y2,U] = %(2]2) P(2]2)
PO, Y7L U) Ex,. 1YW 1=%(k-11k=1)  Plk-1lk-1)
p(x, [Y/,U77) B¢ 1Y, U] =K1K Pk |K)

Figure 4.1: Propagation of the conditional pdf: General filter and Kalman filter

pdf p(z;,)|Y{, UF™) and therefore the filter dynamics defines the general transi-
tion from p(z) [V, US 1) 10 plags) Vi, UE)

Y ={y, Y Yt N = W)
U ot} =)
p(xk | Y1k ) UEA) > p(Xm Y1k+1!U;)

where both pdf are Gaussian and the input and observation information available
at time instant: andk -+ 1 are displayed. Rather than being done directly, this tran-
sition is implemented as a two step-procedure, a prediction cycle and a filtering or
update cycle, as represented in the diagram of Figure 4.2, where

ka =Yoo Vit wa = {Y1k: Vit
U™ = {ug, Uy, Ui} Up = {Us "}
SJC O A V) E— > P0G | YL UG)

Prediction cMFiltering cycle

“P(Xpr | YE,UE)

Y1k ={¥, Yo Yl
Us ={U5 " u}

Figure 4.2: Prediction and Filtering cyles in the Kalman Filter dynamics
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= o+ gk K2 p e
pOx YU P | Y7,U5) Pz | Y75 U5T)
« *
. filtering .,/ Ry filtering
prediction ; [Redisien s
YUK ' % b vE !
P | Y7, U5) PG | Y7, UpT)

Figure 4.3: Consecutive prediction and filtering cycles on Kalman Filter dynamics

o p(zp1|YE, UE), defined for time instant + 1, represents what can be said
aboutz(k + 1) before making the observation(k + 1).

e The filtering cycle states how to improve the informatiomgh + 1) after
making the observation(k + 1).

In summary, the Kalman filter dynamics results from a recursive application of
prediction and filtering cycles, as represented in Figure 4.3.

Let

plan Y, Us™Y) ~ N (@(klk), P(k[k)) (4.8)
p(aia| Y, UG) ~ N(@(k +1]k), P(k + 1]k)) (4.9)

wherez(k|k) ez(k + 1|k) are given by
p(klk) = Elz(k)|Yy, Uy'] (4.10)
(k+1k) = Elx(k+ 1Yy, UY (4.11)

and

P(klk) = BEl(zx — @ (klk))(ze — 2(k[K))T|Y, U] (4.12)

P(k+1]k) = El(zrr — &k + 1k) (@r1 — 2(k + 1]5) Y], U)4.13)

For the derivation of the filter's dynamics, assume, at this stagepthat’*, Uz ),
is known, i.e.,z(k|k) and P(k|k) are given.

Step 1 Evaluation ofp(zy1|Y}F, UF) | State PREDICTION
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This Gaussian pdf is completely characterized by the mean and covariance
matrix. Applying the mean value operator on both sides of (4.1), yields

Elapi|VE, U] = AcEley|YE, U+ BuElu YE, US4 Gl YE, U], (4.14)

Taking (4.8) and (4.9) into account, considering thate Y} are independent
random vectors and that, has zero mean, we obtain:

Defining theprediction error as
F(k+ 1K) 2 ok + 1) — 2(k + 1]k) (4.16)
and replacing in this expression the values 0f 4+ 1) andz(k + 1|k) yields:

Zi(k‘ + 1|k’) = Apxi + Bruy + Grwy, — Akiﬁ(k‘w{i) — Bruy, = Akf(k?%) + Grwy,
(4.17)
where thdfiltering error was defined similarly to (4.16)

#(k|k) £ 2(k) — 2(k|K). (4.18)
Given thatz(k|k) andwy are independent, from (4.17) we have
E[2(k+1k)Z(k 4+ 11k)T Y, U = ApE[2(k|E)|YF, UY AL + GLQGT. (4.19)
Including in (4.19) the notations (4.12) and (4.13) results:
P(k 4 1|k) = ApP(k|k) AL + GrQiGT. (4.20)

The predicted estimate of the system'’s state and the associated covariance ma-
trix in (4.15) and (4.20), correspond to the best knowledge of the system’s state at
time instantt + 1 before making the observation at this time instant. Notice that
the prediction dynamics in (4.15) follows exactly the system’s dynamics in (4.1),
which is the expected result given that the system noise has zero mean.

Step 2 Evaluation ofp(y1|Y}, UE) | Measurement PREDICTION

From (4.2), it is clear that
Pyea |V, UY) = p(Crmrmiss + vea [V, UY) (4.21)
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and thus, as this is a Gaussian pdf, pnedicted measurements given by
§(k +1|k) = Elyp1 YL, UF] = Criadpsn- (4.22)
Defining the measurement prediction error as
Gk +11k) 2 yor — 5k + 1k), (4.23)
and replacing the values gtk + 1) andy(k + 1|k) results:
gk + 1|k) = Crr2(k + 1|k) + vps1. (4.24)
Therefore, the covariance matrix associated to (4.24) is given by
Py(k +1|k) = Cya P(k + 1|k)CLy + Ry (4.25)
Multiplying z1 on the right byj(k + 1|k)T and using (4.24) we obtain:
e §’ (k4 1k) = zpd(k 4+ 1[k) Oy + apaviy,

from where
Elzy13" (k4 1|k)] = P(k + 1]k)Ci . (4.26)

Given the predicted estimate of the state at time instant1 knowing all the
observations untit, z(k-+1|k) in (4.15), and taking into account that, in the linear
observation dynamics (4.2) the noise has zero mean, it is clear that the predicted
measurement (4.22) follows the same observation dynamics of the real system.

Step 3 Evaluation ofp(xy Y, Uf) FILTERING

To evaluate the conditional meangf,; note that

Vit e Y, gk + 1|k)}
are equivalent from the view point of the contained information. Therefore,
Elrp Y™ UY = Blora |V, gk + 1]k), U] (4.27)

On the other handy}* andg(k + 1|k) are independent (see Corollary 3.2.1 in
Section 3) and therefore

Bk + 11k + 1) = Ela(k + DY + Elagg, g7 (k + 1k) Py §(k + 1]k)
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which is equivalent to,

E(k+1k+1) = 2(k+1|k)+P(k+1[k) Ol [Copr P(k+11k)CL L+ Ry (k41) = Cror & g1y
(4.28)
Defining the Kalman gain as

K(k+1) = P(k+1|k)C{L, [Crya P(k + 1|k)CE, + R (4.29)
equation (4.28) may be rewritten as

#(k+1|k+1) = 2(k+1|k)+P(k + 1k)CL [Char P(k + 1|k)Cly + R 7 [y(k + 1) — Crar@yam)]

K (k+1 G(k+1k)
(4.30)

t(k+1lk+1) =2(k+1k) + K(k+ 1)[y(k +1) = Cor1Zksapy]  (4.31)

from where we can conclude that, the filtered state estimate is obtain from the
predicted estimate as,

]filtered state estimate = predicted state estimate + Gain * .Error

The Gain is the Kalman gain defined in (4.29). The gain multiplies the error. The

error is given byy(k + 1) — Cri1Z k411 ), i.€., is the difference between the real

measurement obtained at time instanrt 1 and measurement prediction obtained

from the predicted value of the state. It states the novelty or the new information

that the new observatiay(k + 1) brought to the filter relative to the staték +1).
Defining the filtering error as,

B+ 1k+1) 2 a(k+1) — 2(k + 1)k + 1)
and replacing in (4.28) yields:
F(k+1|k+1) = Z(k+1|k)— P(k+1|k)CLa [Crit PeyipCro +R) 7 Cro1 Z (k411 k) +vps1]
from where
P(k+1|k+1) = P(k+1|k)—P(k+1|k)CL. [Cri1 PoripCis +R) ™ Cppr P(k+1]K).

(4.32)
Summary:

| Predictiony
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P(k+1[k) = ApP(k|k)A} + GrQGY, (4.34)
T(klk) = @(klk —1)+ K(k)[y(k) — CrZxp-1] (4.35)
K(k) = P(klk —1)CF[CLP(k|k — 1)CT + R (4.36)
P(klk) = [I - K(k)CyP(k|k —1) (4.37)

[ Initial conditions

2(0] = 1) =z (4.38)
PO]—1) =%, (4.39)
lu(k)
Bk
) m o
yik) + K( ++T k| k) . Delay Fik k-1
|
T 1) Ck )

Figure 4.4: Block diagram of the Kalman filter

Figure 4.4 presents the block diagram of the Kalman filter. We list a number
of important properties of the Kalman Filter:

e the Kalman Filter is a linear, discrete time, finite dimensional time-varying

system, whose inputs are the system inputs, v, ...,us_1, and the
system measurements, v, ..., yx. The outputis the processk|k —1)
or z(k|k),

e The conditional error covariance matrix

P(klk —1) = Bl(x(k) — @(klk — 1) (2(k) — @ (klk — 1))y U5
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is actually independent af*~!, which means that no one set of measure-
ments helps any more than other to eliminate some uncertainty affout
The filter gain,K (k) is also independent &f"~*. Because of this, the error
covarianceP(k|k — 1) and the filter gairi(k) can be computed before the
filter is actually run. This is not generally the case in nonlinear filters.

Some other useful properties will be discussed in the following sections.

4.2 One-step ahead prediction dynamics

Using simultaneously (4.33) and (4.35) the filter dynamics is written in terms of
the state predicted estimate,

2k + 1|k) = Ag[T — K(k)Cyla(klk — 1) + Byup + A K (k) (4.40)

with initial condition

(0] — 1) = 7 (4.41)

where,
K(k) = P(klk—1)CL[CLP(k|k —1)CF + R]™* (4.42)
P(k+1k) = AP(klk— 1AL — A(k)K(E)CLP(k|k — 1)A(K)T + GLQ@.43)
PO[=1) = % (4.44)

Equation (4.44) may be rewritten differently by replacing the gdifk) by its
value given by (4.42),
P(k+1]k) = ApP(k|k—1) AT +GQGE — A P(k|k—1)CL[Cy P(k|k—1)CT +R) " *C P(k|k—1) AT
(4.45)
or else,

P(k+1|k) = AP (k|k—1) A} +G1QGE — A K (k) [Ch P(k|k—1)CF+RI K™ (k) A}
(4.46)
which is a Riccati equation.
From the definition of the predicted and filtered errors in (4.16) and (4.18),
and the above recursions, it is immediate that

Fk+1k) = AF(kk) + Grwy (4.47)
F(k|E) = [I— K(&)Cakk — 1) — K(k)v, (4.48)
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Figure 4.5: Block diagram of the Kalman filter prediction dynamics

from where it is possible to write the dynamics of the one-step prediction error,

Evaluating the mean of the above equation, and taking into accounutheatd
v, are zero mean sequences, yields,

El#(k + 1|k)] = AT — K (k)CyE[#(k|k — 1)]. (4.50)

showing that it satisfies an homogeneous dynamics.
The one step-ahead prediction dynamics of the Kalman filter is represented in
Figure 4.5.

4.3 Kalman filter dynamics for a linear time-invariant
system

Consider now that the linear system (4.1)-(4.2) is time-invariant, Ag.= A,
Bk = B, Gk = G, Ck = C, Vk >0, and tha@k = Q, Rk =R, i.e.,

u = Cap+ v (4.52)

with wy and v, mutually independent sequences of zero mean white Gaussian
noise with joint covariance matrix

E K f}’: ) (w,{v,{)} = { %2 %1 . (4.53)



The initial condition,z(0) is Gaussian with meafy, and covariance,.
The Kalman filter dynamics is obtained by the particularization of the general
time-varying dynamics for the time-invariant situation, i.e.,

&k + 1k) = Az(k|k — 1) + Buy, + K (k)[yx — CZxj—1] (4.54)

K(k) = P(klk — 1)CT[CP(klk — 1)CT + R]™* (4.55)

P(k+1|k) = AP(k|k — 1) AT + GQG™ — AK (k)[CP(k|k —1)CT + RIK™ (k) A
(4.56)

Note that, even though the original system is time-invariant, the Kalman Filter is
atime-varying linear system, given that in (4.54) the Kalman gain is a function
of k.

Equation (4.56) is known as a discrete Riccati equation. In the sequel, we
discuss the conditions under which the Riccati equation converges.

Under certain conditions, detailed in the following subsection, the Kalman
gain converges to a steady-state value. The corresponding filter is known as the
steady-state Kalman filter.

4.4 Steady-state Kalman filter

Consider the system dynamics (4.51)-(4.52) and assume the following additional
assumptions:

1. The matrixQ = Q7 > 0, i.e., is a positive definite matrix,
2. The matrixk = RT > 0, i.e., is a positive definite matrix,
3. The pair(A, GG) is controllable, i.e.,

rank|G | AG | A’G | ... | A" *G] =n,
4. The pair(A, C) is observable, i.e.,

rank[CT | ATCT | AT°CT | ... | AT CT) = .

Result 4.4.1 Under the above conditions,
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1. The prediction covariance matriX(k|k—1) converges to a constant matrix,

lim P(k|k —1) = P

whereP is a symmetric positive definite matriR,= P > 0.

2. P is the unique positive definite solution of the discrete algebraic Riccati
equation
P = APA"T — APCT|CPCT + R]7'CPA” (4.57)

3. Pisindependent of, provided thatZ, > 0.

Proof: see [2].
As a consequence of Result 4.4.1, the filter gain in (4.55) converges to

K = lim K(k) = PCT[CPCT + R]™* (4.58)

k—oo

i.e., in steady-state the Kalman gain is constant and the filter dynamics is time-
invariant.

4.5 Initial conditions

In this subsection we discuss the initial conditions considered both for the system
and for the Kalman filter. With no loss of generality, we will particularize the
discussion for null control inputsy, = 0.

System
Let
Thy1 = Al‘k + ka, k > 0 (4 59)
Yy = Cup+ vy '
where
Yo = E[(zo— Zo)(xo — To)"] (4.61)

and the sequencés; } and{wy} have the statistical characterization presented in
Section 2.
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Applying the mean value operator to both sides of (4.59) yields
E[l‘k_H] = AE[IL’]f]

whose solution is
Elxy) = AFzy. (4.62)
Thus, ifzg # 0, {zx} is not a stationary process. Assume that the following hy-
pothesis hold:
Hypothesis zq =0
The constant variation formula applied to (4.59) yields

-1
w(l) = A (k) + > AT Gy (4.63)

j=k
Multiplying (4.63) on the right by:” (k) and evaluating the mean value, results:
Elz(D)2” (k)] = A*Elx(k)z(k)T],1 > k.

Consequently, for:(k) to be stationaryF|x(I)x™ (k)] should not depend oh.
EvaluatingE [z (k)z(k)T] for increasing values of we obtain:

E[z(0)z(0)T] = % (4.64)

Elz(D)z(1)T] = E[(Az(0) + Gw(0))(z" (0) AT + v’ (0)GT)] = A%y AT + GQG{4.65)

Elz(2)2(2)T] = AE[(z(1)z(1)T]AT + GQGT = A2%,A% + AGQGT AT + GQ#'66)
from where

Elz(k)z(k)"] = AE[(z(k — Dz(k — D)T)AT + GQG™. (4.67)
Therefore, the proceds: } is stationary if and only if
Yo = AN0AT + GQGT.

Remark, however, that this stationarity condition is not required for the applica-
tion of the Kalman filter nor it degrades the filter performance.

Kalman filter

26



The filter initial conditions, given, for example, in terms of the one-step pre-
diction are:

0] -1) = (4.68)
PO|-1) = X, (4.69)

which means that the first state prediction has the same statistics as the initial
condition of the system. The above conditions have an intuitive explanation.In
the absence of system measurements (i.e., formally at time iristant-1), the
bestthat can be said in terms of the state prediction at time in$t@that this
prediction coincides with the mean value of the random vector that is the system
initial state.

As will be proved in the sequel, the choice of (4.68) and (4.69) leads to un-
biased state estimates for &ll When the values of, and X, are not a priori
known, the filter initialization cannot reflect the system initial conditions. A pos-
sible choice is

20]=1) = 0 (4.70)
PO|-1) = Py=al. (4.71)

4.6 Innovation Process

The process
e(k) = y(k) — y(klk — 1) (4.72)

is known as the innovation process. It represents the componeg(t pothat can-
not be predicted at time instaht- 1. In other others, it represents the innovation,
the novelty that/ (k) brings to the system at time instantThis process has some
important characteristics, that we herein list.

Property 4.6.1 The innovation process has zero mean.

Prof:
Ele(k)] = Ely(k) — j(k|k — 1)]
= FE[Czx(k)+v(k) — Cz(k|k —1)]
= CE[z(k|lk—1)]
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given that{v, } is zero mean. For a time-invariant system, the prediction error dy-
namics is given by (4.50) that is a homogeneous dynamics. The same conclusion
holds for a time-invariant system. Fbr= 0, E[z(0| — 1)] = 0 given that

E[z(0] = 1)] = Elxo] — (0] - 1)

and we choosé& (0| — 1) = 7, (see 4.38). Therefore, the mean value of the
prediction error is zero, and in consequence, the innovation process has zero mean.
O

The above proof raises a comment relative to the initial conditions chosen for
the Kalman filter. According to (4.50) the prediction error has a homogeneous
dynamics, and therefore an initial null error leads to a null error for ekerlf
Zo|—1 # Zo the initial prediction error is not zero. However, under the conditions
for which there exists a steady solution for the discrete Riccati equation, the error
assimptotically converges to zero.

Property 4.6.2 The innovation process &hite.

Proof: In this proof we will consider that,_; = 7o, and thusEe(k)] = 0, i.e.,
the innovation process is zero mean. We want to prove that

Ele(k)e’ ()] =0

for k # j. For simplicity we will consider the situation in which= k + 1; this
is not the entire proof, but rather a first step towards it. From the definition of the
innovation process, we have :

e(k) = Cz(klk — 1) 4+ v
and thus
Ele(k)e"(k+1)] = CE[E(klk —1)Z(k+ 1k)]CT + CE[Z(k|k — 1)v,_4]
+E[v 2" (k + 1|k)]CT + Elogvi,] (4.73)

As {v} has zero mean and is a white process, the second and fourth terms in
(4.73) are zero. We invite the reader to replace (4.33) and (4.35) in the above
equality and to conclude the demonstration.

Property 4.6.3
Ele(k)eT (k)] = CP(klk — 1)CT + R

Property 4.6.4
lim Ele(k)e” (k)] = CPCT + R

k—o0

28



4.7 The Kalman filter dynamics and the error ellip-
soids

In previous subsections we demonstrate that,

p(x(k +1)|YF, UD ~ N (&(k + 1|k), P(k + 1]k))
p(z(k + DY UE ~N(@(k+ 1|k +1), P(k+ 1|k +1)).

Moreover, according to known results on Gaussian random vectors, [9] it is known
that

[2(k+1) — 2k + 1)) Pk + 1) ok +1) —2(k+ 1|k)] < K

[k +1) -2k +1Uk+ D))" Pk +1k+1) a(k+1)—2(k+1k+1)] < K

represent contours of equal probability of the random variable around its mean
value.

All the pdf involved in the Kalman filter are Gaussian, and therefore, associ-
ated with the filter dynamics, we may consider the corresponding locus of equal
probability around the predicted and estimated values of the state, that constitute
the mean of the conditional pdf that the filter propagates.

Figures 4.6 and 4.7 illustrate that interpretation. In these figures the ellipses
represent the contour of equal probability (in the particular case of second order
Gaussian random variables) around the mean, the dashes lines corresponds to the
actual filter dynamics that involves the mean values and the solid lines represent
the exact values of the random variables (the ones that the filter estimates).
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Prediction cycle

P(k k)

Pik +1| k)

*(k+1[Kk)

o

g1 = Akxk o Bkuk i kak
Xk +1]k) = Apkik | K)+ Byuy,

P(k +1]k) = Ak Pk [WA | + GxQyG,
Figure 4.6: Error ellipsoid propagation in the Kalman filter prediction cycle
Filtering cycle xe+ 1[k+1) = Xk + 1] k) + Kk + The(k + 1)

Pk + 1]k + 1) = P(k + 1K) K(k + 1)Cy 1Pk + 1] K)
P(k +1]k)

£1]k+1)

1

Sk +1)

. Pk +1|k+1)
N Ckuak(k+1]k)

k1= Yke1 — CraX(k + 1[K)
Yice1 S(k + 1) = Ci, P(K + 1| K)Ck 1 + R, 1
Yier1 = Gl 1Xket + Vi1

Figure 4.7: Error ellipsoid propagation in the Kalman filter filtering cycle
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Chapter 5

The Extended Kalman Filter

In this section we address the filtering problem in case the system dynamics (state
and observations) is nonlinear. With no loss of generality we will consider that
the system has no external inputs. Consider the non-linear dynamics

Tpr1 = fu(zr) + wg (5.1)
Y = hk(l’k) + Uk (52)
where,
v € R", felzy) : R",— R"
Y € R" hk(l'k) R — R"
v € R (5.3)
W € R™

and {v}, {w,} are white Gaussian, independent random processes with zero
mean and covariance matrix

Elvpvg] = Ry,  Elwrer] = Qy (5.4)
andzx is the system initial condition considered as a Gaussian random vector,
Ty ~ N(To, Eo)

LetYF = {y1, v, ..., yx} be a set of system measurements. The filter’s goal is
to obtain an estimate of the system’s state based on these measurements.

As presented in Section 2, the estimator that minimizes the mean-square error
evaluates the condition mean of the pdfzqfgiven Y}*. Except in very partic-
ular cases, the computation of the conditional mean requires the knowledge of
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the entire conditional pdf. One of these particular cases, referred in Section 4, is
the one in which the system dynamics is linear, the initial conditional is a Gaus-
sian random vector and system and measurement noises are mutually independent
white Gaussian processes with zero mean. As a consequence, the conditional pdf
p(z(k) | ), p(z(k +1) | Y}F) andp(z(k + 1) | Y}*!) are Gaussian.

With the non linear dynamics (5.1)-(5.2), these pdf are non Gaussian. To
evaluate its first and second moments, the optimal nonlinear filter has to propagate
the entire pdf which, in the general case, represents a heavy computational burden.

The Extended Kalman filter (EKF) gives an approximation of the optimal es-
timate. The non-linearities of the systems’s dynamics are approximated by a lin-
earized version of the non-linear system model around the last state estimate. For
this approximation to be valid, this linearization should be a good approximation
of the non-linear model in all the uncertainty domain associated with the state
estimate.

pOxic | YR UE) %k ) —————

linearize Xj+1 = fic (X, Ui )+ Wi
Apply KE around X(k |k)
Aynamics

P4 | Y UE) ——— k(k+1]k) —

linearize 2k*1 = Mot (ier)+ Vicrs
around X(k+1]k)
W

ling amics

PO 1 | YU (ke 1]k+ D

prediction cycle

filtering cycle

Figure 5.1: Extented Kalman filter dynamic concept

Figure 5.1 represents one cycle of consecutive prediction and filtering updates
with the consecutive pdf transitions,

p(|YF, UF™) — plaea| Y, UY) — plaea |V, UF)

Rather than propagating the non Gaussian pdf, the Extended Kalman filter consid-
ers, at each cycle, a linearization of the non-linear dynamics (5.1)-(5.2) around the
last consecutive predicted and filtered estimates of the state, and for the linearized
dynamics, it applies the Kalman Filter.

One iteration of the EKF is composed by the following consecutive steps:
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1. Consider the last filtered state estimatg|k),
2. Linearize the system dynamies,.; = f(zx) + wy aroundz(k|k),

3. Apply the prediction step of the Kalman filter to the linearized system dy-
namics just obtained, yielding(k + 1|k) and P(k + 1|k),

4. Linearize the observation dynamigg,= h(xy) + vy, aroundz(k + 1]k),

5. Apply the filtering or update cycle of the Kalman filter to the linearized
observation dynamics, yieldingk + 1|k + 1) andP(k + 1|k + 1).

Let F'(k) andH (k) be the Jacobian matrices 6f.) andh(.), denoted by

F(k) = fe lawr
H(k+1) = h|e@rm

The Extended Kalman filter algorithm is stated below:

Predict Cycle

>

(k+1k) = fe(2(k[k))
Pk+1k) = F(k)P(k|k)FT(k)+ Q(k)

Filtered Cycle

Fk+1k+1) = 2(k+1k) + Kk + Dyprr — b (2(k + 1]k))]
Kk+1) = Pk+1UkH" (k+1)[HE+ 1P+ 1k)H"(k+1)+ R(k+ 1)
Plk+1k+1) = [I-K(k+1)H(k+1)]P(k+1|k)

It this important to state that the EKF is not an optimal filter, but rathar it is
implemented based on a set of approximations. Thus, the maffiggs) and
P(k + 1|k) do not represent the true covariance of the state estimates.

Moreover, as the matrices(k) and H (k) depend on previous state estimates
and therefore on measurements, the filter ga{) and the matrice®(k|k) and
P(k + 1|k) cannot be computed off-line as occurs in the Kalman filter.

Contrary to the Kalman filter, the EKF may diverge, if the consecutive lin-
earizations are not a good approximation of the linear model in all the associated
uncertainty domain.
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5.1 Derivation of Extended Kalman Filter dynamics

This subsection presents the formal derivation of the EKF dynamics.
Prediction

Assume thap(z, | Y}) is a Gaussian pdf with meayf. * and covariance
matrix Vi, i.e.,

play | Y1) ~ N(z =g, VE) = N(ay, — @(k[k), P(k|k)). (5.5)
From the non-linear system dynamics,

Trp1 = fe(Tr) + wp, (5.6)

and the Bayes law, the conditional pdfaf,; givenY} is given by

o

p(IkH | Ylk) = / p(IkH | xk)p(fk | Y1k)da7ka

—00

or also,

o0

Pl | YF) = / po(tren — fulen)plee | Yz, (5.7)

— 00

where

277)”/2[;et@k]1/2 eXp[—%(fﬂkH — fi(@) T Qp  (@rrr — fiolzi))].
(5.8)

Puwy, (karl - fn(xk)) = (

The previous expression it a Gaussian pdf given the nonlinearity :in.
We will linearize f,(x;,) in (5.6) aroundyy., = Z(k | k) negleting higher order
terms, this yielding

felwe) = fr(nf) + <V f | - [k — )

Sk

= [ixp) = fx lup. 0E 7 Sr Ly e (5.9)
wherevyy f; is the Jacobian matrix of(.),
_0f(x(k))

V fx “oulh) [t

IF - refers filtering
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With this linearization, the system dynamics may be written as:

Trar = Vo |y wx w4 [fu(p) = 7 fi g 18] (5.10)

Sk

or, in a condensed format,

’ Try1 =V fx ’ng Tk + Wk + Sk (5.11)

Note that (5.11) represents a linear dynamics, in whicls known, has a null
conditional expected value and depends on previous values of the state estimate.
According to (5.9) the pdfin (5.7) can be written as:

(oo}
plage | Y1) = / Pui (Trgr = fr Ly o — sx) - plaw | Y )day
-0

/ N(@rr1 = S lys -or = 55, Qr) - N (g — nlp, ViE)day,

= / N(@pyr = sk =V fr Ly o, Q)N (23, — 0, Vi) day,  (5.12)

To simplify the computation of the previous pdf, consider the following variable
transformation

where we considered, for the sake of simplicity, the simplified notatigfip to

representy [ \n;;.
Evaluating the mean and the covariance matrix of the random vector (5.13)

results:

Ely] = /e Elze) = fe -0k (5.14)
Elywyi] = e Vi I (5.15)
From the previous result, the pdf of in (5.5) may be written as:
Nz, —nfp, Vi) =

! exp|— = (a, — 1) T (VE) ™ (n — )] =

@m) 2 (detv )2 P g
(2#)"/2(;etvk)1/2 exp[—%(vkak = Ve np) (VR T VE) U ) T (T ek — 2 funp)] =
F

(27r)"/2(;etvk)1/2 exp[_%(kal'k — < fene) (Ve VE S DT feme — Vi) =
F
1

(2m)n/2(det N7 fVE 7 fiE)/?

(Vfrwr = fenp) (Ve VE S FD) 7N (7 fowr — 2 frnp)])-

=det 7 fi -
1
emp[—§
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We thus conclude that
N(zy — 1k, VE) = det 7 fi - N(V fozr — SV finle, VHVE 7 FT). (5.16)
Replacing (5.16) in (5.12) yields:

P(Tri1 | Y1k) =
= fjoooN(warl — sk — Ve, Q)N (V frzr — kaﬁ?:»kaszf Vv f{)d(ka )
= N(@ks1 — 5k, Qi) * N (g1 — V fr - 15, Ve VE V7 )

wherex represents the convolution of the two functions. We finally conclude that,
P | Y1) = N(@rr = i byp 1 — 50 Qe+ i g VE 7 fi [ (5:17)
We just conclude that,
if p(xy, | ZF) is a Gaussian pdf with

1. meam,
2. covariance matrix’;
then, the linearization of the dynamics arouyjdyields p(zy. | ZF), which is
a Gaussian pdf with

1. meam;™

2. covariance matrix;

where
Mp =S s 0+ Feli) = 2 o Ly 1 (5.18)
or else, given the value &f. given in (5.10), can be simplified to
= felng) (5.19)
VEYY = Qe+ e VE VR L - (5.20)

These values are taken as the predicted state estimate and the associated co-
variance obtained by the EKF, i.e.,

ik +1k) = it (5.21)
Plk+1lk)= = Vi (5.22)

representing the predicted dynamics,
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ik +1k) = ful@(klk)
Pk+1k) = i |y POEE) - f e

Filtering

In the filtering cycle, we use the system measurement at time instant,
Y11 to update the pdb(z, 1 | Y/*) as represented

P | YE) 25 plag | Y

According to Bayes law,

Yk
p(xk+1 | Y1k+1) - p( 1 )

=) (ki1 | Trsr) - plars | Y], (5.23)

Given that
Yrt1 = M1 (Ts1) + Orsr, (5.24)
the pdf ofy,,, conditioned on the state, , ; is given by

1 1 _
P(Yk+1 | Tht1) = (2m)7/2 (det Ryy 1) /2 exp[_i(yk+1_hk+l($k+1))TRle1(yk+1_hk+1(xk+1))]-

(5.25)

With a similar argument as the one used on the prediction cycle, the previous pdf

may be simplified through the linearization of the observation dynamics.
Linearizinghg1(xg11) aroundnf’;r1 and neglecting higher order terms results

R (Th41) = hiea (N + v |,,;g+1 (Trer — 5, (5.26)

and so the system observation equation may be approximated by,

’ Yit1 VR | Tpan + Vpr + e ‘ (5.27)
with
Tk+1 = hk+1(77]13+1) —vh ‘nfjl 'Uf;rl' (5.28)

being a known term in the linearized observation dynamics, (5.27). After the
linearization around the predicted state estimate - that correspongs to=

T4k (S€e (5.21), - the observation dynamics may be considered linear, and the
computation ofp(yx11 | 1) in (5.25) is immediate. We have,

PWrt1 | Thy1) = N(%H — Thg1 — Vi |n§g+1 Tyt Rigr)- (5.29)
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Expression (5.29) may be rewritten as:

PWert | Th1) = N(Vhier o Tt + mrr = Y, Rir)- (5.30)

Using a variable transformation similar to the one used in the prediction cycle, the
previous pdf may be expressed as

p(anrr | YF) = deth | o N(Thisn [ @hei=hisn [ npt Vhen VET TRty
(5.31)
Multiplying expressions (5.30) and (5.31) as represented in the last product in
(5.23) yields:

P(Yki1|Thin) pae|YE) ~ N (Vi |771g+1 The1 — 11, V) (5.32)
where the mean and covariance matrix are given by:

po= Vhia V7 hi (Vhiea VBT 7 by + Riepd) ™ =7k + yepd]
Ry 1 (Vi VBT 7 By + Rid) ™ 7 by - (5.33)

Vo= Vha Va7 By (Vi VE™ 7 iy + Ris1) ™ Ripa. (5.34)
Replacing in (5.33) the expression (5.28) we obtain:
po= Vher VET S b (Vi Vi 7 by + Rygr) (5.35)
[~hirr(FT) + Vhir - npT + 2]
Ry 1 (Ve VET 7 By + Rig) ™' 7 i
= Vhinp™ + Vheet Va7 bl (Ve VETY 7 by A+ Riesn) ks — hua (n/AB.86)
Vo= VheaVET T b (Vhiep VBTN B+ Riea) T R (5.37)

where we use the short notation
th_H = th_H |77§>+1 . (538)

Note that (5.32) expresses the pdf\ph;. 1 |n§-3+1 -r141 and not that ofr;, 4
as desired. In fact, the goal is to evaluate the mean and covariance matrix in

N (Tpq1 — 1, V1). (5.39)
Note that (5.32) can be obtained from (5.39). We know that:
N(@ps1 — 1, Vi) = det 7 his1 - N(Vhip12i1 — Vhir1 i, Vo1 Vi 7 hiby)
= det 7 hept N (Vhpi e — p, V), (5.40)
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wherep andV are given by (5.33) and (5.34).
Comparing (5.40) with (5.40) yields:

Vhisrpr = Vhepnpt + Vhea VET Vb (Vhiea VBT iy + Ris) ™ s — haer ()]
moo= nptt HVETN T B (Ve VETY 7 by + Rieen) T e — heaa (0BT

We thus conclude that:

L = VT O R (Ve VBTV AR+ Ri) Mk — e ()]
(5.41)
Comparing (5.40) and (5.40) in terms of the covariance matrices, yields:

V = heaVi V by (5.42)
Replacing in this expression V by its value given by (5.37) result,
Vo= VheaVET v b (Vhe VET 7 By + Rigr) ™ Ry
= Vhia Vit v by

that has to be solved relative ¥ ™!, From the above equalities, we successively
obtain:

Vher VET Ry = Ve VETN B R (Vi VET 7 by + Riyr)
= VhiaVit'v hzﬂRz;h V het VET 7 by + Vhiea VET 7 b

or else,
Vit = vty h£+1Rl;-il-1 V i VBT + Vi
Vet = VPN + Thig Rl v e Ve
VER = VER 4 UL Rl @ b VET
Using the lemma of the inversion of matrices,
Vet = VBRI = Ol R (4 Vhiea VN 7 B Ryt ) ™ 7 b VE ]
= VAT = hiq [Rew + Vi VET 7 71 v b VAT

Vet = Ve — VBN I b [Ren + Ve VBT T i T e VBT
(5.43)
Therefore, if we consider that(x,,|Y}) is a Gaussian pdf, have access
to the measuremeny..; and linearize the system observation dynamics around
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nett = 2(k + 1|k) we obtain a Gaussian pgfr,,, | Y*™) with meam-™ and
covariance matrix/5 ™! given by (5.41) and (5.43), respectively.

Finally, we summarize the previous results and interpret the Extended Kalman
filter as a Kalman fiter applied to a linear time-varying dynamics.

Let:

it = a(k + k)
Vit P(k + 1|k)
ot a(k+ 1|k +1)
Vi = Pk+1lk+1)

and consider

Vel = S lagw= F(k)
Vhii e = Vb s = H(k +1)
s(k) = fu(@(klk)) — F(k) - 2(k|k)
r(k+1) = hppq(e(k+1k)— Hk+1)-z2(k+1|k).

Assume the linear system in whose dynamics the just evaluated quantities are
included.

z(k+1) = F(k)x(k)+wy + s(k) (5.44)

yk+1) = Hk+Dak+1) + v +r(k+1) (5.45)
wherew;, andvy; are white Gaussian noises/) andr(k) are known quantities
with null expected value.

The EKF applies the Kalman filter dynamics to (5.44)-(5.45), where the ma-
trices F'(k) and H (k) depend on the previous state estimates, yielding
Bk +1k) = fe(2(k|k))
pk+1k+1) = 2(k+1k)+ Kk + Dy — hrpa(@(k + 1|E))]

whereK (k + 1) is the filter gain and

Kk+1) = PE+1UH (k+)[HMk+1)PE+1UH  (k+1)+R(k+1)]7!
P(k+1lk) = F(k)Pkk)FT(k)+Q(k)
Pk+1k+1) = Pk+1]k)—Pk+1k)H (k+1)

[H(k+1)P(k+1|k)H" (k + 1) + R(k 4+ 1)] " H(k + 1) P(k + 1(@&}6)
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Expression (5.46) may be rewritten as:

P(k+1k+1) = P(k+1|n)x (5.47)
X[I —P(k+1n)H" (k+ 1)[H(k+ 1)+ P(k+ 1|k)H" (k + 1) + Ryx1] H(k(5.48)

| P(k+1k+1)=[ - K(k+1)H(k+1)]P(k + 1[k) | (5.49)
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