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Information Sampling for vision-based robot navigation
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Abstract

This paper proposes a statistical, non-feature based, attention mechanism for a mobile robot, termed Information Sampling.
The selected data may be a single pixel or a number scattered throughout an image. After ranking this data, we choose only
the most discriminating to build a topological representation of the environment, obtained via Principal Component Analysis
(PCA). Advantageously, using this approach, our robot gains the ability to make effective use of its perceptual capabilities
and limited computational resources. Real world experimental results verify that vision-based navigation is possible using
only a small number of discriminating image pixels.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is concerned with the problem of
vision-based navigation in structured environments.
Vision generates a substantial amount of data and
processing it can lead to a large computational load
on a mobile robot. Thus, to help achieve the naviga-
tion task, it is of paramount importance that methods
which rely only on the most relevant, in terms of
position estimation, sensory input are developed. The
ability to navigate using only this data is highly advan-
tageous in that it allows the robot to maximize use of
its limited computational resources. One may classify
such input as a “landmark” and given their small size,
each can be quickly memorized for future reference,
thus mimicking the approach to navigation adopted by
humans.
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We present a statistical method, termedInforma-
tion Sampling, to allow a robot to focus attention
upon discriminating areas of an image set. Discrim-
inating areas are defined as the pixels which vary
significantly from one image to the next, i.e. those ex-
hibiting the largest information change. Information
Sampling is a component of a larger,holistic, naviga-
tion methodology[26], aimed at answering a number
of fundamental questions raised by the application of
vision to mobile robot navigation.

Our method was applied in an appearance-based
context. In the field of Computer Vision, the use of
appearance-based methods have become widespread
in recent years. Successful applications have included
handwritten character recognition[17], face charac-
terization/recognition[24,25], visual inspection[19],
object tracking/recognition[1,18], position estimation
[4] and motion and gesture recognition[2,15]. In our
case, visual environmental information was provided
by an omnidirectional camera which gives a 360◦ view
around the vertical. This work builds on our previous
research with such a system[6,27,28].
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As opposed to traditional position estimation tech-
niques, which often relied upon precise metric mea-
surements of position, appearance-based methods
generate a qualitative estimate of position, essentially
by image matching. For our experiments we used a
topological[3,6,13]environmental representation.

At the training stage a map is built by capturing a
sequence of images. Then, at runtime each acquired
image is compared to the map and a qualitative es-
timate of position is determined. Given the large
number of images involved, the data is compressed
by applying Principal Component Analysis (PCA).
The resulting low-dimensional eigenspace[18] im-
plicitly represents the topological structure of the
environment.

It is usual that entire images are used for match-
ing. In order to overcome some well-known problems
associated with this approach, recent work has at-
tempted to determineattentive regionsfrom the input
images.

Ohba and Ikeuchi[20] proposed dividing each im-
age into a number of smaller windows (which they
termed eigenwindows). Eigenspace analysis was then
applied to each window. This approach required stor-
ing a very large number of image windows and the
chances of one window, acquired at runtime being
matched to a number of images from the a priori set
was high. As a solution, they used three criteria to
eliminate the redundant windows, namely: detectabil-
ity, uniqueness and reliability. Colin de Verdière and
Crowley [5] reformulated the problem as a question
of whether to use the set of eigenwindows, selected by
a particular interest operator, or to use those windows
selected from a predefined grid.

Discriminating regions are often defined asfea-
tures in a single image, which together may form a
landmark. Schmid and Mohr[23] used an interest op-
erator[8] to determine where to compute local gray-
value invariants in addressing the problem of image
retrieval from a large database. In the area of mobile
robotics, Knapek et al.[12] developed an approach to
select salient landmarks from a single image which
was strongly based on the work of Schmid and Mohr.
Jugessur and Dudek[11] too utilized an interest
point detector. Yeh and Kriegman[31] considered the
problem of automatically selecting, from a set of 3D
features, the set (landmark) which was most likely to
be recognized in a single image.

We undertake a two-part approach to the navigation
problem. Firstly, Information Sampling is applied to
find the most discriminating data from the set of om-
nidirectional images. This data is then used todirectly
build a low-dimensional eigenspace representation
of the environment for appearance-based navigation.
Preliminary results were presented in[29,30]. Un-
like the above feature-based approaches, our method
does not exhibit the constraint of requiring the use
of highly textured images. It is influenced by that of
Rendas and Perrone[21] who addressed the problem
of current mapping in coastal areas using a priori
knowledge of the survey area.

In the field of robotics, appearance-based naviga-
tion using entire images is common. Perhaps one of
the earliest examples was developed by Hong et al.
[9]. The goal was for a robot to home to a given des-
tination. Hancock and Judd[7] developed “Ratbot”,
where localization was achieved by simply matching
vertical bars from runtime images to those acquired
a priori. A view sequence of images for navigation
was proposed by Matsumoto et al.[16]. Zheng and
Tsuji [32] presented a system which moved along a
given route under human guidance and autonomously
memorized a side-view of that route. These data were
then used as a basis for route recognition. Ishiguro
and Tsuji [10] used the frequency domain of the
Fourier transform as an image-based memory of the
environment. Maeda et al.[14] used the parametric
eigenspace approach to image matching using images
from a pan-and-tilt camera.

This paper is outlined as follows:Section 2
presents the Information Sampling method in detail.
In Section 3, we show how Information Sampling
relates to local appearance spaces.Section 4presents
our experimental results. We conclude and give pos-
sible future research directions inSection 5.

2. The Information Sampling method

Our approach requires the use of a priori images,
independent of image type, from which we deter-
mined the most discriminating regions by applying
Information Sampling. As a first step to explaining
this process, we now outline the procedure for re-
constructing an image, given only a small amount of
data.
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We assume that the images captured by the robot’s
camera can be modeled as a random vectorI, char-
acterized by a Gaussian distribution with meanĪ and
covarianceΣI :

I ∼ N (Ī , ΣI ) = p(I).

Usually, one can take an ensemble of images of the
environment [I1, . . . , Im], which can be utilized for
computingĪ andΣI , so thatp(I) can be computed a
priori. When the robot is navigating, we assume that
the observations,d, consist of a selection of (noisy)
image pixels (or subregions), rather than the entire
image. Accordingly, the observation model can be
expressed as:

d = SI+ η, (1)

where d stands for the observed data and the mea-
surement noise,η is assumed to follow a Gaussian
distribution with zero mean and covariance,Σn. We
further assume thatI andη are independent. The se-
lection matrix,S is composed of a series of ones and
zeros, the ones corresponding to the data points ex-
tracted from an image. We select a number of pixels to
test by moving the set of ones in the selection matrix.

Having prior knowledge ofI, in the form of a sta-
tistical distribution,p(I), the problem now consists of
estimating the (entire) image based on partial (noisy)
observations of a few pixels,d. This problem can be
formulated as aMaximum a Posterioriestimation of
I. The posterior probability can be determined from
Bayes rule as follows:

p(I |d) = p(d|I )p(I)

p(d)
, (2)

wherep(d|I ) is the likelihood of a pixel (or set of
pixels) given a known image,I; the prior distribution
is denoted byp(I) and is assumed to have been learnt
a priori. With this information we calculate the maxi-
mum a posteriori estimate of an image,ÎMAP [22] as
follows:

ÎMAP = arg maxI p(I |d),

ÎMAP = (Σ−1
I + STΣ−1

n S)−1(Σ−1
I Ī + STΣ−1

n d).

(3)

Thus, ÎMAP is the reconstructed image obtained us-
ing the pixel (or set of pixels),d. Notice that by

combining the prior image distribution with the sta-
tistical observation model, we can estimate the entire
image based on the observation of a limited number of
pixels.

2.1. Choosing the best data

Once we have reconstructed an image using the se-
lected data, we can compute the error associated with
this reconstruction. The error covariance matrix,Σerror
is given by:

Σerror = Cov(I − ÎMAP),

Σerror = (Σ−1
I + STΣ−1

n S)−1.
(4)

Of course, the quality of the estimate, and the “size”
of Σerror depend not only on the observation noise,η

but also on the observed image pixels, as described by
the selection matrix,S. Eq. (4) quantifies the quality
of an estimate obtained using a particular set of im-
age pixels. In theory, we can evaluate theinformation
contentof any individual image pixel or combina-
tion of pixels, simply by selecting an appropriate
selection matrix,S, and determining the associated
Σerror.

This problem could be formulated as an experiment
design process[22], in which we look for the optimal
selection matrixS∗ that minimizes (in some sense) the
error covariance matrix. If we take the determinant
of Σerror as an indication of the “size” of the error,
the optimal selection of image pixels would be given
by:

S∗ = arg min
S

{det((Σ−1
I + STΣ−1

n S)−1)}. (5)

In practice, to avoid computing the inverse, we define
the following equivalent optimization problem in
terms of a modified uncertainty metric,U:

U = −log{det(Σ−1
I + STΣ−1

n S)},
S∗ = arg min

S
U. (6)

Notice that the information criterion is based on the
entire set of images and not, as with other methods,
on an image-by-image basis. For instance, a highly
textured image region would only be selected if it
varied significantly from one image to the next.

So far, we have describedInformation Samplingas a
process for (i) reconstructing an entire image from the
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observation of a few (noisy) pixels and (ii) determining
the most relevantimage pixels,S∗, in the sense that
they convey the most information about the image set.

Unfortunately, determiningS∗ is computationally
impractical since we would have to computeΣerror for
all possible combinations of pixels scattered through-
out the image. Instead, we partition the image into
non-overlapping square windows of(l × l) pixels. We
term these regionsInformation Windows, denoted by
w = [w1, . . . , wn].

2.2. Information Windows

Omnidirectional images were acquired at a resolu-
tion of 768× 576 pixels, filtered and subsampled to
a resolution of 128× 128 pixels. These formed the
database set,T128. In order to perform Information
Sampling these images were further subsampled to a
set of images,T32, 32× 32 pixels in size. The reason
for such a small image size relates to the complexity
of determining the error covariance matrix,Σerror, in
Eq. (4).

To find the most discriminating Information Win-
dows overT32, we found and ranked (seeSection 2.3)
the 16non-overlappingwindows of size 8× 8 pixels.
We then calculated the equivalent 32×32 Information
Windows (in 128× 128 training images,T128) to the
8 × 8 windows (in the 32× 32 images,T32).

Additionally, we ranked the 225overlappingwin-
dows of size 4× 4 pixels in T32. The overlapping
windows were generated by shifting each window in
the horizontal and vertical direction by 2 pixels, thus
generating an overlap of 50%. We then calculated the
equivalent 16×16 Information Windows (in 128×128
training images,T128) to the 4× 4 windows (in the
32× 32 images,T32).

2.3. Search and rank

By using Eq. (6), we can rankInformation Win-
dowsor combinations of such windows, in terms of
their information content. Finding the set of pixels
to select (from the a priori set of images) as the best
information is highly computationally intensive. In
order to overcome this problem, we implemented two
greedy search algorithms:Combinatorial Searchand
Simple Search. These were used to find and rank the
best Information Windows.

2.3.1. Combinatorial Search
We first search for the best Information Window.

Then, the search for the next best window is made
keeping the first windowfixed, thus locating the best
pair of windows. As the method continues it deter-
mines the best triplet of windows, etc. If we denotenas
the number of windows within an image, this method
requires the evaluation ofEq. (6), n! times. The method
automatically groups the Information Window(s) into
a single window, a pair of windows, a triplet of win-
dows, etc. Notice that this method is not a true Com-
binatorial Search, which would require the evaluation
of all possible combinations of windows.

2.3.2. Simple Search
This is a faster search algorithm. We rank each of

the Information Windowsindependently. In this case,
Eq. (6) has only to be evaluatedn times. As distinct
from Combinatorial Search, if we wish to group the
best (pair, triplet, etc. of) window(s) we must do it
manually based on the initial ranking.

3. Information Sampling for local
appearance-based robot navigation

As previously noted, many appearance-based nav-
igation systems relied upon the use of entire (pos-
sibly, omnidirectional) images to build a “global
eigenspace” (or “global appearance space”) for nav-
igation. Alternatively, if an eigenwindow approach
was used, all windows must have first been projected
before calculation of the most discriminating.

A key advantage of our approach is that weonly
require the most discriminating information obtained
by Information Sampling to build alocal appear-
ance space. In this way, we directly project the best
information from each image into the eigenspace, sig-
nificantly reducing the number of projected windows.
This immediately reduces the level of possible ambi-
guity. The local appearance space has an orthonormal
basis of eigenvectors of size(l2 × 1), wherel is the
length of the side of a square Information Window. It
is our topological environmental representation.

We note here that, conceivably, navigation could be
achieved by matching the reconstructed image,ÎMAP
to the set of omnidirectional images, although this
would be computationally expensive.
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Fig. 1. (a) The omnidirectional camera with a spherical mirror and (b) the camera mounted on a Labmate mobile platform.

4. Experimental results

For the experiments outlined in this paper, im-
ages acquired from an omnidirectional camera with
a spherical mirror, built in-house at the Instituto de
Sistemas e Robótica, Lisbon, were used. This camera
was mounted on a Labmate mobile platform and im-
ages were captured as it traversed the environment.
All processing was carried out using a Pentium III
350 MHz processor with 128MB RAM. The system
is shown in Fig. 1. Real world experiments verify
that by using Information Sampling to focus upon
attentive regions, effective navigation is possible.

The experimental results are presented in three
parts. The first concerns the ranking of Information
Windows, the second, reconstructing images from
Information Windows and the third, mobile robot nav-
igation using only the Information Windows. Results
were obtained for two sets of images: the first con-
sisted of 89 omnidirectional images acquired every
10 cm and for the second, a set of 53 omnidirectional
images, obtained every 20 cm were acquired in the
same corridor but from a different starting position.

4.1. Part I: window ranking

Fig. 2(a) shows the non-overlapping Information
Windows available for selection andFig. 2(b) these
Information Windows,individually rankedfrom the
most (number 1) to the least discriminating (number
16), using Simple Search.Fig. 3 shows the ranking
when using panoramic images. The following exam-
ple provides an intuitive idea of the Information Sam-
pling method. All of the omnidirectional images in
this paper show the robot in the center of each image.
Any Information Window which contains the robot
is not a discriminating one, and so, it follows that
such a window should have a relatively low ranking.
As shown inFig. 2(b), this proves to be the case: the
four Information Windows which contain the robot
are ranked from numbers 10 to 15. Additionally, the
four windows at the periphery of the image also have
a low ranking, since they only contain a portion of
the omnidirectional image. It should be noted that
the corridor in which the a priori set of images were
acquired had a number of offices on one side (the top
half of the omnidirectional images) and only a single
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Fig. 2. Ranking results. (a) The 16 non-overlapping Information Windows. (b) Those windows ranked, according to the amount of
information they contain, using Simple Search.

door and notice-board on the other (the bottom half
of the omnidirectional images). Thus, as the robot
travels down the corridor more information change
occurs in the top half of the omnidirectional images.
Again, this is borne out by the window ranking, where
the three highest ranking Information Windows are
all in the top half of the omnidirectional image.

Fig. 4(a)shows the Information Windows available
for selection from the second set andFig. 4(b)the win-
dow ranking when usingnon-overlappingwindows.
The four Information Windows which contain the
robot are ranked from numbers 7 to 12. Additionally,
the four windows at the periphery of the image have
the lowest ranking. Significantly, thesamehighest
ranking Information Window (window 8) is selected
from both sets. The other Information Windows are
ranked in a different order but note that Information
Sampling chooses the same six top ranking windows
from both sets.

Fig. 3. The Information Windows obtained using Panoramic Images, ranked, according to the amount of information they contain, using
Simple Search.

To further test the technique, we found and ranked
the 225overlappingwindows of 16× 16 pixels in
size. The advantage of this approach is that we can
focus upon smaller areas of the omnidirectional im-
age. Naturally, relevant information contained within
the image received a high ranking and, advanta-
geously, portions of the image which were close to
the background, and relevant, were highly ranked.
As expected the dark background received the low-
est ranking. An image of the 10 best overlapping
Information Windows is shown inFig. 5.

4.1.1. Graphing the information content
Fig. 6 shows the graphs of the Information Win-

dows, obtained from omnidirectional images, ranked
using (a) Simple Search and (b) Combinatorial Search.
In both cases, thex-axis corresponds to the window
ranking, from 1 to 16 and they-axis corresponds to
the uncertainty metric,U calculated usingEq. (6).
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Fig. 4. Ranking results. (a) The 16 non-overlapping Information Windows. (b) The windows ranked, according to the amount of information
they contain, using Simple Search.

Fig. 5. The 10 best overlapping Information Windows.
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Fig. 6. Graphs of the data contained in each Information Window versus the window rank when using (a) Simple Search and (b)
Combinatorial Search. The numbers along the graph line are the window numbers.
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The numbers along the graph line correspond to the
16 non-overlapping Information Windows per omni-
directional image. For example, using Simple Search,
Fig. 6(a)tells us that the eighth Information Window
exhibits the lowest uncertainty value and so is indi-
vidually ranked in first position, while the third win-
dow, having a higher uncertainty value, is individually
ranked in second position, etc. Using Combinatorial
SearchFig. 6(b) tells us that the eighth window is
ranked in first position. This window is then fixed and
the bestpair of windows, in this case the eighth plus

Fig. 7. Graphs of the information contained in each Information Window versus the window rank using (a) non-overlapping and (c)
overlapping windows. The best (b) non-overlapping and (d) overlapping Information Window in an image.

the third, are found. Thus, the third window contains
the next best amount of information and is ranked in
second position. Using Combinatorial Search the next
best window added at each stage matches the window
rank chosen by Simple Search.

Combinatorial Search continues until all windows
have been combined. As can be seen fromFig. 6(b)
each combination of Information Windowsexhibits
a lower uncertainty measure than the previous one.
Intuitively, this makes sense as the more information
available, the better the image reconstruction (see
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Fig. 8. (a) A 32× 32 omnidirectional image acquired at runtime. (b) Its reconstruction using themost discriminatingInformation Window.
(c) Its reconstruction using all of the Information Windows. Each Information Window is 8× 8 pixels in size.

Fig. 9. Close-up of the 32× 32 Information Windows: (a) unknown, (b) closest and (c) reconstructed. The position of (d) the unknown
and (e) the closest windows in their respective omnidirectional images.
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Eq. (3)) should be. However, the payoff for using many
Information Windows is not significant, as can be seen
from the small drop in uncertainty. This result is also
borne out byFig. 8, as detailed inSection 4.2. Clearly,
the fact that the highest ranking Information Window
is not only the most relevant, but is the most relevant
by a significant factor, is the reason why we need to
use only it for navigation.

Fig. 7 shows the ranking results when using
(a) non-overlapping and (c) overlapping windows
from the second set of images. Again, when using
non-overlapping Information Windows, the eighth ex-
hibits the lowest uncertainty value and so is ranked in
first position. When using (c) overlapping windows,
window number 74 is ranked in first position.Fig. 7

Fig. 10. (a) An unknown image, (b) its closest match and (c) the path traveled by the robot when using entire 128× 128 images.

shows the best (b) non-overlapping and (d) over-
lapping Information Windows in an omnidirectional
image.

4.2. Part II: image reconstruction

The reconstruction results were obtained using In-
formation Windows of size 8× 8 pixels extracted
from omnidirectional images of 32× 32 pixels in
size.Fig. 8 shows an (a) omnidirectional image from
the a priori set, (b) its reconstruction using only the
most discriminating8 × 8 Information Window (i.e.
number 8) and (c) its reconstruction using all of the
Information Windows. Reconstruction was achieved
usingEq. (3). As can be seen from the images, a good
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reconstruction is obtained using only the best Infor-
mation Window. This is an indication of the power of
Information Sampling.

4.3. Part III: navigation

As a first test of navigation, we ran our Labmate
mobile robot in a structured environment.Only the
best Information Window, from each image, was pro-
jected into the eigenspace. The images inFig. 9(a)–(c)
show the results obtained using windows of 32× 32
pixels in size. The top row shows (a) the most rel-
evant Information Window from an unknown im-
age, (b) its closest match from the a priori set of
best Information Windows and (c) its reconstruction

Fig. 11. (a) An unknown image, (b) its closest match and (c) the path traveled by the robot when using the best 32× 32 non-overlapping
Information Window.

using PCA.Fig. 9 shows (d) the best Information
Window in the unknown 128× 128 image and (e)
its closest match from the a priori set obtained by
projecting only the most relevant Information Win-
dow. We note here that we could in principal, given
enough computing power, useEq. (3) to reconstruct
a 128× 128 image using only the most relevant
window.

To further test the applicability of the Informa-
tion Sampling technique, we ran three more position
estimation experiments. The first experiment used
entire 128× 128 images for matching, the second the
most informativenon-overlapping32 × 32 Informa-
tion Window and the third the 10 most informative
overlapping16× 16 Information Windows.
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Fig. 12. (a) An unknown image, (b) its closest match and (c) the path traveled by the robot when using the 10 best 16× 16 overlapping
Information Windows.

Fig. 10shows (a) an unknown image, (b) its closest
match from the a priori set of entire images and (c) the
distance traveled (≈10.5 m) by the robot under closed
loop control.Figs. 11 and 12, respectively, show the
same experiment but usingnon-overlappingandover-
lapping Information Windows. Significantly, in these
latter cases, the number of pixels used for position
estimation was only 6.25% of the total, when using
non-overlapping windows, and just 10.93% in the
case of overlapping windows, allowing the robot to
maximize use of its limited computational resources.
Clearly, vision-based navigation was successfully
completed by using discriminating environmental
information.

5. Conclusion and future work

In this paper we presented a statistical method,
termed Information Sampling, which calculated the
most discriminating pixels from an a priori image set.
In terms of navigation this was highly advantageous
as it allowed a mobile robot to successfully complete
its task by building an environmental representation
which made effective use of the robot’s perceptual
capabilities. It was noted that Information Sampling
forms part of a larger methodology, which seeks to tac-
kle vision-based navigation from a holistic viewpoint.

Our future work shall concentrate on building
environmental representationsonline. Information
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Sampling was a first step in this process, as it allowed
for the construction of a highly compact environmen-
tal representation. Additionally, widening the scope
of application to other areas of Computer Vision is
envisioned.
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