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Abstract: Feature extraction and selection are important steps in the construction
of a map to support the navigation of mobile robots in outdoor environments.
The large amount of data acquired by the on-board sensors has to be reduced
to retain only the crucial information for the navigation purpose. This procedure
should be robust given the rough, dynamic and unpredictable conditions provided
by outdoor scenarios. The paper discusses the use of different types of features and
proposes a feature selection criteria aiming at building a topological map of the
environment. The approach was tested with real data acquired in different types
of outdoor scenarios.
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1. INTRODUCTION

One application of mobile robots is to carry out
tasks in unstructured environments often without
or with a reduced a priori knowledge of the scene
map. To accomplish this type of mission, mobile
robots have to adapt, recognize, localize and nav-
igate simultaneously, while moving towards the
desired target goal.

If no environment representation is available, mo-
bile robots have to build it based on the observa-
tions acquired by on-board sensors. Large scenar-
ios, as those in outdoor environments, rides to a
large amount of information to store, including
that required to accomplish the map, but also
the localization and navigation algorithms. Topo-
logical representations, as the ones considered in
this paper, are based on landmarks characterized
by features. Therefore a feature extraction proce-

dure, reducing the data acquired by the sensors
but retaining the crucial information, is required.
Features have to support different scenarios but
not every type of feature is essential to a particular
scenario, this requiring a feature selection criteria.

In natural scenes, there are several features: cor-
ners, distinctive features such as buildings, street-
lamps, placards, vertex and lines junctions, colors
(Kasprzak and Szynkiewiez, 2003), textures, ver-
tical edges (Kang and Jo, 2003). The key question
is how to determine the best set of features in an
outdoor scene, aiming at producing a topological
map that supports the navigation of a mobile
robot.

In this paper we address the problem of feature ex-
traction and selection to build a topological map.
Given a set of images acquired by the on-board
sensors, the paper’s novelty is the choice of the



best features, according to a statistical criteria,
that fits on the scenario representation. These fea-
tures are used in the mapping algorithm described
in (Vale and Ribeiro, 2003), that supports the
localization and navigation of a mobile robot in
an outdoor environment. Qur approach uses the
data acquired by a standard camera installed on
top of the mobile robot. It can also be applied
with a different vision system geometry, namely
an omni-directional camera.

This paper is organized as follows. Section 1
presents the paper motivation. In Section 2 an
overview of related work on features and world
representations is described. Section 3 introduces
the notation and the algorithms proposed for fea-
ture extraction. The feature selection procedure
is described in Section 4. Experimental results
obtained with images acquired in a real outdoor
environment are presented in Section 5. Section 6
concludes the paper and presents directions for
further developments.

2. RELATED WORK

To obtain a topological representation from a
real environment, it is necessary to perform a
feature extraction process from data acquired by
on-board sensors (e.g., vision camera, laser range
finder). Some works deal with this issue.

Santos-Victor et al.(Santos-Victor and Bernardino,
2002) proposed a vision-based navigation which
takes into account special spatial representations
and visual geometries. The navigation problem is
based on the decomposition of sub-goals, identi-
fied by recognizable landmarks.

Ulrich et al.(Ulrich and Nourbakhsh, 2000) pre-
sented an appearance-based place recognition sys-
tem for topological localization. This work focuses
on color images to distinguish the places. Hahnel
et al.(H&hnel et al., 2003) discussed the problem
of creating maps in dynamic environments, using
a technique to identify dynamic objects.

Zhou et al(Zhou and Huang, 2001) proposed
structural features for content-based image re-
trieval (CBIR), especially edge/structure features
extracted from edge maps. They describe a new
algorithm to extract information embedded in the
edges. Experiments show that the new features
can catch salient edge/structure information and
improve the retrieval performance.

The Principal Component Analysis (PCA) ob-
tains a feature set and provides a mathematical
model for the loss of information (Jolliffe, 1986).
It supplies a linear representation of the original
data using the least number of components with
the minimum mean-squared error. PCA has been
successfully used in several robotic applications
for finding linear features from intensity data. It

can also be applied on laser range data (Wallner
et al., 1998). Thrun (Thrun, 1998) presented a
method to learn what features/landmarks are
best suited for localization, using neural net-
works. Vlassis et al.(Vlassis et al., 2001) proposed
a method for an appearance based modeling of
the environment, using linear image features ex-
tracted using PCA.

Our paper addresses some of the issues described
in the reviewed literature. In particular, we take
the best characteristics of different types of fea-
tures (e.g., vertical edges, color histograms, PCA)
and propose the choice of the best features for
mapping, based on a statistical criteria.

3. FEATURE EXTRACTION

A feature extraction procedure corresponds to
the projection of high-dimensional data onto a
low dimensional subspace leading, in most cases,
to a loss of information. Any feature extrac-
tion method must satisfy the following proper-
ties, (Vlassis et al., 2001): 4) robustness to small
displacements, #) invariant to lighting conditions,
#44) invariant to occlusion, iv) fast computation
and v) capacity to compress the images as much
as possible while retaining pertinent information.

Different feature types can be used to solve the
mobile robot localization problem, in particu-
lar geometrical features (lines, corners, edges,
shapes), color, textures and whatever can be dis-
criminated as a landmark. Given the huge amount
of information but also the requirement to support
localization it is necessary to choose the best fea-
tures to represent a landmark and to carry out a
feature selection procedure.

An important goal to support robot navigation is
to achieve a good and optimized representation
of features to improve the performance of the
matching required in the mapping procedure, as
described in (Vale and Ribeiro, 2003).

The notation used throughout the paper is:

e 0; is a p-dimensional observation vector ac-
quired at time instant ¢,

e f; is a m-dimensional vector of features re-
ferred to time instant ¢, where f;(i) is the
i-th feature value, i =1...m,

o f = {ftg, fts»---, ftx} is & sequence of fea-
ture vectors from #g to ty.

The observation o; integrates all the sensor in-
formation available. The feature vector, f:, is ex-
tracted at each time instant ¢ from the observation
data o by a nonlinear function FE, f; = FE(o),
where F'E : IRP — IR™. The extraction function
FE reduces the amount of data, retaining only
the essential information of sensor data. For that
reason, FE~1(f;) D o4, which means that differ-
ent observation vectors could lead to the same



feature. When this happens, it is important to
identify if the observations were acquired in the
same place, or in places where the distinction
among them is not important. The performance
of F'E is addressed in Section 4, where the best
features, which are time independent, are chosen.

3.1 Edges and Hough-Transform

As described in (Finlayson et al., 1998), the image
dependencies due to lighting source and illumi-
nance, mainly in outdoor environments, require a
color image normalization procedure. This draw-
back points towards the use of edge-based fea-
tures to support environment representation and
robot navigation (Mata et al., 2003), (Lamon et
al., 2001), (Zhou and Huang, 2001), (Vlassis et
al., 2001).

To extract edges from an image a specific filter
(e.g., Sobel, Prewitt, Roberts, Gaussian, or other)
is applied. In outdoor environments where the
scenario is unstructured, it is important to detect
the vertical ones. Moreover, the edges present
noisy information and therefore it is necessary
to remove or, at least, reduce the superfluous
data, applying the Hough Transform (HT) to
the edges (Hansen and Andersen, 1997). This
technique yields an histogram of straight lines for
different directions, as shown in Fig. 1-¢), where
the brightness corresponds to the amount of pixels
that belong to a specific line.

A straight line is defined by (r,6), zcosf +
ysinf = r, where (z,y) are the coordinates of
an image pixel. To select only the vertical or
near to vertical edges, the directions are chosen
around 0 and 180 degrees, as exemplified in Fig.
1-d). The kggges straight lines with the larger
number of pixels (high level on the histogram,
represented by '+’) are selected and considered as
the edges’ features extracted from the image. The
image in Fig. 1-b) shows the result. To reduce the
dependence of r; from the sensor’s orientation, we
only record the distance between two consecutive
straight lines, d; = ;1 — r;, yielding

dy ds -+ dy,
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3.2 Histogram parameterizations

Even with the light and geometric dependencies,
the color is still an important source of infor-
mation. Applying a normalization procedure, as
suggested by (Finlayson et al., 1998), or simply,
using the HSV colormap in spite of RGB, color
histogram are important features. However, his-
tograms provide large amount of information that
could be parameterized as exemplified in Fig. 2.
We tested the parameterization of Hue and Satu-
ration histograms using a polynomium and a sum
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Fig. 1. Example of vertical edges detection. (a)
original image; (b) vertical and near vertical
edges; (c) the Hough Transform of edges; (d)
the same as in c¢) but only around vertical
directions

of Gaussian functions. A parameterization using a

polynomium of order n requires n + 1 parameters

(ag,ai,...,a,), while by a sum of n N(u,o),

requires 3n parameters (weights, means and vari-

ances). The parameterization error is evaluated by
the square error of the original and the parame-
terized histograms. We carried out experimental
tests with a large amount of images acquired in
different places of outdoor environments. The cor-
responding Gaussian parameterization errors are
significantly lower when the number of parameters
are equal or larger then 6, as shown in Table 1.

f of par- Gaussians Polynomials
ameters H color | S color H color | S color
3 3214 1087 2401 1284
6 2010 830 2200 960
9 1537 534 2035 681
12 714 478 1871 539

Table 1. Parameterization error using
Gaussian and polynomial functions

According to the experimental results, the Gaus-
sian parameterization yields better histogram rep-
resentations for the considered outdoor scenarios.
Consequently, in our work, the features extracted
are the Gaussian parameterization: the weights ¢;,
the means u; and the variances o;,
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where Hue and Sat. correspond to the Hue and
Saturation components. The features extracted
from the Parzen windows, (Parzen, 1962), return
similar results and are computationally faster.

3.8 2D histogram and image segmentation

Based on histograms it is possible to identify re-
gions on the image with similar colors. We per-
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Fig. 2. Example of histograms parameterization
using 9 parameters: (a)- by a polynomial of

order 8; (b)- by 3 Gaussians

formed the bi-directional histogram along Hue-
Saturation colors and selected the ksppist most
significant colors (Hue, Saturation). For each sig-
nificant color, the smallest boundary-box that fits
all the pixels with the same color defines a region.
The features extracted from each boundary-box
are the width and height, the amount of pixels
and the color, i.e.,

ftQDhlst — FE(Ot) = [bomlbomg e boxk2DhiSt]
widthy widthy --- widthy,,, .
_ heighty heights --- heighty,,, ., (3)
pizels1 pivelsy --- pizelsg,,,. .
colory  colors - coloriyp ;.

The position of the boundary-box on the image is
not recorded, since it is much dependent on the
point of view, (Kasprzak and Szynkiewiez, 2003).

3.4 PCA and ICA

A common approach to extract the essential in-
formation from images is the Principal Compo-
nent Analysis (PCA), (Jolliffe, 1986). A similar
technique where the components are orthogonal
is the Independent Component Analysis (ICA),
(Wachtler et al., 2001). Both techniques extract a
base, B = {B1, Bs,..., By, }, from a training
set of images. We will refer each B; as a compo-
nent of the base.

Given the size of images, Wachtler (Wachtler et
al., 2001) proposes an implementation optimiza-
tion dividing the images into sub-images. This is
useful, since the original images present common
areas (e.g., the ground, the sky), as illustrated
in Fig. 3 and Fig. 5. Consequently, the training
set increases according to the number of divisions
(e.g., 4x if each image is sub-divided in 4 sub-
images) and the base also changes.

The projection of the training set into each base
B provides different energy distribution. The PCA
results condense the energy into the first compo-
nents (usually the first 2 retain more than 90%),

as exemplified in Fig. 4, using the first 25 prin-
cipal components of the base evaluated from the
training set with the 12x16 images obtained by
sub-dividing in 16 each of the 12 images of Fig. 3.

The features are the projection of the observed
images, o, on the base, B, or equivalently:

fEOM =FE(or) = [< 0, B1 > -+ < 01, Biy,, >]-(4)

The features f{“4 are similarly extracted if the
basis results from the ICA procedure. Both tech-
niques, PCA and ICA, can be applied to the
images in RGB or HSV format. However, the two
colors Hue and Saturation are the most important,
as explained in Section 3.2.

Fig. 3. A training set of images

The relation between the basis, the number of
components and the number of sub-images is non
linear, as exemplified by the results in Table 2.
This table presents the image reconstruction error
using PCA and ICA, with 5 to 25 components.
The columns correspond to the sub-divisions of
the images (1-no division, 4,16-divides the image
into 4 and 16 sub-images respectively, as illus-
trated in Fig. 5) with a training set of 12 images.
The error is an average for all pixels (each pixel
changes between 0 and 255). When the number
of components increases, the error decreases. For
instance, the reconstruction error is 0 when the
number of components is larger than 12 since the
training set has 12 images. However, the recon-
struction using 5 or 10 components and images
divided into 4 sub-images provides an error larger
than the one obtained with images divided into 16
or not divided. For more than 10 components the
error decreases. This results from the fact that,
when the original images are divided into 16, the
sub-images coincide with the ground, the sky or
the buildings.

f of com- PCA ICA

ponents 1 4 16 1 4 16
5 6.6 | 7.3 | 6.1 11.5 | 12.2 | 8.9
10 1.7 | 5.7 | 5.1 2.3 11.0 | 8.7
15 0 44 | 4.5 0 10.4 | 8.5
20 0 3.2 | 4.1 0 8.9 8.3
25 0 2.0 | 3.8 0 8.0 8.1

Table 2. Image reconstruction error us-
ing PCA and ICA
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Fig. 5. (a)- The entire image; (b)- Image divided
into 4 sub-images; (c)- Divided into 16

4. FEATURE SELECTION

As soon as features are extracted it is necessary
to select the ones that will be used for mapping,
this requiring a selection criteria. The quality of a
feature has to be analyzed along two different per-
spectives: time/space and correlation with other
features as illustrated in the following example.
Consider that there are two types of features:
”colors” and ”geometric forms” and that the mo-
bile robot navigates along three distinct places.
If all the places are identified by the same color,
the feature ”color” is useless, independent of the
”geometric” information. If the two first places
are "red” (the same value for the feature ”color”)
and the third place is ”blue”, the feature ”color”
can identify some places, but the ambiguity is still
present. In this case, if the geometric form is the
same for the "red” places, but different for the
”blue” place, the two features are redundant, i.e.,
the correlation between features is too high.

To evaluate the quality explained above, the cor-
relation between features is required. In the sequel
we formalize this correlation concept. Let the set
of features given by

f — {fEdges inst fQDhist fPC’A fICA} (5)
where f® is extracted from N +1 observations, i.e.,
fa:{ftaoafﬁa"wftazv} (6)

with a € {Edges, Hist,2Dhist, PCA,IC A}.

Define piga, ppr as ppi = ﬁziitg fi,i = a,b, let
M be the N, x N matrix,

1 &
M= N+l Z;O [ff = pge] [ — ,Ufb]T (7)

with N, and N, such that f2 € RN« and f! €
RN»,

The correlation between two different types of
features, f* and f°, with a # b, is evaluated as

N, N

corr(f2, f*) OCZZ|M”| (8)

i=1 j=1

For the map construction, the algorithm uses the
n lowest correlated features as they convey the
highest degree of environment information. The
dimension of n is selected according to the desired
accuracy of the mapping.

5. EXPERIMENTAL RESULTS

The experimental results were obtained from im-
ages acquired by a camera mounted on top of the
mobile robot displayed in Fig. 6. The experiments
were made in outdoor environments in three dif-
ferent scenarios: "Exp.1” is a mixed of buildings,
trees, cars, walking people and diversity of light
conditions; ”FExp.2” was carried out in a garden
with a couple of trees; "Exp.3” run in a park-
ing place (a structured area). The features used
were vertical edges, the Hue/Saturation-colors
histograms parameterization (using 3 Gaussians),
2D histograms (the 4 first boundary-boxes), the
PCA (images subdivided in 14 sub-images and
building a base with 15 components) and ICA.
Feature extraction yields data compression as rep-

Fig. 6. Mobile Robot ATRV-Jr with a Pan and
Tilt camera Sony EVI-D31

resented in Table 3 for a set of 80 images (JPG)
requiring 1055KBytes of storage space. The edges,
histograms and 2D histograms yields higher com-
pression than PCA or ICA, since the two last
features require a base of images.

Edges Hist 2Dhist PCA ICA
98.83% | 98.94% | 99.11% | 85.80% | 85.80%
Table 3. Compression from observations
to features

The correlation differs between experiences and
features. The edges have low correlation with
other features in Exp.1 and 3, since the buildings
contain very well defined edges, while in Exp.2,
the trees and the waved terrain provides rough
edges. The correlation between any feature ex-
tracted with PCA or ICA is small except between
themselves (PCA and ICA). This exception is also



Exp.1 | Exp.2 | Exp.3

Edges & Hist 0.0492 | 0.513 0.265
Edges & 2Dhist 0.1944 | 0.442 0.226
Edges & PCA 0.189 0.474 0.409
Edges & ICA 0.013 0.288 0.074
Hist & 2Dhist 0.138 0.381 0.569
Hist & PCA 0.237 0.236 0.110
Hist & ICA 0.033 0.098 0.108
2Dhist & PCA 0.213 0.472 0.296
2Dhist & ICA 0.058 0.315 0.093
PCA & ICA 0.832 0.452 0.861

Table 4. Correlation between features

verified between PCA (or ICA) and 2Dhist of
Exp.2, since the boxes of similar colors coincides
with some image components. According to these
results, the Edges and Hist or Edges and ICA are
the less correlated features in Exp.l, while Hist
and ICA, Hist and PCA are the less correlated
features in Exp.2 and Exp.3, respectively.

From the results presented in Table 4 we conclude
that the edges and ICA or Edges and Hist (or
even the three type of features simultaneously)
are the best features to build a map in Exp.1.
The Hist and ICA or Hist and PCA, but not
the three simultaneously (since PCA and ICA are
high correlated) should be used to build a map in
Exp.2. Similarly for edges and ICA or 2Dhist and
ICA in Exp.3.

Each experience exploits a good combination of
two (or more) types of features corresponding to
the lowest correlated features. The work (Vale and
Ribeiro, 2003) describes the clustering technique
of the features selected along the lines explained
in this paper, aiming a topological representation
of the environment.

6. CONCLUSIONS AND FUTURE WORK

Future research includes texture extraction using
Gabor Filters and/or Nonlinear Operator and a
tuning criteria for the dimension of each feature
(e.g., optimize the appropriate number of edges,
kedges, or the number of gaussians to parameterize
the Hist, kpis, or the number of boundary-boxes,
kapnist)- However, non correlated or weakly cor-
related features are not necessarily essential fea-
tures. Different observations in the same place (or
near) must lead to similar features. To compare
the features’ vector from different observations,
fi and f;, it is also necessary to define a distance
criteria and improve the feature selection.

Future work also includes the integration of
the feature extraction/selection procedure into
the mapping algorithm, described in (Vale and
Ribeiro, 2003) in the frame of project RESCUE.
According to the goals of the project, it would be
interesting to take advantage of using distributed
feature extraction and selection to achieve coop-
erative localization and mapping in outdoor envi-
ronments using several mobile robots.
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