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Motion Feasibility of Multi-Agent Formations
Paulo Tabuada, George J. Pappas, Pedro Lima

Abstract— Formations of multi-agent systems, such as mo-
bile robots, satellites and aircraft, require individual agents to
satisfy their kinematic equations while constantly maintaining
inter-agent constraints. In this paper, we develop a systematic
framework for studying formation motion feasibility of multi-
agent systems. In particular, we consider formations wherein all
the agents cooperate to enforce the formation. We determine
algebraic conditions that guarantee formation feasibility given
the individual agent kinematics. Our framework also enables us
to obtain lower dimensional control systems describing the group
kinematics while maintaining all formation constraints.

I. I NTRODUCTION

Advances in communication and computation have enabled
the distributed control of multi-agent systems. This philos-
ophy has resulted in next generation automated highway
systems [21], coordination of aircraft in future air traffic
management systems [20], as well as formation flying aircraft,
satellites, and multiple mobile robots [2], [3], [8]. The control
of multi-agent systems is greatly simplified when the agent’s
mission can be executed by means of aformation. In several
applications, maintaining a formation is even fundamental as
in multiple aircraft where the formation is used to explore
aerodynamic effects [5] or in robotic exploration of large areas
with restricted sensor capabilities [7].

The various approaches toformation controlof a group of
agents can roughly be divided into three categories: Behavior-
based, Leader-Follower, and Rigid-Body type formations. Be-
havior based approaches [2] start by designing simple and
intuitive behaviors or motion primitives for each individual
agent. Then, by a weighted sum of this simple primitives more
complex motion patterns are generated through the interaction
of several agents. Although this approach is characterized by
being difficult to analyze in a rigorous and formal way, some
of these simple schemes have already proven to be stable and
convergent [12]. In leader-follower approaches [13], [19] one
or more agents are designated as leaders and are responsible
for guiding the formation. The remaining agents are required
to follow the leader with a predefined offset. Finally, in Rigid-
Body type formations [4], [14], [15], [10] the distance between
the agents configurations (usually their positions) is required
to be constant during all formation motions.

Paulo Tabuada is with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN 46556, (email:ptabuada@nd.edu ).

George J. Pappas is with the Department of Electrical and Systems
Engineering, University of Pennsylvania, 200 South, 33rd Street, Philadelphia,
PA 19104 (email:pappasg@seas.upenn.edu ).

Pedro Lima is with Instituto de Sistemas e Robótica, and Instituto
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Many fundamental questions remain unanswered in this
recent area of formation control. The control of a formation
requires individual agents to satisfy their kinematics while
constantly satisfying inter-agent constraints. In typical leader-
follower formations, the leader has the responsibility of guid-
ing the group, while the followers have the responsibility of
maintaining the inter-agent formation. Distributing the group
control tasks to individual agents must be compatible with the
control and sensing capabilities of the individual agents. As the
inter-agent dependencies get more complicated, a systematic
framework for controlling formations is vital.

In this paper, we propose a framework to determine motion
feasibility of multi-agent formations. Formations are modeled
using formations graphswhich are graphs whose nodes cap-
ture the individual agent kinematics, and whose edges repre-
sent inter-agent constraints that must be satisfied. A similar
modeling framework has been proposed in [9], and in [19],
[15] graph theoretical methods are used to analyze formation
stability properties. Similar problems arise in the study of
formation rigidity properties [10]. This class of systems is rich
enough to capture holonomic, nonholonomic, or underactuated
agents.

In this paper, we focus on thefeasibilityproblem:Given the
kinematics of several agents along with inter-agent constraints,
determine whether there exist nontrivial agent trajectories
that maintain the constrains.We obtain algebraic conditions
that determine formation motion feasibility. A related problem
is to determine formation rigidity and in [10] it is shown
how rigidity can be determined by the analysis of a rigidity
matrix. Such matrix is a representation of the codistribution
Ω introduced in Section IV. However, we focus on motion
feasibility for a larger class of formations including, but not
restricted to rigid formations.

When a formation has feasible motions, theformation con-
trol abstractionproblem is then considered:Given a formation
with feasible motions, obtain a lower dimensional control
system that maintains formation along its trajectories. Such
control system allows to control the formation as a single
entity, therefore being well suited for higher levels of control.
A preliminary version of the results presented in this paper
appeared in [17], [18].

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce some usual notation in control
theory [11]. A functionf : Rn → Rm is said smooth if
it is infinitely differentiable. For a given smooth functiong :
Rn → R we denote bydg the row vector containing the partial
derivatives ofg, that is:

dg =
[

∂g

∂x1

∂g

∂x2
. . .

∂g

∂xn

]
. (II.1)
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A distribution ∆x on Rn is an assignment of a linear
subspace ofRn at each pointx ∈ Rn. The rank of a
distribution at a pointx ∈ Rn is the dimension of the
subspace∆x ⊆ Rn. In this paper we will assume that
all distributions have constant rank which implies that, lo-
cally, there exist vector fieldsX1, X2, . . . , Xk such that
span{X1(x), X2(x), . . . , Xk(x)} = ∆x. We say that a vector
field X : Rn → Rn belongs to a distribution∆ if X(x) ∈ ∆x

∀x ∈ Rn. As distributions are given by the span of column
vectors, codistributions are defined in terms of row vectors.
We denote byRn∗ the space of all row vectorsα such
that αT ∈ Rn, where byαT we denote the column vector
obtained by transposingα. We now define codistributions as
assignments of linear subspaces ofRn∗. Given a distribution
∆, there is a unique annihilating codistribution∆⊥ defining
∆. This codistribution is defined as:

∆⊥ = {α ∈ Rn∗ | α ·X = 0 ∀X ∈ ∆}. (II.2)

Conversely, a codistribution∆⊥ defines a unique distribution
∆ given by the set of all vector fieldsX such that∆⊥ ·X = 0,
that is,α · X = 0 for every α ∈ ∆⊥. Given distributions∆
on Rn and∆′ on Rn′

we define their direct sum∆ ⊕∆′ as
the direct sum of the vector space∆x1 with the vector space
∆′

x2
for every (x1, x2) ∈ Rn × Rn′

.
In this paper we shall restrict attention to drift free control

systems. Such control systems can be represented by:

ẋ =
l∑

j=1

Xjuj (II.3)

whereXj are smooth vector fields onRn anduj the control
inputs. A trajectory of (II.3) is a smooth curvex : I → Rn

for which there exists another smooth curveu : I → Rl such
that equation (II.3) is satisfied for everyt in the open setI
contained inR. Drift free control systems are equivalently
described by the distribution:

∆x = span{X1(x), X2(x), . . . , Xl(x)} (II.4)

capturing all possible directions of motion or by the codistri-
bution∆⊥

x . This class of control systems is general enough to
capture underactuated as well as holonomic or nonholonomic
systems.

Example 2.1:Consider, for example, a unicycle type robot.
If we model its state space byR3 where a point is denoted by
(x, y, θ) with x andy representing the robot’s position andθ
the robot’s orientation, we can define its kinematics by:

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2 . (II.5)

Introducing the vector fields:

X1 =

cos θ
sin θ

0

 X2 =

0
0
1

 (II.6)

we can rewrite (II.5) as:

Ẋ = [ẋ ẏ θ̇]T = X1u1 + X2u2 (II.7)

Expression (II.7) shows that all the possible directions of
motion allowed by (II.5) are captured by the distribution:

∆ = span{X1, X2} (II.8)

or equivalently by its annihilating codistribution:

∆⊥ = span{sin θ dx− cos θ dy} (II.9)

where in this casedx ·X = u1 cos θ anddy ·X = u1 sin θ.

III. F ORMATION GRAPHS

A formation of r heterogeneous agents with statesxi(t) ∈
Rni , i = 1, . . . , r and kinematics defined by codistributions
∆⊥

i is modeled by aformation graph which completely
describes individual agent kinematics and global inter-agent
constrains.

Definition 3.1 (Formation Graph):A formation graphF =
(V,E,C) consists of:

• A finite set V of r vertices, wherer is the number of
agents in the formation. Each vertexvi is a codistribution
∆⊥

i modeling agenti kinematics.
• A binary and symmetric relationE ⊆ V ×V representing

a bond or link between the agents.
• A family of constraintsC indexed by the setE, C =
{cij}(vi,vj)∈E . For each edge(vi, vj), cij is a vector of
φ(i, j) ∈ N smooth real valued functionsck

ij : Rni ×
Rnj → R, k = 1, 2, . . . , φ(i, j) defining the formation
constraints between agentsi and j. The constraint is
enforced whenck

ij(xi, xj) = 0.
In Figure 1 the formation graph used in Example 4.2 is rep-
resented graphically. The symmetry assumption onE ensures
that for each(vi, vj) ∈ E, (vj , vi) also belongs toE and
in fact we identify(vi, vj) with (vi, vj) to guarantee that the
same constraint is not accounted for twice. This allows to
model constraints without a preferred sense of direction in
which both agents are equally responsible for the constraint
satisfaction. We also assume perfect communication between
agentsvi andvj .

In this paper, we focus on the motion feasibility problem,
more precisely:

Problem 3.2 (Motion Feasibility):Given a formation graph
F = (V,E, C) determine whether there are nontrivial trajec-
tories xi(t) of all agent kinematics (II.3) that maintain the
constraintsck

ij for all (vi, vj) ∈ E, k = 1, 2, . . . , φ(i, j) and
t ∈ I.
When there are feasible motions, a new problem immediately
emerges, the extraction of a formation control abstraction
which characterizes the solution space of Problem 3.2 :

Problem 3.3 (Abstraction):Given a formation graphF =
(V,E, C) with feasible motions, obtain a lower dimensional
control system that describes all feasible formation motions.

IV. U NDIRECTED FORMATIONS

A. Motion Feasibility

In undirected formations each agent is equally responsible
for maintaining constraints. Because of this property it will
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be useful to collect all agent kinematics and constraints on a
single state space:

Rm = Rn1+n2+...nn =
n∏

i=1

Rni . (IV.1)

Given an elementx of Rm the canonical projection on the
ith agentπi : Rm → Rni allow us to denote the state of the
individual agents byxi = πi(x). The formation kinematics
is obtained by appending the individual kinematics through
direct sum, that is:

∆⊥ = ⊕n
i=1∆

⊥
i (IV.2)

This new codistribution∆⊥ onRm describes the kinematics of
all agents, however it does not model any interaction between
them. This interaction will be induced by the formation
constraints that we now lift to the group state spaceRm. Each
constraintck

ij linking agenti to agentj induces a constraint
Ck

ij on Rm defined by:

Ck
ij(x) = ck

ij(πi(x), πj(x)) (IV.3)

All of these constraints can now be grouped in a single map
from Rm to Rd with d =

∑
(vi,vj)∈E φ(i, j). This constraint

map C is obtained by stacking all individual constraints as
follows:

C = [C1
1 C2

1 . . . Cφ(1)
1 C1

2 C2
2 . . . Cφ(2)

2 . . . C1
q C2

q . . . Cφ(q)
q ]T .

where we have considered an enumeration{1, 2, . . . , q} of the
edge setE. Without loss of generality1 we assume thatC has
constant rank on a neighborhood of0, consequently the set
C−1(0) = {x ∈ Rm | C(x) = 0} defines a submanifoldN
of Rm. This manifoldN characterizes the interaction between
the agents since the state variables of each agent are required
to live on this submanifold. Motion feasibility requires that the
constraints are satisfied along the formation trajectories, that
is, that the submanifoldN is invariant under∆ trajectories:

d

dt
Ck

ij

∣∣∣
t=0

= LXCk
ij = dCk

ij ·X = 0 (IV.4)

for every X ∈ ∆, (vi, vj) ∈ E, k ∈ {1, 2, . . . , φ(i, j)}, and
whereLXCk

ij denotes the Lie derivative ofCk
ij with respect

to X. We now capture all the constraintsCk
ij in a single

codistribution:

dC = span{ dC1
1 , dC2

1 , . . . , dCφ(1)
1 ,

dC1
2 , dC2

2 , . . . , dCφ(2)
2 ,

...

dCm
1 , dCm

1 , . . . , dCφ(m)
m } (IV.5)

and see that a vector fieldX satisfies (IV.4) iffα ·X = 0 for
everyα ∈ dC. This we shall denote2 by:

dC ·X = 0. (IV.6)

1Since we can use Sard’s theorem [1] on the mapC. This local rank
assumption ensures thatC is a subimmersion and thereforeC−1(0) is a
submanifold ofRm [1]. Note that although the mapC depends on the chosen
enumeration, the submanifold it defines does not.

2At the computational level, condition (IV.6) is determined by constructing
the matrix with the row vectorsdC1

1 , dC2
1 , . . . , dCφ(m)

m appearing in the
definition of dC and multiplying such matrix byX.

Vector fieldsX satisfying ∆⊥ · X = 0 represent directions
of motion respecting the individual agent kinematics, while
vector fieldsX satisfying dC · X = 0 represent directions
of motion respecting the formation constraints. Therefore by
merging both objects3 into:

Ω = dC + ∆⊥, (IV.7)

that is, by denoting byΩ the codistribution spanned by the
union of a basis ofdC and a basis of∆⊥, we can check for
feasible motions in a single equation:

Ωx ·X(x) = 0 ∀x ∈ N (IV.8)

Note that this equation only needs to hold for points belonging
to N , since outsideN the agents are no longer in formation.
The previous discussion leads to the following solution of
Problem 3.2:

Theorem 4.1:An undirected formation has feasible motions
iff equation (IV.8) has nontrivial solutions, equivalently iff

dim Ωx < m (IV.9)

for everyx ∈ N .
The condition described in Theorem 4.1 can be tested by
determining the rank of the matrix associated with distribution
Ω. Such computations can be performed in any symbolic
computation package such asMathematica. In many exam-
ples of interest, a basis for distributionΩ has less thanm
elements which immediately allows to conclude that (IV.9)
holds. A solution of equationΩ ·X = 0 specifies the motion
of each individual agent. When more than one independent
solution exists, a change in the direction of a single agent
may require that all other agents also change their actions
to maintain formation. This shows that, in general, solutions
are centralized and require inter-agent communication for their
implementation.

Example 4.2:We now illustrate Theorem 4.1 in a simple
example. Consider an undirected formation consisting of three
unicycle type robots as displayed in Figure 1. The kinematics

v1v2 v3

Fig. 1. Three agents formation.

of each agent is given by codistributions of the form (II.9). To
completely specify the formation graph we need to define the
interagent constraints. The constraint associated with the edge
between agent 1 and agent 2 is define by:

c12 =

x1 − x2 − δx

y1 − y2 − δy

θ1 − θ2

 (IV.10)

where δx and δy are positive constants. There is also a
constraint between agents 1 and 3 defined by:

c13 =
[1
2
(x1−x3)2+

1
2
(y1−y3)2+

1
2
(θ1−θ3)2−δ

]
(IV.11)

3Computationally, the codistributionΩ is characterized by the matrix having
as row vectors, the row vectors appearing in the matrices describingdC and
∆⊥.
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with δ a positive constant. The constraint between agents 1
and 2 requires them to perform the same trajectories with
an offset between their position coordinates given byδx

and δy which we intuitively know to be possible. However,
the constraint between agents 1 and 3 requires the distance

between their positions to equal
√

2δ + 1
2 (θ1 − θ3)2. This is

clearly a non intuitive constraint and no a priori answer can
be given regarding feasibility. We will now study feasibility
of this formation according to the methods developed so far.
First, we compute∆⊥:

∆⊥ = span{− sin θ1 dx1 + cos θ1 dy1,

− sin θ2 dx2 + cos θ2 dy2,

− sin θ3 dx3 + cos θ3 dy3}

SinceC is given by:

C =


x1 − x2 − δx

y1 − y2 − δy

θ1 − θ2
1
2 (x1 − x3)2 + 1

2 (y1 − y3)2 + 1
2 (θ1 − θ3)2 − δ


the codistributiondC will be given by:

dC = span{dx1 − dx2, dy1 − dy2, dθ1 − dθ2,

(x1 − x3)dx1 + (y1 − y3)dy1 + (θ3 − θ1)dθ1

+(x3 − x1)dx3 + (y3 − y1)dy3 + (θ1 − θ3)dθ3}

CombiningdC and∆⊥ into Ω one easily verifies thatdim Ω
is at maximum 7 since a basis forΩ is formed by the 4 forms
spanningdC and 3 more forms spanning∆⊥. This means that
this formation is indeed feasible sincedim Ω ≤ 7 < 9 = m.
We can therefore conclude by Theorem 4.1, that there are
trajectories for each agent satisfying the formation constraints
as well as its kinematics. In general we can have more forms
than m and still conclude feasibility since such forms may
be linearly dependent. In the next section we will see how
one can control the individual agents while maintaining the
formation and gain some insight into the group trajectories.

B. Group Abstraction

Whenever more than one independent solution exist, the
solution space of equationΩ · X = 0 can be used to
extract a lower dimensional control system that will preserve
the formation along its trajectories. This new control system
defined by the group distributionG = {X : Rm → Rm :
ω · X = 0 ∀ω ∈ Ω} is an abstraction that hides away
low-level control necessary to maintain the formation, and
can be used in higher levels of control. If we denote by
{K1,K2, . . . ,Kk} a basis for the kernel ofΩ, we can write
the solution of Problem 3.3 as:

ẋ =
k∑

j=1

Kjwj (IV.12)

Since Ω · Kj = 0 for any j ∈ {1, 2, . . . , k} we conclude
that for any input trajectoryw : I → Rk, the corresponding
state trajectoryx(t) satisfiesCp

ij(x(t)) = 0 for all (vi, vj) ∈
E, p = 1, 2, . . . , φ(i, j) and t ∈ I. The centralized nature

of the problem is also reflected on the control abstraction.
When one or more of the control inputswi are used, inter-
agent cooperation is necessary to implement the new direction
of motion since each vectorKj specifies the motion for all
formation agents.

Example 4.3:We now return to the previous example and
compute a basis for the kernel ofΩ. Straightforward compu-
tations lead to the following basis vector fields:

K1 =



(θ3 − θ1) cos θ1

(θ3 − θ1) sin θ1

0
(θ3 − θ1) cos θ1

(θ3 − θ1) cos θ1

0
0
0

(x1 − x3) cos θ1 + (y1 − y3) sin θ1



K2 =



((x1 − x3) cos θ3 + (y1 − y3)) sin θ3) cos θ1

((x1 − x3) cos θ3 + (y1 − y3)) sin θ3) sin θ1

0
((x1 − x3) cos θ3 + (y1 − y3)) sin θ3) cos θ1

((x1 − x3) cos θ3 + (y1 − y3)) sin θ3) sin θ1

0
((x1 − x3) cos θ1 + (y1 − y3)) sin θ1) cos θ3

((x1 − x3) cos θ1 + (y1 − y3)) sin θ1) sin θ3

0



K3 =



(θ1 − θ3) cos θ1

(θ1 − θ3) sin θ1

(x1 − x3) cos θ1 + (y1 − y3) sin θ1

(θ1 − θ3) cos θ1

(θ1 − θ3) cos θ1

(x1 − x3) cos θ1 + (y1 − y3) sin θ1

0
0
0


.

These vector fields define the control system:

ẋ = K1w1 + K2w2 + K3w3. (IV.13)

To gain some insight on the trajectories of this control system,
we display in Figure 2 the formation evolution when the open
loop controlw1 = 1, w2 = 0, w3 = 0 is used. The formation
evolution is characterized by agent 3 rotating around some
point while agent 1 and 2 perform straight line motions. The
constraint between agents 1 and 2 is clearly satisfied since
their motion is characterized by the same heading angle and
a fixed distance between their positions. Not so obvious is to
conclude satisfaction of the constraint between agent 1 and
3. Since the position of agent 3 is constant we conclude that
the change in its orientation compensates the change in the
distance between agent 1 and 3 in order for constraint (IV.11)
to be satisfied. When the formation flows along vector fieldK2

corresponding to open loop controlw1 = 0, w2 = 1, w3 = 0,
all the agents move along parallel trajectories as displayed in
Figure 3. This was achieved since their initial orientations were
identical. When this is not the case, more complex motions
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characterize the flow alongK2. However, it is always possible
to achieve identical orientations by flowing alongK1 or K3.
The formation flow along basis vectorK3 is somewhat dual
to K1. Instead of agent 1 rotating around himself to achieve
different configuration errors regarding agent 1, agent 3 is
now stopped and the remaining agents revolve around it as
suggested in Figure 4. To generate more complex motions for
the formation, other open or closed loop control laws can be
used with the group abstraction (IV.13).

Agent 1

Agent 3

Agent 2
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−40

−30

−20

−10

0

10

20

30

40

Fig. 2. Formation flow along vector fieldK1.
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Fig. 3. Formation flow along vector fieldK2.

Agent 1
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60

80

Fig. 4. Formation flow along vector fieldK3.

V. CONCLUSIONS

In this paper we have proposed a framework to deter-
mine motion feasibility for multi-agent formations. Algebraic
conditions were developed to determine motion feasibility
for undirected formations. The abstraction problem was also
addressed and solved by constructing a model of the formation
as a whole, guaranteeing that the formation constraints are
preserved along any of its trajectories. Although we have

considered kinematic models, current research is focusing
on the use of existing techniques such as backstepping [16]
or kinematic reductions [6] to extend the presented results
towards dynamical models for the agents.
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