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Abstract— Formations of multi-agent systems, such as mo- Many fundamental questions remain unanswered in this
bile robots, satellites and aircraft, require individual agents to recent area of formation control. The control of a formation
satisfy their kinematic equations while constantly maintaining requires individual agents to satisfy their kinematics while

inter-agent constraints. In this paper, we develop a systematic PR . .
framework for studying formation motion feasibility of multi- constantly satisfying inter-agent constraints. In typical leader-

agent systems. In particular, we consider formations wherein all follower formations, the leader has the responsibility of guid-
the agents cooperate to enforce the formation. We determine ing the group, while the followers have the responsibility of

algebraic conditions that guarantee formation feasibility given maintaining the inter-agent formation. Distributing the group
the individual agent kinematics. Our framework also enables us o] tasks to individual agents must be compatible with the
to obtain lower dimensional control systems describing the group . g L
kinematics while maintaining all formation constraints. pontrol and sensing capabllltles of the |nd|V|FiuaI agents. As thg
inter-agent dependencies get more complicated, a systematic
framework for controlling formations is vital.
[. INTRODUCTION In this paper, we propose a framework to determine motion
Advances in communication and computation have enablfgdsibility of multi-agent formations. Formations are modeled
the distributed control of multi-agent systems. This philogising formations graphsvhich are graphs whose nodes cap-
ophy has resulted in next generation automated highwiife the individual agent kinematics, and whose edges repre-
systems [21], coordination of aircraft in future air trafficsent inter-agent constraints that must be satisfied. A similar
management systems [20], as well as formation flying aircrafodeling framework has been proposed in [9], and in [19],
satellites, and multiple mobile robots [2], [3], [8]. The control15] graph theoretical methods are used to analyze formation
of multi-agent systems is greatly simplified when the agentability properties. Similar problems arise in the study of
mission can be executed by means dbamation In several formation rigidity properties [10]. This class of systems is rich
applications, maintaining a formation is even fundamental §9ough to capture holonomic, nonholonomic, or underactuated
in multiple aircraft where the formation is used to explorégents.
aerodynamic effects [5] or in robotic exploration of large areas In this paper, we focus on tteasibility problem:Given the
with restricted sensor capabilities [7]. kinematics of several agents along with inter-agent constraints,
The various approaches formation controlof a group of determine whether there exist nontrivial agent trajectories
agents can roughly be divided into three categories: Behaviftat maintain the constraind/Ve obtain algebraic conditions
based, Leader-Follower, and Rigid-Body type formations. B#at determine formation motion feasibility. A related problem
havior based approaches [2] start by designing simple aisdto determine formation rigidity and in [10] it is shown
intuitive behaviors or motion primitives for each individuahow rigidity can be determined by the analysis of a rigidity
agent. Then, by a weighted sum of this simple primitives morgatrix. Such matrix is a representation of the codistribution
complex motion patterns are generated through the interacti@nintroduced in Section 1V. However, we focus on motion
of several agents. Although this approach is characterized fggpsibility for a larger class of formations including, but not
being difficult to analyze in a rigorous and formal way, someestricted to rigid formations.
of these simple schemes have already proven to be stable and/hen a formation has feasible motions, foemation con-
convergent [12]. In leader-follower approaches [13], [19] orféol abstractionproblem is then considere@iven a formation
or more agents are designated as leaders and are respon¥iiife feasible motions, obtain a lower dimensional control
for guiding the formation. The remaining agents are requir€¥stem that maintains formation along its trajectori€ich
to follow the leader with a predefined offset. Finally, in Rigidcontrol system allows to control the formation as a single
Body type formations [4], [14], [15], [10] the distance betweegntity, therefore being well suited for higher levels of control.
the agents configurations (usually their positions) is requirdéd preliminary version of the results presented in this paper
to be constant during all formation motions. appeared in [17], [18].
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A distribution A, on R™ is an assignment of a linearExpression (I.7) shows that all the possible directions of
subspace ofR™ at each pointz € R”. The rank of a motion allowed by (I1.5) are captured by the distribution:
distribution at a pointz € R™ is the dimension of the

subspaceA, C R™. In this paper we will assume that A = span{X, X} (1.8)
all dIStI’IbUtlonS. have const.ant rank which implies that, |0c')r equivalently by its annihilating codistribution:

cally, there exist vector fieldsX, X,,..., X, such that

span{X;(z), Xa(x),..., Xir(x)} = A,. We say that a vector At = span{sin§ dz — cos§ dy} (1.9)

field X : R™ — R"™ belongs to a distribution\ if X (x) € A, o
Vz € R". As distributions are given by the span of columi/here in this caselz - X' = u, cos6 anddy - X' = u; sin .
vectors, codistributions are defined in terms of row vectors.

We denote byR™* the space of all row vectors: such [1l. FORMATION GRAPHS

that o’ € R", where bya” we denote the column vector
obtained by transposing. We now define codistributions as
assignments of linear subspacesif*. Given a distribution
A, there is a unique annihilating codistributias™ defining
A. This codistribution is defined as:

A formation of r heterogeneous agents with staig&t) €
R™, 4 =1, ...,r and kinematics defined by codistributions
A} is modeled by aformation graphwhich completely
describes individual agent kinematics and global inter-agent
constrains.
At ={aeR™ | a-X=0 VXcA}L (1.2) Definition 3.1 (Formation Graph)A formation graphF' =
(V, E,C) consists of:
« A finite setV of r vertices, where is the number of
agents in the formation. Each vertexis a codistribution
A; modeling ageni kinematics.
« A binary and symmetric relatioil C V x V representing
a bond or link between the agents.
A family of constraintsC' indexed by the sef, C =
{¢ij}(vi v;)eE- FOr €ach edgév;,v;), c;; is a vector of
¢(i,7) € N smooth real valued functiond?j : R™ x
ol R% — R, k = 1,2,...,¢(i,5) defining the formation
= ZXJ‘“J‘ (11.3) constraints between agentsand j. The constraint is
=1 enforced when¥; (x;, z;) = 0.
where X; are smooth vector fields dR™ andu; the control In Figure 1 the formation graph used in Example 4.2 is rep-
inputs. A trajectory of (11.3) is a smooth curve: I — R™ resented graphically. The symmetry assumptionFbansures
for which there exists another smooth curve I — R' such that for each(v;,v;) € E, (v;,v;) also belongs toF and
that equation (11.3) is satisfied for evetyin the open sef in fact we identify (v;, v;) with (v;,v;) to guarantee that the
contained inR. Drift free control systems are equivalentlysame constraint is not accounted for twice. This allows to
described by the distribution: model constraints without a preferred sense of direction in
which both agents are equally responsible for the constraint
Ay = span{X;(z), Xa(2), ..., Xi(2)} (1.4) satisfaction. We also assume perfect communication between
capturing all possible directions of motion or by the codistriagentsy; andwv;.
bution A+. This class of control systems is general enough to In this paper, we focus on the motion feasibility problem,
capture underactuated as well as holonomic or nonholonormiere precisely:
systems. Problem 3.2 (Motion Feasibility)Given a formation graph
Example 2.1:Consider, for example, a unicycle type robotF = (V, E,C) determine whether there are nontrivial trajec-
If we model its state space ®° where a point is denoted by tories z;(¢) of all agent kinematics (I.3) that maintain the
(z,y,6) with z andy representing the robot’s position afd constraintSCﬁ?j for all (v;,v;) € E, k =1,2,...,¢(i,7) and
the robot’s orientation, we can define its kinematics by: ¢t € I.
When there are feasible motions, a new problem immediately

Conversely, a codistribution* defines a unique distribution
A given by the set of all vector field§ such thatA+-X =0,
that is,a - X = 0 for everya € A+. Given distributionsA
on R" and A’ on R™ we define their direct sumk & A’ as
the direct sum of the vector space,, with the vector space
A/ for every (z1,22) € R" x R™

In this paper we shall restrict attention to drift free control *
systems. Such control systems can be represented by:

T = wupcosd emerges, the extraction of a formation control abstraction
Yy = wupsinf which characterizes the solution space of Problem 3.2 :
0 = wus ) (11.5) Problem 3.3 (Abstraction)Given a formation graplt’ =

_ i _ (V, E,C) with feasible motions, obtain a lower dimensional
Introducing the vector fields: control system that describes all feasible formation motions.

cosf

0
Xy = |sind Xy =10 (11.6) IV. UNDIRECTED FORMATIONS
0 1

A. Motion Feasibility
we can rewrite (I.5) as:

. . In undirected formations each agent is equally responsible
X =&y 0" = X1uy + Xous (I.7)  for maintaining constraints. Because of this property it will



be useful to collect all agent kinematics and constraints orvactor fields X satisfying A+ - X = 0 represent directions

single state space: of motion respecting the individual agent kinematics, while
n vector fields X satisfyingdC - X = 0 represent directions
R™ = RmMAn2tmn — HR" (IV.1) of motion respecting the formation constraints. Therefore by
i=1 merging both objectsinto:
Given an element: of R™ the canonical projection on the Q=dc+ AL (IV.7)

ith agentr; : R™ — R™ allow us to denote the state of the _ _ o
individual agents byr; = ;(z). The formation kinematics that is, by denoting by2 the codistribution spanned by the

is obtained by appending the individual kinematics throug#nion of a basis ofiC and a basis oA+, we can check for
direct sum, that is: feasible motions in a single equation:

At =l | AF (IV.2) Q,-X(z)=0 VzeN (IV.8)

This new codistributiom\ - onR™ describes the kinematics ofNOte that this equation only needs to hold for points belonging
all agents, however it does not model any interaction betweh/N, since outsideV the agents are no longer in formation.
them. This interaction will be induced by the formationfhe previous discussion leads to the following solution of

constraints that we now lift to the group state sp&¢e Each Problem 3.2: _ _ _ .
constraintcfj linking agenti to agent;j induces a constraint Theorem 4.1:An undirected formation has feasible motions

¢k onR™ defined by: iff equation (IV.8) has nontrivial solutions, equivalently iff
Chy () = cfy (ms(2), my () (1v:3) dimn € < m (V9)

All of these constraints can now be grouped in a single mélff everyz € N. _ _
from R™ to R? with d — Z(vi,vj)GE ¢(i, 7). This constraint he condition described in Theorem 4.1 can be tested by

map C is obtained by stacking all individual constraints agetermining the rank of the matrix associated with distribution
follows: Q. Such computations can be performed in any symbolic
computation package such dathematica In many exam-
c=lcicz...ciMeics...cg® . ..cle? ... co@)T. ples of interest, a basis for distributidi has less thann
where we have considered an enumerafiore, .. ., ¢} of the elements Whi(_:h immediat_ely allows to cor_w_clude that (IV.9)
edge set?. Without loss of generalifywe assume that has holds. A solution of equatiofl - X = 0 specifies the motion

constant rank on a neighborhood @f consequently the set Of each individual agent. When more than one independent
C-10)={z eR™ | C(z) =0} defines a submanifoleV solution exists, a change in the direction of a single agent

of R™. This manifoldN characterizes the interaction betweef’2Y require that all other agents also change their actions
the agents since the state variables of each agent are requifefi@intain formation. This shows that, in general, solutions
to live on this submanifold. Motion feasibility requires that th&@r€ centralized and require inter-agent communication for their
constraints are satisfied along the formation trajectories, tHZ{Plementation.

is, that the submanifoldV is invariant underA trajectories: Example 4.2:We now illustrate Theorem 4.1 in a simple
p example. Consider an undirected formation consisting of three

ch; = LXC?“J» = dckj X =0 (IV.4) unicycle type robots as displayed in Figure 1. The kinematics
t =0 k K
for every X € A, (v;,v5) € E,k € {1,2,...,¢(i,7)}, and

where LXC{;- denotes the Lie derivative af’. with respect

to X. We now capture all the constrainty; in a single

codistribution: Fig. 1. Three agents formation.
dc = dct,dcz, ... def o
C = span{ Ci’ C;’ ’ 62(2)7 of each agent is given by codistributions of the form (11.9). To
dC;,dC3, . ..,dCy, completely specify the formation graph we need to define the
interagent constraints. The constraint associated with the edge

' between agent 1 and agent 2 is define by:
der,derm,...,dcemy  (IV.5)

T1 — Xo — Oy

and see that a vector fieldl satisfies (IV.4) iffa- X = 0 for c12= |y1 —y2— 0y (IV.10)
everya € dC. This we shall denoteby: 0, — 0,
dc- X =0. (IV.6) where ¢, and 6, are positive constants. There is also a

) ) constraint between agents 1 and 3 defined by:
1Since we can use Sard's theorem [1] on the ndapThis local rank

assumption ensures thét is a subimmersion and therefoz1(0) is a o 1 2 1 2 1 2
submanifold ofR™ [1]. Note that although the map depends on the chosen €13 = §($1 —x3)"+ Q(yl —y3)"+ 5(91 —03)"—0| (IV.11)
enumeration, the submanifold it defines does not.

2At the computational level, condition (IV.6) is determined by constructing 3Computationally, the codistributiof? is characterized by the matrix having
the matrix with the row vectorsicll,dcf, .. .,dcffl("” appearing in the as row vectors, the row vectors appearing in the matrices descldirand
definition of dC and multiplying such matrix byX. AL



with § a positive constant. The constraint between agentsofl the problem is also reflected on the control abstraction.

and 2 requires them to perform the same trajectories wktihen one or more of the control inputs; are used, inter-

an offset between their position coordinates given &y agent cooperation is necessary to implement the new direction

and ¢, which we intuitively know to be possible. However,of motion since each vectak’; specifies the motion for all

the constraint between agents 1 and 3 requires the distafmenation agents.

between their positions to equ%h(g + (6, — 63)2. This is Example 4.3:_We now return to the p_revious example and

clearly a non intuitive constraint and no a priori answer c#iPMpute a basis for the kernel Bf Straightforward compu-

be given regarding feasibility. We will now study feasibilitytations lead to the following basis vector fields:

of this formation according to the methods developed so far. - .

First, we computeA=L: (05 = 61) cos 0y
' (03 — 071) sin 0y

At = span{—sinf; dz; + cosb, dy, 0

—sin #5 dzs + cos 65 dys, (63 — 01) cos 0,

K= 03 — 0 5 0
— 8in 65 das + cos 03 dys } ! (05 (1)) ot
Since( is given by: 0
0
Ty — T2 — 535 (.’171 — 373) CcoS 91 + (yl — yg) SiH91
C= Y1 —y2 =0y . o
01 — 0y ((x1 — 23) cos B3 + (y1 — y3)) sinb3) cos O,
Loy —x3)? + 2(y1 —y3)? + (01— 03)2 — 6 ((x1 — x3) cos O3 + (y1 — y3)) sin b3) sin 6,
C . . 0
the codistributiondC will be given by: .
9 y ((xl — ZC3) COSs 03 + (yl — yg)) Sin 93) COs 01
dC = span{dx; — dzy,dy; — dyo,df; — dbs, Ky = | ((x1 — x3) cos O3 + (y1 — y3)) sin O3) sin 61
(z1 — x3)dwy + (y1 — y3)dys + (03 — 61)d6; 0
((x1 — 3) cos By + (y1 — y3)) sin ;) cos O3
*(@s — @1)des + (ys — y1)dys + (61 — 0)dds ) ((x1 —w3) cos by + (y1 — y3))sin b)) sin b3
CombiningdC and A+ into 2 one easily verifies thadim L 0 J

is at maximum 7 since a basis f@ris formed by the 4 forms
spanningdC and 3 more forms spanning*. This means that
this formation is indeed feasible sindém Q2 < 7 < 9 = m.

We can therefore conclude by Theorem 4.1, that there are
trajectories for each agent satisfying the formation constraints

(91 — 93) COS 91
(91 — 93) sin 01

(z1 — x3) cosby + (y1 — y3) sin by
(91 — 93) COS 91

. . h K3 = (91 —93)(30591
as well as its kinematics. In general we can have more forms .
than m and still conclude feasibility since such forms may (w1 — 3) cos Oy 3' (41 —ys) sin s
be linearly dependent. In the next section we will see how 0
one can control the individual agents while maintaining the 0

formation and gain some insight into the group trajectories. L e
These vector fields define the control system:

B. Group Abstraction i = Kjw; + Kowsg + Kaws. (IV.13)
Whenever more than one independent solution exist, t

e . . . .
solution space of equatiof - X — 0 can be used to t‘Ilo gain some insight on the trajectories of this control system,

extract a lower dimensional control system that will preser e display in Figure 2 the formatlon_ evolution when the'open
the formation along its trajectories. This new control systefgP controlws = 1,ws = 0,ws = 0 is used. The formation
defined by the group distributio& — {X : R™ — R™ : eV(_)Iut|0n_ is characterized by agent 3_rotat_|ng aro_und some
w-X — 0 Vw € Q) is an abstraction that hides awa)}oomt whne agent 1 and 2 perform str_aught line mo_t|o.ns. T.he
low-level control necessary to maintain the formation, an%lonstramt between agents 1 and 2 is clearly satisfied since

can be used in higher levels of control. If we denote bgeir motion is characterized by the same heading angle and
(K1, Ko K.} a basis for the kemel of, we can write fixed distance between their positions. Not so obvious is to

the solution of Problem 3.3 as: conclude satisfaction of the constraint between agent 1 and
' ' 3. Since the position of agent 3 is constant we conclude that

. b the change in its orientation compensates the change in the
= ZKJ'“)J' (V.12) distance between agent 1 and 3 in order for constraint (1V.11)
=t to be satisfied. When the formation flows along vector fi€ld
SinceQ - K; = 0 for any j € {1,2,...,k} we conclude corresponding to open loop contray = 0,w; = 1, ws = 0,

that for any input trajectoryw : I — RF, the corresponding all the agents move along parallel trajectories as displayed in
state trajectoryr(t) satisfiesC};(x(t)) = 0 for all (v;,v;) € Figure 3. This was achieved since their initial orientations were
E,p=1,2,...,0(i,7) andt € I. The centralized nature identical. When this is not the case, more complex motions



characterize the flow alonf,. However, it is always possible considered kinematic models, current research is focusing
on the use of existing techniques such as backstepping [16]
The formation flow along basis vectdts; is somewhat dual or kinematic reductions [6] to extend the presented results
to K. Instead of agent 1 rotating around himself to achiewewards dynamical models for the agents.

different configuration errors regarding agent 1, agent 3 is
now stopped and the remaining agents revolve around it as
suggested in Figure 4. To generate more complex motions f?lr]
the formation, other open or closed loop control laws can be
used with the group abstraction (IV.13).

to achieve identical orientations by flowing aloig or K.
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In this paper we have proposed a framework to det 5o
mine motion feasibility for multi-agent formations. Algebraic
conditions were developed to determine motion feasibilit

for undirected formations. The abstraction problem was al

]

addressed and solved by constructing a model of the formation
as a whole, guaranteeing that the formation constraints are
preserved along any of its trajectories. Although we have
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