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Abstract
In this paper, the problem of determining if a population of mobile

robots is able to travel from an initial con�guration to a target con�g-
uration is addressed. This problem is related with the controllability of
the automaton describing the system. To solve the problem, the concept
of navigation automaton is introduced, allowing a simpli�cation in the
analysis of controllability. A set of illustrative examples is presented.

1 Introduction

Robotic navigation is a central topic of research in robotics, since the ability that
a robot has to accomplish a given task may greatly depend on its capability to
navigate in the environment. The related literature presents numerous works on
the subject, and proposes di�erent navigation strategies, in particular, Markov
Models [1], dynamic behaviours [2] or Petri Nets [3].

In the last decades a great e�ort has been addressed to the subject of co-
operative navigation. The existence of multiple robots sharing environment
resources or pathways when simultaneously navigating in a common environ-
ment leads to new and challenging navigation problems. A common approach
to solve the problem is the extension of known strategies for single robot navi-
gation to the multi-robot case, for which there are several examples presented
in the literature. In the work by Balch and Hybinette [4], potential �elds are
used to achieve multi-robot navigation. However, in the multi-robot navigation
framework, new topics of investigation emerged, such as cooperation and for-
mation control or �ocking, as addressed, e.g., by Balch and Arkin [5], where a
reactive behaviour-based approach to formation control is described.

In this paper, the problem of multi-robot navigation in an environment de-
scribed by a topological map is addressed. It concerns the problem of driving
the robots from some initial con�guration to a �nal or target con�guration. In
particular, we develop analysis strategies in order to determine under which sit-
uations the target con�guration becomes non-achievable, and, as such, prevent
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those situations. In a previous work [6], this analysis has been conducted for
a set of homogeneous robots(1). This paper extends those results to a set of
generic robots, i.e., where robots with di�erent capabilities may intervene.

The multi-robot system is modeled as a �nite-state automaton (FSA) and
the main contribution of this paper is the analysis of the blocking and controlla-
bility properties of the automaton. Since the automaton models the movement
of the complete robot population in the environment, from a start con�gura-
tion to given goal con�guration, properties such as blocking and controllability
have direct correspondence with the successful completion of this objective. A
blocking state in the automaton corresponds to a distribution of the robots from
which the desired goal con�guration is not achievable (because one of the robots
has reached a site from where it cannot leave, for example). Controllability of
the automaton means that such blocking states are avoidable, and it is possi-
ble to disable some actions to prevent the robots from reaching such blocking
con�gurations.

The results presented in this paper relate the blocking and controllability
properties of the automaton modeling the multi-robot system (which can be a
large-dimension automaton, for complex systems) with the blocking and con-
trollability properties of smaller automata, named as navigation automata, that
model the navigation of each individual robot in the population.

The paper is organized as follows. In Section 2, some basic concepts are
introduced and the problem under study is described. Section 3 approaches the
problem of determining the blocking properties of the automaton describing the
system for a homogeneous and a non-homogeneous population. In Section 4,
the results regarding controllability are presented both for homogeneous and
non-homogeneous systems. Section 5 presents a set of illustrative examples.
Finally, Section 6 concludes the paper and presents directions for future work.

2 Navigation Automata and the Multi-robot sys-

tem

In this section, some basic concepts regarding automata are introduced and the
notation used throughout this paper is described.

Notation regarding automata [7]:
A general automaton Q is a six-tuple Q = (X, E, f,Γ, x0, Xm), where

• X is the state space;

• E is the set of possible events;

• f : X × E −→ X is the transition function;

• Γ : X −→ 2E is the active event function;

• x0 is the initial state;

• Xm is the set of marked states.

1We consider a set of robots to be homogeneous when all robots are alike, i.e., they have
the same capabilities.
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The events in Q label each transition of the automaton, and a sequence of
consecutive events in Q is called a string generated by Q. The set of all strings
generated by Q is known as language generated by Q and is denoted by L(Q).
The set of all strings driving the system to a marked state is called language
marked by Q, Lm(Q). An automaton is called unmarked if Xm = ∅.

An automaton Q is said to be non-blocking if Lm(Q) = L(Q) and blocking
otherwise, i.e., if Lm(Q) ( L(Q). The notion of blocking does not apply to
unmarked automata.

When it is clear from the context which initial state it refers to, x = f(x0, s)
will be denoted x(s). A set XC ⊂ X of states is said to be closed if f(x, s) ∈ XC ,
for any s ∈ L(Q) and x ∈ XC . A blocking automaton veri�es XC ∩Xm = ∅.

The Problem Consider a system of N robots, navigating in a discrete
environment (represented by a topological map) consisting of M distinct sites.
This is referred as a N -R-M -S situation (N robots and M sites) or a N -R-M -S
system. The set of sites in the map is denoted by S = {1, . . . ,M}.

When a robot is in site i, it will not generally be able to reach all other sites
in a single movement. The function Ωk : S → 2S establishes a correspondence
between a site i and a set Si ⊂ S of sites reachable from i in one movement of
robot k. If site j is reachable from site i, i.e., if j ∈ Ωk(i), then, for robot k, site
j is adjacent to site i. Function Ωk is called the adjacency function for robot k.

This paper addresses the problem of driving the robots from an initial con-
�guration CI to a �nal or target con�guration CF . The set of sites containing at
least one robot in the �nal con�guration is denoted by ST . The sites in ST are
called target sites. From the point of view of �nal con�guration, no distinction
is made among the robots, i.e., it is not important which robot is in each target
site.

Navigation Automata Robot k of the population moves in the environ-
ment de�ned by the topological map according to its own adjacency function
and is described by an unmarked automaton Gk = (Yk, Ek, fk,Γk, y0k).

The state space Yk is the set of all possible positions of robot k, verifying
Yk = S. The event set Ek is the set of all possible actions for robot k. Generally,
an action consists of the command leading to the next site for the robot to move
to. Since all robots have the same event space, to avoid ambiguity, action i
issued to robot k is denoted by Gok(i), where i is the next site for the robot k.
Therefore, all events in the system correspond to movements of the robots. For
simplicity, it is assumed that only one robot moves at a time.

The active event function Γk when robot is in state i corresponds to the sites
reachable from i in one movement. This means that Γk = Ωk.

De�nition 1 (Navigation automaton) Given a robot k moving in a discrete
environment consisting of M distinct sites, the navigation automata for this
robot are the marked automata Gk(Ym) = (Yk, Ek, fk,Γk, y0k, Ym), where:

• Yk, Ek, fk and Γk are de�ned as above;

• Ym is a set of target states, Ym ⊂ ST .

In the case of a homogeneous set of robots, i.e., in which Ω1 = . . . = ΩN ,
all Gi are alike, except for the initial condition y0k. In this situation, when
the initial condition is clear from the context, or not important, a navigation
automaton will simply be denoted by G(Ym) = (Y, Em, fm,Γm, y0, Ym).
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2.1 The Multi-Robot System

Consider the situation where N robots (not necessarily similar) move along M
sites, with no constrains on the number of robots present at each site. In such
situation, each robot can be in M di�erent positions and there are MN di�erent
possible con�gurations.

The system of all robots can be described by a FSA, G = (X, E, f,Γ, x0, Xm),
where the state-space X is the set of all possible robot con�gurations, yielding
|X| = MN . Each state is a N -tuple (x1, x2, ..., xN ), where xi is the site where
robot i is.

Since any robot can aim at any target site, there is a set of states correspond-
ing to the target con�gurations. Such states are called compliant con�gurations,
and the set of all compliant con�gurations is denoted by XF ⊂ X. Notice that,
in automaton G, Xm = XF .

Now consider the case of a homogeneous set of robots. In this situation,
some of the states described above are equivalent, since the robots are indis-
tinguishable. This leads to a simpli�cation in the automaton, given that the
equivalent con�gurations are merged into one single state. This simpli�ed model

has a state space X consisting of |X| =
(

M + N − 1
M − 1

)
states, where each state

consists of a M -tuple (n1, n2, ..., nM ), ni being the number of robots in site i.
Note that in this case of a homogeneous set of robots there is only one compliant
con�guration XF = {xm} = Xm.

The event set As seen before, robot k has an available set of actions Ek,
denoted by Gok(i). Therefore, the multi-robot system has a set of actions
E =

⋃
k Ek available, all consisting of Gok(i) actions.

In the particular case of a homogeneous set of robots, it is not important
which robot moves, but only from which site it moves. In such case, the possible
actions for the robots will be of the type Go(i, j), corresponding to a movement
of a robot from site i to site j. Notice that, if Ri ⊂ {1, . . . , N} is the set of
robots in site i, the event Go(i, j) in the homogeneous situation can be any of
the events Gok(j), k ∈ Ri.

3 Blocking

Let G be the automaton modeling a N -R-M -S system.
If G is blocking, there is a closed set of states C, called blocking set, such

that C ∩ Xm = ∅. This, in turn, means that whenever the robots reach a
con�guration corresponding to a state x ∈ C it is not possible to drive them to
the desired con�guration anymore.

Usually, blocking is checked by verifying Lm(G)  L(G) exhaustively. In
the present case, as the system can lead to relatively large automata for not so
large M and N , a more e�ective way to check the blocking properties of G is
desirable. This section addresses this problem.

3.1 Homogeneous System

In this subsection, the particular case of a set of homogeneous robots is analyzed,
along the lines presented in [6]. The simple fact that the robot population is
homogeneous has an immediate implication in terms of state-space and event
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set, since there are generally less events available and the state space is smaller
than in the non-homogeneous situation. Moreover, in this case, Ω1 = Ω2 =
. . . = ΩN = Ω.

From Section 2.1, the automaton G describing the N -R-M -S system has a
state space X consisting of the M -tuples (n1, . . . , nM ), where ni ∈ {1, . . . , N}
is the number of robots in site i. On the other hand, the set of possible events
E consists of all events of the type Go(i, j), where i, j ∈ S.

Considering the navigation automata G(ym) describing the navigation of any
of the N robots, Proposition 1 holds. An example of its application is presented
in Section 5.

Proposition 1 The automaton G describing a N -R-M -S homogeneous system
is non-blocking i� all the navigation automata G(ym) are non-blocking, with
any initial condition y0 corresponding to a site from the initial con�guration,
and ym is a target state.

Proof: See [6].

3.2 Non-homogeneous System

Let G be the automaton modeling a generic N -R-M -S system. The state
space X of this automaton is the set of the N -tuples (x1, . . . , xN ), where xi ∈
{1, . . . ,M} is the site where robot i is. The set of possible events E consists of
all events of the type Gok(i), where i ∈ S.

From automata theory, given any two automata Qi = (Xi, Ei, fi,Γi, x0i, Xmi), i =
1, 2, the parallel composition of Q1 and Q2 is the automaton Q = Q1||Q2 =
(X, E, f,Γ, x0, Xm) de�ned by [7]:

• X = X1 ×X2;
• E = E1 ∪ E2;

• f((x1, x2), e) =


(f1(x1, e), f2(x2, e)) e ∈ Γ1(x1) ∩ Γ2(x2);
(f1(x1, e), x2) e ∈ Γ1(x1)\E2;
(x1, f2(x2, e)) e ∈ Γ2(x2)\E1;
(x1, x2) otherwise;

• Γ(x1, x2) = [Γ1(x1) ∩ Γ2(x2)] ∪ [Γ1(x1)\E2] ∪ [Γ2(x2)\E1];

• x0 = (x01, x02);
• Xm = Xm1 ×Xm2.

Note that the automata describing each of the robots have disjoint event sets
and a common state space. If the marked states of the automaton G describing
the overall system are disregarded, then G = ||iGi, where ||iGi stands for the
parallel composition for all the automata Gi, i ∈ {1, . . . , N}.

Recall from automata theory that

L(Q1||Q2) = P−1
1 (L(Q1)) ∩ P−1

2 (L(Q2)), (1)

where P−1
i stands for the inverse projection operator w.r.t. E1 ∪ E2 (see [7]).

From (1), it becomes clear that, in the present system, L(G) =
⋂

i P−1
i (L(Gi)).

Assuming that the automaton G describing the overall system is non-blocking,
any string s ∈ L(G) is a pre�x to a string in Lm(G). Let yi(s) = fi(y0i, Pi(s)).
Taking any string s ∈ L(Gi), and for any string s′ ∈ L(G) ∩ P−1

i (s), the ith
component of x(s′) is equal to yi(s). If G is non-blocking, there is a string s′′

such that s′ is a pre�x of s′′ and x(s′′) ∈ Xm. This implies that yi(s′′) is in a
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state corresponding to a target site, and, hence, if Ymi = {xi(s′′)}, Gi(Ymi) is
non-blocking.

The previous paragraph proves that if G is non-blocking, the same property
holds for Gi with all target states as marked states. The converse, however,
is not true. As a particular case, in a homogeneous system, and according to
Proposition 1, this condition is not enough to ensure G to be non-blocking.

From what was stated above, Theorem 2 follows.

Theorem 2 In a generic N -R-M -S system, for its automaton G to be non-
blocking, all the navigation automata Gi(Ym) must non-blocking, with Ym = ST .
Similarly, if G is blocking, there is at least one i and one target state ym ∈ Ym

such that Gi(ym) is blocking.

Proof: The �rst statement was proved above. The second statement is im-
mediate, since, for G to be blocking, there must be a con�guration from which
some robot i cannot reach some target site m corresponding to a target state
ym. Then, Gi(ym) is blocking.

Note that in Proposition 1 all navigation automata are used with individual
states ym as marked states. Theorem 2 provides only necessary conditions for
G to be blocking or non-blocking. A necessary condition for G to be blocking
provides a su�cient condition to be non-blocking. Corollary 3 complements
Theorem 2 in that it provides su�cient conditions for G to be blocking or non-
blocking.

Corollary 3 In a generic N -R-M -S system described by an automaton G, if all
navigation automata Gi(ym) are non-blocking, then, so is G, with ym a target
site. Conversely, if any navigation automata Gi(Ym) is blocking, with Ym = ST ,
then so is G.

Proof: If all Gi(ym) are non-blocking, the second condition of Theorem 2 fails,
and, hence, G is non-blocking. Conversely, if any Gi(Ym) is blocking, the �rst
condition of Theorem 2 fails, and hence G is blocking.

Theorem 2 together with its corollary provide necessary and su�cient con-
ditions for the automata G to be blocking or non-blocking. However, generally,
it is not possible to determine the blocking properties of G simply by taking
into account the blocking properties of each navigation automata individually,
since these properties depend on the relation between them.

3.2.1 Determination of the blocking properties of G

It is, however, possible to determine if the overall automaton G is blocking or
not, by comparing the blocking information regarding each of the automata
Gi(ym).

Given an automaton G = ||iGi, de�ne G−k = ||i 6=kGi and let K(m) be the
number of robots in target site m in the �nal con�guration CF . More generally,
if U ⊂ ST is a set of target sites, de�ne K(U) =

∑
m∈U K(m). If for some

robot k, all Gk(ym) are non-blocking, with ym being a target state, then G is
non-blocking if and only if G−k is non-blocking (with respect to all the possi-
ble compliant con�gurations). This result is proved, for generic automata, in
Lemma 4.
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From automata theory, given two automata Q1 and Q2,

Lm(Q1||Q2) = P−1
1 (Lm(Q1)) ∩ P−1

2 (Lm(Q2)). (2)

Lemma 4 If Q1 = (Y1, E1, f1,Γ1, y01, Ym1) is a non-blocking automaton, and
Q2 = (Y2, E2, f2,Γ2, y02, Ym2) is a generic automaton with E1 ∩ E2 = ∅, then
Q = Q1||Q2 is blocking if and only if Q2 is blocking.

Proof: Let Q = (Y, E, f, Γ, y0, Ym).
Suppose that Q2 is non-blocking. Then, Lm(Q2) = L(Q2). Take, then,

s ∈ L(Q). Let s1 = P1(s), s2 = P2(s) and y = (y1, y2) = f(y0, s). Clearly,
y1 = f1(y01, s1) and y2 = f2(y02, s2). Since both Q1 and Q2 are non-blocking,
there are s′1 and s′2 such that s1s

′
1 ∈ Lm(Q1) and s2s

′
2 ∈ Lm(Q2). Since

E1 ∩E2 = ∅, by making s′ = s′1s
′
2, it becomes evident that ss′ ∈ L(Q). Notice,

however, that y′1 = f1(y1, s
′
1) ∈ Ym1 and y′2 = f2(y2, s

′
2) ∈ Ym2. But then,

y′ = f(y, s′) = (y′1, y
′
2) ∈ Ym1 × Ym2 = Ym and ss′ ∈ Lm(Q).

On the other hand, if Q2 is blocking, there is a blocking set YC ⊂ Y2 such
that YC ∩ Ym2 = ∅ and there are no transitions out of YC . Take any y2 ∈ YC

and any y1 ∈ Y1, and let y = (y1, y2). Obviously, y /∈ Ym. If Q is non-blocking,
there is a string s driving the automaton Q from y to Ym. Let s2 = P2(s). s2

will drive Q2 from YC to Ym2, which is impossible. Then, Q must be blocking.

By Corollary 3, if Gk(Ym) is blocking for some k, G is blocking. Conversely,
if all Gk(ym) are blocking for some ym, G is also blocking, since it is possible to
prevent all robots from reaching the corresponding target site.

Given any target site m ∈ ST , de�ne as B(m) the number of robots that
block with respect to site m. Similarly, if U ⊂ ST is a set of target sites, de�ne
B(U) as the number of robots simultaneously blocking the sites in U . In general,
B(U) 6=

∑
m∈U B(m).

From what was said, if the number of robots blocking simultaneously the
sites in some set U ⊂ ST are such that N − B(U) < K(U), then G blocks,
and therefore, N −B(U) < K(U). This means that there are not enough �free�
robots to go to the sites in M . This condition may be easily veri�ed using the
blocking information matrix.

De�nition 2 (Blocking Information Matrix) Given a generic N -R-M -S
system, the blocking information matrix (BIM) BN is a N × N matrix such
that element (k,m) is 0 if Gk(ym) is blocking and 1 otherwise.

Each of the N lines of matrix BN corresponds to a di�erent robot. On
the other hand, if a target site m has K(m) robots in the target con�guration,
matrix BN will have K(m) columns corresponding to this site.

Matrix BN is easily computed from the analysis of the navigation automata
Gk(ym), and the following result can now be proved.

Theorem 5 Given the Blocking Information Matrix BN for a N -R-M -S sys-
tem, the automaton G describing the overall system is blocking if and only if
there is a permutation matrix P such that PBN has only ones in the main
diagonal.

Proof: The permutation matrix simply conveys the fact that there is no order-
ing of the robots. Suppose, without loss of generality, that there are N di�erent
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target sites(2) and suppose that G is non-blocking. This means that, from any
con�guration, each robot k must be able to move to a target site m. In terms of
the matrix BN , this means that, in line k of the matrix there must be at least
a 1 in column m. But this is not enough, since all the robots must be able to
move to di�erent target sites. In other words, there must be a distribution of
the robots among the target sites, such that each robot is in a di�erent target
site. In terms of the matrix BN this means that it must be possible to rearrange
the lines in the matrix so that there are only ones in the main diagonal.

The converse statement is immediate.

4 Supervisory Control

In this section, the problem of controllability of G is addressed. The controlla-
bility problem is related to the design of a supervisor S, such that, when applied
to the original system, the resulting system marks some desired language K.

Although the automaton G describing the system already marks the desired
language, in a situation where the automaton is blocking, it is not desirable that
the system reaches a blocking state, since this will prevent the �nal con�guration
to be reached. The presence of a supervisor S in the system under study will
necessarily relate to this situation where blocking must be prevented.

For a general automaton Q, if K is the desired marked language, there is a
non-blocking supervisor S such that Lm(S/Q) = K if and only if KEuc∩L(Q) ⊂
K and K = K ∩ Lm(S/Q), [7].

As shown in Section 3, blocking states prevent the system from accomplish-
ing the objective. For this reason, it is important to determine the existence of
a supervisor which can prevent blocking, i.e., it is important to determine if the
system is controllable. In the following analysis, the existence of unobservable
events will be disregarded even if they make sense from a modelling point of
view, as described in [6].

4.1 Homogeneous System

The problem of controllability will be �rst addressed on a homogeneous system,
followed by its extension to a generic system. Complete details for homogeneous
systems are presented in [6].

Consider that there is a non-empty set of uncontrollable events Euc ⊂ E.
These events may correspond to accidental movements of the robots which can't
be avoided. As stated, supervisory control only makes sense when blocking is
involved, which means that, from Proposition 1, at least one of the navigation
automata G(ym) is blocking. Let then {G(yi), i ∈ I} be the set of blocking
navigation automata for the system (at least one blocking G(yi) exists, since
G is assumed to be blocking). YCi will denote the blocking set of automaton
G(yi). De�ne YB =

⋃
i∈I YCi and YNB = ST \YB .

Proposition 6 The blocking automaton G describing a homogeneous N -R-M -
S is controllable i� the automaton Guc(YNB) de�ned below is controllable, with

2If this is not the case, consider a site m with K(m) > 1 as being K(m) di�erent sites.
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respect to the language K = Lm(Guc(YNB)). The automaton Guc(YNB) is de-
�ned by the six-tuple (Y, Em, fm,Γm, y0, Ym), where Euc ⊂ Em is the set of
uncontrollable events:

• Y , Em, fm and Γm are de�ned as in De�nition 1;

• y0 is the initial condition;

• Ym = YNB.

Proof: See [6].

4.2 Non-homogeneous System

Consider the automaton G describing a generic N -R-M -S system. As stated
before, blocking in G is related to the number of robots �available� to �ll each
target site, when considering blocking sets. On the other hand, controllability
relates with the ability of a supervisor to disable strings of events driving a
robot to a blocking set.

Let Euk ⊂ Ek be the set of uncontrollable events for robot k. It is possible
to include controllability information in matrix BN in order to conclude about
the controllability of G. If Gk(ym) is blocking but controllable with respect to
the language K = Lm(Gk(ym)), then the element (k,m) of matrix BN is set to
−1. This motivates the following and most general form of Theorem 5.

Theorem 7 Given the Blocking Information Matrix BN for a generic N -R-
M -S system, the automaton G describing the overall system is blocking if and
only if there is a permutation matrix P such that PBN has only ones in the
main diagonal.

If G is blocking, but there is a permutation matrix P1 such that P1BN has
only non-zero elements in the main diagonal, then G is controllable with respect
to the language K = Lm(G).

Euc is the set of uncontrollable events of G.

Proof: The �rst part is nothing but Theorem 5. To prove the second part, note
that, if Gk(ym) is controllable, blocking can be prevented simply by disabling
controllable events, and, hence, the controlled automaton is non-blocking. Then,
from Theorem 5, blocking in G is prevented by disabling only controllable events
and, therefore, G is controllable. On the other hand, if such is not possible for
some combination of the Gk(ym), it is not possible to prevent at least one
blocking con�guration: G is non-controllable.

Observe the relation between Theorem 7 and Proposition 6. In fact, Propo-
sition 6 can be deduced from Theorem 7 when the robot set is homogeneous.

5 Examples

We present three examples of the application of Theorem 7 in a simple indoor
rescue situation. Consider a non-homogeneous set of three robots in which:

The Crawler (Cr) has tracker wheels and is capable of climbing and descend-
ing stairs. It is able to open doors only by pushing;
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The Puller (Pl) is a wheeled mobile manipulator, able to open doors either
by pushing or pulling. However, it is not able to climb stairs;

The Pusher (Ps) is a wheeled robot, able to open doors only by pushing. It
cannot climb stairs.

The rescue operation takes place in the indoor environment depicted in Fig-
ure 1 (e.g., a �re scenario). On the left is the physical map of the place, and on
the right is the corresponding topological map.

Figure 1: Map of the environment.

Each of the robots is described by a di�erent automaton, as represented in
Figure 2.

Figure 2: Automata for the robots.

The robots will leave Room 1 to assist three di�erent victims, somewhere
in the building. The doors open as shown in Figure 1 which limits the robots
access to the di�erent rooms. Moreover, when in Rooms 6 or 7, only the Crawler
can go upstairs. Finally, when in Rooms 3 and 4, all the robots may fall down-
stairs, i.e., events Gok(6) and Gok(7) are uncontrollable for all k. The following
examples illustrate the practical use of Theorem 7. We determine if there are
con�gurations that prevent the success of a given rescue operation which, in
terms of the framework proposed in this paper, correspond to blocking con�g-
urations. The situation where there are victims in sites a, b and c is referred to
as the a− b− c Rescue.
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5.1 6− 7− 8 Rescue

In this situation, the BIM for the system is:

B3 =

 −1 −1 0
1 1 0

−1 −1 1

 , (3)

where the lines correspond to Pusher, Puller and Crawler and the columns
correspond to target sites 6, 7 and 8, respectively.

Note that both Ps and Cr, once inside Room 8, are not able to leave.
This means that GPs(6), GPs(7), GCr(6) and GCr(7) are blocking. However,
by disabling the events GoPs(8) and GoCr(8), this blocking can be prevented.
Then, B3(1, 1) = B3(1, 2) = B3(3, 1) = B3(3, 2) = −1. On the other hand, if
Ps or Pl get downstairs, they cannot go back upstairs. However, they cannot
get to Room 8 without going through Room 4 and eventually falling to Room 6.
But this cannot be avoided, since Gok(6) is uncontrollable. Then, GPs(8) and
GPs(8) are blocking and uncontrollable, and B3(1, 3) = B3(2, 3) = 0. Finally,
there is no room from which Pl cannot reach Rooms 6 and 7, and from which
Cr cannot reach Room 8. Then, GPl(6), GPl(7) and GCr(8) are non-blocking,
and B3(2, 1) = B3(2, 2) = B3(3, 3) = 1.

From Theorem 7 the system is blocking but controllable. In fact, for example
in the con�guration where Crawler and Pusher are in room 8, it is impossible
to reach the target con�guration. However, this can be prevented, by disabling,
for example, GoPs(8), which is a controllable event.

5.2 2− 8− 8 Rescue

In this situation, the BIM for the system is:

B3 =

 −1 0 0
−1 0 0
−1 1 1

 , (4)

with the columns corresponding to target sites 2, 8 and 8, respectively. It
becomes evident that the system is blocking but, unlike the previous example,
it is uncontrollable. In fact, since two robots are required for site 8 and the
only way to reach Room 8 is through Room 4, they will eventually move to
Room 6 instead of moving to Room 8 (since Gok(6) is uncontrollable), once
they get to Room 4. In this situation, it may be impossible to assist both
victims in site 8. In fact, as long as there is more than one victim in site 8
(K(8) > 1), this problem will always exist. This happens because there are
two robots which �helplessly� fall downstairs, blocking site 8 (B(8) = 2). Then,
N −B(8) = 3− 2 = 1 < K(8), and the system is blocking. Since the only way
to Room 8 is through Room 4, this situation cannot be prevented.

5.3 Homogeneous set

This last example is intended to relate Theorem 7 and Propositions 1 and 6.
Suppose that, in Situation 5.2, the set of robots is homogeneous (i.e., either they
are all Crawlers, or Pullers or Pushers). Then, all lines in matrix B3 are alike,
and all elements of B3 must be one for the system to be non-blocking. But, by
de�nition of BIM, this happens if all Gk(ym) are non-blocking, which is exactly
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what Proposition 1 states. By observing matrix (4), one can conclude that this
never happens.

For the system to be controllable, all elements of matrix B3 must be non-
zero. This means that either Gk(ym) is non-blocking and B(k,m) = 1, or
Gk(ym) is controllable, and B(k,m) = −1. Since all navigation automata Gk

are alike, this happens only if the automaton Guc(YNB) de�ned in Proposition 6
is controllable. Then, the only situation where the system is controllable is if
all robots are Crawlers: YNB = {2}, and Guc(YNB) is controllable.

6 Conclusions and future work

The problem of controlling the navigation of a set of mobile robots operating in a
discrete environment was approached. Relevant results have been derived, that
allow the use of small dimension automata (navigation automata) to infer about
the blocking properties of the general automaton that describes the complete
system. In a situation where a speci�c con�guration is aimed for a set of robots,
the presented results allow to determine, using global information, if the global
objective is achievable, and if blocking con�gurations are avoidable.

An important extension of the present work is the determination of the
relation between the blocking properties of the navigation automata and the
ergodicity of the Markov Chain which can be used to model the complete sys-
tem, when a probabilistic uncertainty is associated to the events representing
the movements of the robots. Other interesting issue is the use of this local
information in an optimal decision process, when a decentralized system is con-
sidered.
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