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Abstract. An important feature for autonomous underwater vehicles equipped with video cameras
in survey missions, is the ability to quickly generate a wide area view of the sea floor. This paper
presents a method for the fast creation of globally consistent video mosaics. A closed—form solution
for the estimation of the global image motion is presented. It uses a least-squares criteria over a
residual vector which is linear on the homography parameters. Aiming at real-time operation, a fast
implementation is described using recursive least—squares, which permits the creation of globally
consistent mosaics during video acquisition. The application to underwater imagery is illustrated by
the creation of video mosaics capable of being used for surveying or autonomous navigation.
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1. INTRODUCTION

This paper addresses the problem of the fast cre-
ation of globally consistent mosaics. We present a
simple formulation based on an affine description
of the image motion. This model allows for for-
mulating the mosaic creation problem as the min-
imization of the norm of a vector of residues which
is a sparse linear combination of the coordinates of
point sets resulting from matching several image
pairs. The linear nature of the problem allows for
obtaining fast solutions using least squares meth-
ods.

The methodology in this paper can be used for effi-
ciently creating navigation maps for autonomous
underwater vehicles, or in ROV-assisted human
surveying of an underwater region. For computer
vision applications requiring higher registration
accuracy, the method is valuable in providing an
initial global motion estimate. This estimate can
serve as the initial value for a posterior finer regis-
tration step, involving more specific motion mod-
els and non-linear optimization.

An important feature for autonomous underwater
vehicles equipped with video cameras is the abil-
ity to quickly generate a wide area view of the sea
floor. Such view can easily be interpreted by a
human operator on a survey mission or be used
as a spatial representation for navigation. When
compared with land or aerial environments, the
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light underwater is subject to intense attenuation
and scattering. These factors severely limit the
definition and range of underwater imagery. Un-
der such conditions, video mosaicing methods are
suited to creating large visual representations of
the sea floor, through the registration of many
close-range images.

Underwater video mapping commonly requires
the registration of large sets of images of the
region of interest (Gracias et al., 2003; Negah-
daripour and Firoozfam, 2001). Most commonly
the image registration is performed by pair—wise
image registration in chronological order (Gra-
cias and Santos-Victor, 2000; Plakas and Trucco,
2000). The resulting motion estimates are then
concatenated to infer the relation between any
pair of images. However, even small amounts of
noise in the estimation process may result in large
accumulated error. This is most noticeable if the
image sequence contains regions of the scene that
have been captured some time before, such as loop
camera trajectories.

1.1. Related work on global registration

A number of authors have tackled the problem
of registration for camera loop trajectories in or-
der to create spatially coherent mosaics (Sawhney
et al., 1998). Bundle adjustment techniques from
the photogrammetry literature have been success-
fully adapted to image registering applications
(McLauchlan and Jaenicke, 2000). A common
feature of such approaches is the use of an obser-



vation model that impose non-linear constraints
on the motion parameters (Gracias and Santos-
Victor, 2001; Duffin and Barrett, 1998), thus re-
quiring off-line minimization which is often highly
time—consuming.

Recently (Unnikrishnan and Kelly, 2002) ad-
dressed the problem of efficiently distorting strip
mosaics in order to close loops in a smooth way.
The proposed solution has low computational
complexity and is best suited for the case where
the number of temporally distant overlaps is small
compared to the adjacent ones.

In (Davis, 1998), a least squares solution is out-
lined for the global registration of images captured
under no translation. The elements of pair-wise
homographies are used as data in a linear sys-
tem of equations for registering each image on a
common reference frame. However, the issue of
independent scale factors arising from the use of
projective homographies is not addressed.

Garcia et al.(Garcia et al., 2002) address the prob-
lem of estimating the position of an AUV while
constructing a mosaic. The issue of looping tra-
jectories is dealt with using a Kalman Filter with
an augmented state vector. Part of our paper ad-
dress the same issues, but using a recursive least
squares framework, where there is no concern in
explicitly estimating the position of the camera
with respect to the mosaic, nor the need of a dy-
namic model for the motion of the vehicle deploy-
ing the camera.

The simple observation structure that arises from
using the affine motion model for global registra-
tion has been overlooked in the mosaic creation
literature. The main contribution of our paper lies
on the formulation of the global registration prob-
lem in the least squares framework. This frame-
work enables a simple and fast implementation,
which we illustrate on underwater mosaics.

2. METHODOLOGY

The methodology in this paper is divided into two
parts. The first addresses the registration as a
batch, using a linear least squares criteria. The
second describes a recursive formulation intended
for real-time operation.

2.1. Least Squares Solution to the Global
Mosaic

In this section we will assume that a sequence of
image frames have been acquired. For each pair
of overlapping images (4, j), we will assume that

a number P;; of point correspondences have been
found. Let z7'; = (uﬁj,v{fj) be the 2-D image
coordinates of the nt* measured in the coordinate
frame of image j, which matches point z7

7 i, mea-
sured in the coordinate frame of image 1.

We will now address the problem of global image
motion estimation. As we are interested in obtain-
ing a fast solution, we will formulate the problem
as the minimization of the norm of a residual vec-
tor which is linear with the image motion param-
eters. The residual vector contains the differences
in the coordinates of selected image points which
are in correspondence and are mapped to a com-
mon reference frame.

We will assume that the image motion between
frames can be adequately described by an affine
model, represented by a 3 x 3 affine homography
matrix of 6 parameters. Ideally, for the applica-
tion cases where there is unconstrained camera
motion (such as 3D camera translation and rota-
tion), one would use a full projective collineation
as this is the most general and accurate model for
describing the mapping between two or more im-
ages obtained by projective cameras looking at a
plane. However, the affine model is the most gen-
eral model which allows for the residual vector to
be expressed as a linear combination of the motion
parameters for more than two images.

The following linear formulation assumes the pres-
ence of a common reference frame where the resid-
uals are measured. Let Hpger; be the affine ho-
mography that maps the coordinate frame of im-
age 1 onto the reference frame, such that
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Let H; ; be the affine homography relating frames
i and j. The corresponding point residues are de-
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Given a set of IV images, we assume that a set of
M homographies were found by pair—wise match-
ing, such that the whole image set is connected,
i.e., every image can be related to every other by
appropriately cascading the homographies. This
condition implies M > N — 1, where the case
M = N — 1 would correspond to having each im-
age matched with only one other image, such as
the case of simple time sequential matching.



Let 5 be defined as the 6N x 1 vector containing
all the stacked elements of Hgcs,; for all images,
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equations of the point residues for all points, a

linear system of equations can be written in the
form

By combining the

R=X.3 (2.1)

where R is a vector of stacked point residues and
X is a sparse matrix obtained from the coordi-
nates of the point matches. For a total of P
matched points, X is sized 2P x 6N and has a
maximum of 6P non-zero elements.

The sough solution will be obtained by minimiz-
ing the norm of the residues vector. However, in
order to find a unique solution we must establish
the common reference frame where the point co-
ordinate differences are measured. A simple way
to do this, is to select one of the image frames
as the common mosaic reference frame. Without
loss of generality, we will select the first image
frame as the reference frame, which is expressed

— .
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An unconstrained system of linear equations can
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formed from eq. 2.1 by excluding A" from f.
T

Let 3 be defined as 8 = [ () .héz)hg?’)...hém}

Equation 2.1 can be expressed as

where )?1 and X are matrices of sizes a 2P x 6 and

S
2P x 6 (N — 1) respectively, and Y = —X; - h(1).

Using the Ly norm, the global mosaicing problem
can be stated as the classic unconstrained least
squares problem of finding the estimate  such
that § = argming || X -3 —Y|,, for which the
closed form solution is 3 = (XTX)f1 -Y. How-
ever the computation of X7 X should be avoided
as it can lead to a large condition number and
thus limit the accuracy of the solution. In this
paper we have used a method based on the QR
decomposition of X (Press et al., 1988).

The simplicity of the least squares formulation
and the sparse structure of the matrix X allow
for a fast solution to the global mosaicing prob-
lem. This motivates a recursive least squares for-
mulation, suited for real-time applications, that
will be presented in the following section.

2.2. Recursive Least Squares

We will now assume that we have a image stream
and that we are able to match each new incoming
image with (a least) the previous incoming image.

The recursive formulation is based on two distinct
estimate updates, namely an observation update
and an order update. The observation update cor-
responds to the inclusion of new data arising from
a match between a pair of previously acquired im-
ages, whereas the order update corresponds to the
inclusion of a new image.

For the order update we assume that the new im-
age is only matched with the previous one. This
assumption is validated by the fact that, in prac-
tical applications, we have large superposition be-
tween time—adjacent frames and thus the match-
ing of a new image with the previous has a high
probability of being successful. Furthermore, we
will take advantage of the special observations
structure.

The general notation for the recursive formulation
is the following. Let 3;, X; and Y; be the instances
at discrete time instant ¢,of 3, X and Y. Let
N; be the number of images at ¢, so that 3; is a
6 (Ny — 1) x 1 vector. As before, we will consider
the first image to be the reference frame.

2.2.1. Observation Update A new obser-
vation update corresponds to the appending a
2P;; x 6 (N¢ — 1) matrix z; to Xy_1 and the corre-
sponding 2F;; x 1 vector y; to Y;_1. The updated
estimate Bt is obtained recursively from Bt,l, in-
volving X;_1, Y;_1, x; and y;. The simplest recur-
sive formulation involves the storage and updat-
ing of the inverse of the autocorrelation matrix
M = (XI'X,)”". However we have used the
square root filter which maintains a factorization
of the form M;* = 5;S]" and compares favorably
in terms of stability. Details on the formulation

and implementation of this filter can be found in
(Pollock, 1999).

2.2.2. Order Update The order update in-
volves enlarging ;1 to accommodate the homog-
raphy parameters for the new image. The new
estimate is found by solving X; - 6; = Y; where

[ % 0] B
Yi1

and Y; =
Yt

Matrices A and B are sized 2P,_1,, x 6 (N; —2)
and 2P,_1,, X 6 respectively. The updating of

ﬁt implies the computation of hV*) which can be



obtained by solving
A B+ B-hN) =y,

As we assume that each new image is matched
with the previous, A as the following structure
A= [ 0 D ] where D is a 2P,_; , x 6 matrix.

Using a least squares criteria, h(V) is given by
N0 = (BB) ' BT (3 - D-ne )

where h(V+=1) are the lower 6 elements of Bt_l.
Note that the computation of h(N*) is a fast pro-
cess due to the small sizes of B and D.

We now need to update S; in order to use the
square root filter posteriorly. The relation be-
tween S; and S;_1 can be compactly expressed
as

-1 G A'B

where G = (St,lStT_l)fl + AT A. Note that for a
large number of images the matrix G will be much
larger than BT B.

Taking into consideration the execution speed re-
quirements, we are interested in computing S; S}
without requiring the explicit inversion of G. Us-
ing the formulas of inversion by partition S;S}
can be computed as

P
Sisi = { or 7 }
where
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T
Q=—-(G1'A"B)-T
P=G1'-QQTG™".

Having G~', the above expressions require few
matrix additions and multiplications, and the in-
version of a 2P, _1,, X 2P,_;, matrix. The in-
verse of G can be efficiently computed using the
Woodbury formula,

Gl=(E'4+ATA) " =
E-[B-AT-(I+4-E- A7) A E]

where E = S;_1SI, and I is the 2P,_1, X
2P, _1,, identity matrix. Again, the above for-
mula implies the inversion of a 2P, 1,5, X 2FP,,—1,n
matrix. Finally, S; is recovered from S;S] using
a Choleski factorization algorithm.

3. IMPLEMENTATION

This section details the algorithms we used to val-
idate the approach and discusses some implemen-
tation details that influence the performance. All
benchmarks refers to a 1.6GHz processor and ac-
quired images of 180 x 135 pixels.

‘ Acquire 2 images ‘
¥

‘ Match images ‘
v

‘ Initialize RLS structure ‘

i.i

‘ Acquire new image ‘
v

‘ Match with previous ‘
¥

‘ RLS order update ‘

—

Detect unmatched image | N
pair of high superposition

Y

Match image pair of high
superposition

Y
‘ RLS observation update

L]

=z

Fig. 3.1. Step sequence for the recursive construction
of the mosaic.

3.1. Pair wise matching

An essential building block for the methods in this
paper is the algorithm for finding point correspon-
dences between two images of the same planar
scene. The algorithm is summarized in the fol-
lowing. Further details can be found in (Gracias,
2003).

A set of point features corresponding to textured
areas, is extracted from one of the images. For
each feature (defined as a small square image
patch centered at the detected corner location),
a prospective match is found in the other image,
using normalized cross-correlation. A robust esti-
mation technique is used to remove outliers using
a Least Median of Squares criterion, and random
sampling. Typical total execution time is 1 sec-
ond, for 50 inliers selected out of 70 matched fea-
tures.

3.2. Recursive Mosaic Algorithm

An algorithm for the recursive construction of mo-
saics was implemented. This algorithm combines
the pair-wise image matching, superposition de-
tection and recursive least squares updates, to
create a globally consistent mosaic on—line. The
overall algorithmic flow is presented in Figure 3.1.

The recursive procedure requires the initialization
the data structures it maintains. The initial val-
ues of [?0, Xo, Yy and Sy are obtained from the
point matches of two initial frames. Next, the
algorithm contains two nested cycles. The outer
cycle corresponds to the inclusion of a new image
while the inner cycle exploits the superposition



between previously acquired images.

A new image is matched over the last one. The
resulting point matches are used to update the or-
der of the RLS filter, as described in Section 2.2.2.
As this image may also overlap other images, we
search for superposition between non—consecutive
images. If large overlap is found between an un-
matched image pair, the pair—wise matching is at-
tempted. If it succeeds, then B is updated us-
ing the square root filter. This cycle of super-
position detection, matching and RLS update is
performed until no unmatched overlapping image
pairs are found or all attempted image matching
fails. Then a new image is processed.

We measure the amount of superposition between
any pair of images by composing the correspond-
ing inter-image homography, using the current (.

3.3. Implementation Considerations

Both batch and recursive least squares methods
can straightforwardly be adapted more restricted
models of image motion. For the case of underwa-
ter or aerial surveying, it is often preferable to use
the 4 d.o.f. similarity, which is suited for setups
where the image plane is approximately parallel
to the scene (Gracias, 2003). This motion model
was used in some of the experiments. The image
to reference frame homography is defined as

RO R B
Hpgepi= | h) n®  pl»
0 0 1

e . . . . T
and h() = [ hg) hg) hg) hfl) } . All other

matrices and vectors are sized accordingly.

To promote the execution speed, the number of
point coordinates used in the global estimation
methods was reduced to the minimum required for
the motion model, namely 3 points for the affine
model and 2 for the similarity. Note that the pair-
wise image matching is performed with a large set
of points, and that the resulting homography is
computed from a large set of inliers. The homog-
raphy is used to compute 2 (or 3) virtual points,
for the global estimation.

4. RESULTS

The following results were obtained using un-
derwater video sequences captured from a sub-
mersible. The first sequence contains 85 images
that were acquired while the camera was under-
going a 3 loop trajectory. The average superposi-

Fig. 4.1. Mosaic created from sequential image match-
ing. The effect of the accumulated error is
visible on the marked regions, corresponding
to the same features on the sea floor.

Fig. 4.2. Global mosaic using batch least squares.

tion between time consecutive frames is 55%. Fig-
ure 4.1 shows the result of from simple sequential
image matching. Several sources of error, such
as non—planar scene, limited matching resolution
and affine camera model, lead to the error ac-
cumulation which is visible in the repetitive pat-
terns corresponding to the same ground features.
The mosaic of Figure 4.2 was created using batch
least squares with the affine motion model and
309 pairs of matched images.

A second sequence of 129 image frames, selected
from a larger set of 6 minutes of video, was used to
create the mosaic of Figure 4.3, using the recursive
mosaic algorithm. Upon completion, 272 pairs of
images were matched.

For comparison, Table 4.1 presents the optimiza-
tion time required to obtain a global motion es-
timate using batch (BLS) and non-linear least
squares (NLLS). The NLLS method is described



Fig. 4.3. Global mosaic using recursive least squares.

Sequence model BLS | NLLS
First Affine 0.16 13
Second | Similarity | 0.14 20

Table 4.1 Execution time (in seconds) for batch
(BLS) and non-linear least squares
(NLLS).

in (Gracias, 2003), where it was used for topol-
ogy estimation. Although much slower, the NLLS
presents the advantage of coping with more spe-
cific non—linear motion models, such as the con-
stant scale similarity.

5. CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a least squares
approach for the creation of globally consistent
mosaics. The approach allows for a linear formu-
lation using point matches between pairs of im-
ages, and the fast estimation of the image mo-
tion. Both batch and recursive implementations
were detailed. Due to the low computational de-
mand, an important advantage of the recursive
implementation is the possibility of performing
the image registration, loop detection and trajec-
tory correction in an integrated fashion. For un-
derwater vision applications, this methodology al-
lows for the creation of wide views of the sea floor
during image acquisition, thus being of benefit in
human surveying mission or in map building for
autonomous navigation.

Future work includes the extension of the method
to deal with geographic data, such as sensor read-
ings during acquisition, and world points of known
location. We are also investigating the use of non—
linear image motion models without resorting to
bundle adjustment techniques.
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