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ABSTRACT 

A tracking system is presented for obtaining accurate vehicle 
trajectories using uncalibrated traffic surveillance cameras. 
Techniques for indexing and retrieval of vehicle trajectories 
and estimation of lane geometry are also presented. An algo-
rithm known as Predictive Trajectory Merge-and-Split 
(PTMS) is used to detect partial or complete occlusions during 
object motion. This hybrid algorithm is based on the constant 
acceleration Kalman filter and a set of simple heuristics for 
temporal analysis. The resulting vehicle trajectories are mod-
eled using variable low-order polynomials.  
A comparative evaluation of several distance metrics used in 
trajectory cluster analysis, indexing and retrieval is also pre-
sented. We propose some changes to metrics presented in 
previous work and make a comparative study with a modified 
form of the Hausdorff distance. 
Some preliminary results are presented on the estimation of 
lane geometry through K-means clustering of individual vehi-
cle trajectories using the proposed metrics.  An advantage of 
our approach is that estimation of lane geometry can be per-
formed with non-stationary, uncalibrated traffic cameras in 
real time. 

1. INTRODUCTION 

Rising traffic levels and increasingly busier roads are a 
common problem across the globe. Consequently, there 
is an urgent need to develop intelligent traffic surveil-
lance systems that can play an important role in highway 
monitoring and road management schemes. One purpose 
is to detect and signal potentially dangerous situations. 
This paper addresses the problem of generating accurate 
vehicle trajectories through object segmentation, motion 
tracking and screening of partial and complete occlu-
sions, using non-stationary, uncalibrated traffic cameras. 
Typically, these are operator-controlled pan-tilt-zoom 
(PTZ) cameras. In [20] is demonstrated that by building 
a self-consistent aggregation of many individual trajecto-
ries and by taking into account vehicle lane changes, 
lane geometry can be estimated from stable video se-
quences. This information could be used as input to 

some higher level system to classify normal and abnor-
mal driving situations such as dangerous lane weaving. 
In our work, rather than performing object tracking un-
der partial or total occlusion, we describe an occlusion 
reasoning approach that detects and counts the number 
of overlapped objects present in a segmented blob. Tra-
jectory points are then classified according to whether 
they are generated by a single or overlapped object. 
Previously [19] we have described the Predictive Trajec-
tory Merge-and-Split (PTMS) algorithm for performing 
the aforementioned task. It uses a Kalman filter (KF) and 
a set of simple heuristic rules to enforce temporal consis-
tency on merging and splitting overlapping objects 
within detected blobs. The method is independent of the 
camera viewpoint and requires no a priori calibration of 
the image sequences. 
All the obtained vehicles trajectories are modeled using 
variable low-order polynomials. 
We propose some changes to the metrics proposed in 
previous work [20] and propose a modified form of the 
Hausdorff distance for a comparative study of the inter-
trajectories distance. 
We evaluate the quality of the metrics by analyzing the 
results obtained by querying a trajectories database using 
a trajectory query.  
The chosen distance metric is also used in the trajecto-
ries clustering to estimate lane centers. For the estima-
tion of lane centers, we use a modified K-Means algo-
rithm in conjunction with a RANSAC approach to ex-
clude outliers and suppress the effects of vehicle lane 
changes on the estimation of lane geometry.  

2. REVIEW OF PREVIOUS WORK 

The starting point for much work in motion tracking is 
the segmentation of moving objects based on back-
ground subtraction methods [1] [2]. Typically, each 
pixel is modeled using a Gaussian distribution built up 
over a sequence of individual frames and segmentation 
is then performed using an image differencing strategy. 
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Shadow detection and elimination strategies have been 
commonly employed to remove extraneous segmented 
features [4] [5] [6] [7]. 
It is also important to account for partial and complete 
occlusions in the video data stream [7] [8] [9] [10]. Oc-
clusion detection can be performed using an extended 
Kalman filter that predicts the position and size of object 
bounding regions. Any discrepancy between the pre-
dicted and measured areas can be used to classify the 
type and extent of an occlusion [9] [10]. 
More specifically, higher level traffic analysis systems 
have been developed for accident detection at road inter-
sections [9] [11] and estimating traffic speed [12] [13]. 
Rather general techniques for object path detection, clas-
sification and indexing have also been proposed [10] 
[14], [15] [16] [17].  
Object trajectories have previously been used for index-
ing and retrieval of video data [10] [18] [20]. However, 
the performance of different similarity metrics has not 
been well explored. 
The contribution of this paper is to show that our pro-
posed distance metrics give equal or better results than 
the Hausdorff distance, and that these metrics can be 
used to cluster vehicle trajectories from uncalibrated 
image sequences to estimate lane geometry. This infor-
mation can be used as input to some higher level system 
to classify normal and abnormal road situations. 

3. PREDICTIVE TRAJECTORY MERGE-AND-
SPLIT (PTMS) ALGORITHM 

The proposed system uses a multi-stage approach to 
determining the vehicle motion trajectories and 
thereafter, the estimated lane geometry. Firstly, we build 
a background model to segment foreground objects. A 
detected foreground blob comprises a connected region 
having more than a certain pre-defined minimum num-
ber of pixels (Kmin) in its area. A constant acceleration 
Kalman Filter (KF) is used to track the blobs through 
image coordinate space. The PTMS algorithm [19] is 
then used to perform a time-consistent analysis of those 
detected blobs allowing for merging and splitting due to 
partial and complete occlusions. An overview of the 
system is shown in Fig. 1. We now briefly describe the 
main features of the PTMS algorithm. 
 

 
Fig. 1. Block diagram of the proposed system 

The presence of shadows or ‘near’ occlusions caused by 
traffic congestion can seriously degrade accuracy of 
blob detection. Typically, several vehicles may be mis-
detected as one single vehicle with consequent problems 
for generating an object trajectory. Approaches based on 
spatial reasoning use more complex object representa-
tions such as templates or trained shape models. How-
ever, this is dependent on image resolution and only 
works under partial occlusion. A better approach is to 
use a temporal smoothness constraint in checking vehi-
cle positions under different types of occlusion. Here, 
we propose a set of temporal rules that can easily com-
plement a spatial approach.  
The algorithm works as follows: First, we define a blob 
as a connected region resulting from the background 
subtraction process. Then use KF to predict for each 
blob the most likely position in the next frame that the 
blob will appear. Each blob is considered to have a 
number of children, i.e. number of different objects a 
blob is composed of. At the beginning, every blob is 
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initialized as having one child. For each frame and for 
every blob: 
 

Step 1. Determine whether there is a 1-1 cor-
respondence by checking size and position of 
blobs in consecutive frames and comparing po-
sitions and sizes. 

Step 2. For every blob that does not match the 
previous condition; determine whether the size 
has decreased by more than Ω (where Ω is ex-
pressed as a percentage). If so, decrease the 
number of its occluded objects by 1. 

Step 3. Determine whether any blob has de-
creased its size by less than Ω. If so store that 
information. 

Step 4. Determine whether any new blob has 
appeared in the vicinity of a blob that had de-
creased its size and have a number of child 
blobs greater than 1. If so, decrease the number 
of occluded objects in the old blob. This im-
plies the old blob was occluding the new blob. 

Step 5. Check if there are any new blobs in 
the new frame. 

Step 6. If there are any new blobs in the same 
position of several old blobs, it means that the 
new blob is composed of the old blobs, and the 
number of its children is increased by the num-
ber of the old blobs minus 1. 

 
The algorithm works well most of the time. The princi-
pal drawback is when the initial blob is composed of 
several objects. In this case, it will be mis-detected as 
one single object. To tackle this problem, a template or 
model-based approach could be applied to the initial 
blobs to determine whether they are composed of one or 
more objects. The results of applying the PTMS algo-
rithm are presented in section 5. 

4. TRAJECTORIES RETRIEVAL AND 
ESTIMATION OF LANE GEOMETRY  

In highly constrained environments, such as highways, 
it is tempting to use vehicle trajectories rather than 
image analysis of static scenes to determine the lane 
geometry. The former approach has a number of advan-
tages:  
• It enables use of non-stationary pan-tilt-zoom cam-

eras rather than calibrated static cameras.  
• Techniques based on object trajectories are inde-

pendent of scale and viewpoint.  
• Motion data is generally more robust to light varia-

tion and sensor noise than static image scene data. 
The method assumes that the average lane width in im-
age coordinates is approximately known or can be easily 

estimated. However, it does not require a priori knowl-
edge of the number of lanes or road geometry, i.e. 
whether it is a straight or curved section of highway. 

4.1. Overview of Trajectory Modelling 

The trajectories are pre-processed to remove obvious 
inconsistencies in the data caused by tracking errors, 
sensor noise or camera motion instabilities (high winds 
can be a problem). Excluded trajectories are deemed to 
be those having inter-point separation greater than some 
lower bound or curve length below some threshold 
value. By analysing all the trajectories generated, we 
can discover the main direction of traffic flow, and by 
doing so, the predominant coordinate that is monotoni-
cally increasing or decreasing. This can be performed 
by aggregating the slopes from the start and end points 
of each trajectory found.  
We then fit a least squares polynomial of degree M for 
each trajectory in the chosen coordinate direction. Start-
ing from M = 1, we use the average residual error of fit 
to ascertain the optimal value of M. If the error is 
greater than some threshold, M is increased by 1 and the 
trajectory is re-fitted (M ≤ 3). For all the highway 
scenes tested, we have found that low degree polynomi-
als up to order 3 are sufficient to describe the lane cur-
vature and trajectories denoting lane changes. Finally, 
the RANSAC algorithm [18] is used in conjunction with 
least squares to eliminate outliers or mis-classified 
tracker points.  
In section 4.2, we propose some changes to the metrics 
presented in previous work [20]. We make a compara-
tive study between the former metrics, the proposed 
metrics and a modified version of the Hausdorff dis-
tance.  
As an example of the use of the proposed metrics we 
show a trajectories data-base query, and the clustering 
of trajectories to estimate lane centres. 
The method used for estimation of lane centres by clus-
tering of vehicles trajectories is described in section 4.4 
with a brief description of the algorithm. 

4.2. Inter-Trajectory Distance Metrics 

In some approaches [10], the separation between trajec-
tories is calculated using modified Hausdorff distance. 
Although this works with arbitrary points sets, it is ex-
tremely sensitive to outliers and expensive to compute as 
it involves O(MN) operations, where M, N are the sizes 
of the trajectory point sets. Computation time can be 
considerably reduced if we use the polynomial coeffi-
cients for each trajectory to evaluate simpler expressions 
for the metrics. In [20], is proposed the use of Mean 



(dmean), Maximum (dmax) and Minimum (dmin) distances 
to measure inter trajectories distance. 
A geometric interpretation of dmax and dmin is shown in 
Fig. 2. 

 
Fig. 2. Interpretation of distance measures dmax, dmin in 
terms of difference polynomial d. 
 
In this paper we present some alternative metrics to these 
three types of distances. For the Mean distance we pro-
pose the use of Root Mean Square instead of the Mean 
distance, for the Minimum distance we propose the use 
of the same formula complemented with a scan line 
search to check for polynomial intersections. For the 
Maximum distance metric we do not propose any 
change. 
We assume that x is the independent variable in the 
model. 
Let T1 and T2 denote two sets, where 
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t1(x), t2(x) are polynomial trajectory models. The differ-
ence polynomial d(x) can be defined as the set D such 
that 
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We define a set of distance measures d(T1,T2) between 
T1 and T2 using D as follows:  
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The proposed metrics are: 
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Where l1, l2 are the lower and upper bounds on I, and I = 
[a, b] ∪ [c, d].  
In Eq. (4) a closed form expression is obtained by differ-
entiation and finding the stationary points of d(x). If the 
trajectories intersect, none of these stationery points will 
correspond to the point with minimum distance. There-
fore, the Minimum Distance in Eq. (6) is an extension to 
Eq. (4), a line search technique is employed to check for 
polynomial intersections, if the polynomials do not inter-
sect Eq. (4) is used.  
For comparison purposes, we propose to calculate the 
Mean, Maximum and Minimum distances, by using a 
set of modified Hausdorff-type distance measures 
dH(T1,T2), defined as: 
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where ti and tj represent the point sets of T1 and T2 re-
spectively. In each case, we actually use the modified 
symmetric form of the Hausdorff distance metric, de-
fined as 

( )),(),,(max),( 122121 TTdTTdTTd hhH =   (11) 

4.3. Trajectory Retrieval by Reference 
Query 

We can recover vehicle trajectories of interest by speci-
fying a reference query TQ and producing a rank-
ordered list of similar trajectories according to one of 
the above specified distance metrics Eqs. (3)-(10). For 
example, we might wish to retrieve all vehicle trajecto-
ries that stray into the emergency stopping lane. 
The Maximum distance metric can be used to query all 
the trajectories that lay with a certain maximum distance 
from the reference trajectory. Therefore, if the trajecto-
ries have similar lengths and a small Maximum distance 
they will have similar directions.  
The Average distance metric can be used to search for 
trajectories which have a particular shape. 
The Minimum distance metric can be used to query for 
the trajectories that lay in a minimum distance or that 
intersect the reference trajectory. 
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We present some results of a comparative evaluation of 
the distance measures in section 5. In section 5, we also 
present a practical example of the detection of vehicles 
which cross the straight line by using the corrected 
Minimum distance metric, dcmin. 
After evaluating the results obtained in the trajectory 
query using the different distance metrics, presented in 
section 5, the metrics which show better results, dcmin, 
dcmean and dmax are used to calculate the inter-cluster 
distances in the K-means algorithm that follows. 

4.4. Modified K-means Cluster Analysis 

Next, we briefly describe a robust K-means clustering 
algorithm that works in the coefficient space of the 
polynomials, by using the corrected form of the Maxi-
mum, Minimum and Average distance metric. 
The following steps are used to build an initial set of 
cluster trajectories: 
1. Create a reference linear trajectory tR at the edge of 

the image parallel to the main orientation of traffic 
flow. 

2. Build a set with a trajectory tJ that is most distant 
from tR using the dcmin metric. A sensible choice of 
threshold is the estimated minimum lane width. 

3. Find the next trajectory tJ+1 (J =1,2,...) that is most 
distant using dcmin from all trajectories present in 
the set and has length greater than a certain thresh-
old. 

4. If the trajectory found has a distance dcmin to the 
nearest neighbouring trajectory less than the esti-
mated lane width, discard that trajectory. 

5. Repeat from step 3 until no further trajectories can 
be added. 

We now describe how to perform the clustering step. 
The trajectory-to-cluster distance is measured using 
dmax. When a trajectory is merged with a cluster, it is 
performed by merging the original cluster points and 
trajectory. In order to avoid a cluster becoming biased 
by merger with an outlier trajectory, each cluster is only 
remodelled using RANSAC for every 5 trajectories con-
sidered. 
For all the trajectories, we measure the trajectory-to-
cluster distance and merge each trajectory t to the near-
est cluster if dmax < τ  (for some threshold τ) and curve 
length |t| > Lmin. For all tJ, we calculate min(dmax’s) and 
add the trajectory indexed by this minimum to the cur-
rent cluster. The cluster means are updated after a fixed 
number of repetitions. The number of trajectories added 
to each cluster is limited to 20 and for every 5 trajecto-
ries added, RANSAC is applied to modelling the cluster 
in order to eliminate outliers. It is found that use of dmax 
for measuring trajectory-to-cluster separation discards 
most trajectories representing lane changes. RANSAC 

then removes most remaining outliers erroneously 
added to the cluster. 
In the next section we present some results of applying 
these techniques to some traffic images captured on a 
Portuguese highway. 

5. RESULTS 

TRACKING AND PTMS ALGORITHM 

In Fig. 3, we show the result of background subtraction 
using grey scale sequences. Segmented objects whose 
areas are lower than Kmin are denoted in red whereas 
detected vehicles are coloured purple. We use a different 
colour to represent the bounding box of a tracked vehi-
cle. When tracking of one vehicle is lost, we place a 
cross to highlight the position predicted by KF. Due to 
the camera viewpoint, most of the lost vehicles occur 
very near to the camera where inter-frame dislocation is 
large.  

 
Fig 3. Tracked vehicles on highway 

 
Fig  4. Tracking and occlusion handling on highway 

Fig. 4 shows the result of occlusion handling applied to 
the previous figure. It can be observed that the two cars 
in the left of the image are detected as a single blob, and 
through the use of PTMS algorithm, we can determine 
that it corresponds to two cars in the previous frame. 
The detected blob is displayed with its bounding box in 
red with a cross drawn in the middle. 
In Fig. 5 we display the point trajectories generated by 
use of KF and PTMS algorithm applied to the same se-
quence from Figs. 3 and 4. Trajectories in green corre-
spond to single vehicles successfully tracked, whereas 
those in purple correspond to vehicles previously de-
tected but whose tracking was subsequently lost. Here 
the points are predicted by output of KF. The red points 
correspond to trajectories of averaged position of two or 



more overlapped vehicles detected through use of 
PTMS. 

 
Fig. 5. Vehicle trajectories generated through hybrid 
tracking and PTMS algorithm 

DISTANCE METRICS 

 
Fig.6. a) Original points  b) Trajectories Interpolation  

On Fig. 6.a. we can see on dark blue the points that cor-
respond to the blobs classified as single vehicles by the 
PTMS algorithm. On Fig. 6.b we can see the interpola-
tion of the trajectories points using low order polynomi-
als. This data consists of 237 trajectories calculated 
from 5 minutes of video. 
In the following figures we show the result of trajectory 
retrieval using the Average, Maximum and Minimum 
Distances using the Hausdorff and the proposed metric. 
A user query consists of a low order polynomial which 
is created by the interpolation of a set of points defined 
by the user. In Fig. 7 and all the following figures the 
query is represented by the yellow line. 
The 10 best trajectories, which have the smaller distance 
to the user query, are retrieved in the following figures. 
The trajectories in red were calculated using the Haus-
dorff distance and the trajectories in light blue were 
calculated using the proposed metric. 

Average Distance Metric 

 

Fig. 7. a) Hausdorff metric          b) Proposed metric    

Minimum Distance Metric 

 
Fig. 8.   a) Hausdorff metric b) Proposed metric    

The colors have the same meaning as in the previous 
figures.  

Maximum Distance Metric 

 
Fig. 9.   a) Hausdorff metric   b) Proposed metric    

We can see that the Hausdorff Maximum and Average 
distance are more sensitive to the trajectories length 
difference than the proposed distance. The average and 
the maximum Hausdorff distance return the trajectories 
that have equal and smaller lengths than the trajectory 
query, Fig. 7.a e Fig. 9.a. 
For the average distance, the RMS and the distance in-
tegral return very similar results and are not shown. 
The corrected Minimum Distance gives the same result 
as the Hausdorff distance but better than the original 
Minimum Distance because tests if the trajectories inter-
sect Fig. 8. 
For all the situations, our proposed metrics dcmean and 
dcmin gives equal or better results than the Hausdorff 
distance or metric d. The Maximum Distance and the 
Average Distance usually return similar results. The 
only difference is that the Maximum Distance discards 
the trajectories which have any point more distant to the 
query than the threshold.  



Application: Real-time detection of Dangerous Lane 
Changes 

 
Fig. 10. Trajectory retrieval 

The goal is to retrieve the trajectories that correspond to 
vehicles that crossed the straight line present on the 
road. In Fig. 10, we query the trajectories database us-
ing the yellow polynomial as a trajectory query. The 4 
trajectories in light blue correspond to the trajectories 
which have a Minimum Distance, dcmin, less than 0.5 
pixels to the trajectory query. 

 
Fig. 11. Retrieved trajectory a) Beginning   b) Middle 

 
Fig. 11. Retrieved trajectory c) End 

By assigning a video index frame to all the trajectories, 
it is possible to check the ground-truth of the retrieved 
trajectories. 
 In fig. 11, we can see one of detected dangerous trajec-
tories represented in red, with the vehicle at the begin-
ning, middle and end of the trajectory.  
The trajectories querying resulted in 2 corrected trajec-
tories match, 0 false negatives and 2 false positives. 

The false positives are mainly due to two factors: the 
height of the detected vehicles is not corrected and 
causes that truck or vans to be misdetected. The other 
factor is that the PTMS algorithm sometimes misclassi-
fies platoons of vehicles as single vehicle which causes 
that the centroid of the platoon will be misdetected as 
well. 
The absence of false negatives is very important be-
cause it means that there are no undetected vehicle tra-
jectories. 

TRAJECTORIES CLUSTERING 

We show some preliminary results of applying the clus-
tering approach to the computed trajectories described 
in section 4. The computed point trajectories of single 
vehicles (Fig. 6a) are used to estimate the lane centres 
(Fig. 12a) on the highway. From a total of 237 partial 
trajectories in the image sequence, the K-means cluster-
ing algorithm uses a maximum of 30 trajectories per 
lane to estimate the centres. In Fig. 12.a can be observed 
the number of trajectories added to each initial cluster. 
It should be noted that although the original trajectory 
data contains vehicle lane changes, the RANSAC fitting 
method can be made insensitive to these by careful pa-
rameter tuning.  In Fig. 12.b and Fig. 13, the cluster 
algorithm is applied to different sequences  

 
Fig.12. a) Lane Estimation   b) Lane Estimation    

 
Fig.13. a) Original Points     b) Lane Estimation    

6. DISCUSSION AND CONCLUSIONS 

This paper presents an algorithm for vehicle tracking 
with the following characteristics; temporal integration 
with a Kalman Filter, time-consistent merging-and-
splitting of overlapped detected blobs, aggregation of 



trajectory data to estimate lane centres and trajectories 
query.  
Our proposed distance metrics show equal or better re-
sults than the Hausdorff distance in the trajectory re-
trieval, with the advantage of being much cheaper to 
compute. In the context of highways, the proposed met-
rics able the use of real-time trajectory query and real-
time trajectory clustering. 
The preliminary results demonstrate the feasibility of 
using ordinary uncalibrated stationary or PTZ cameras 
to analyse traffic behaviour in real-time. The algorithm 
is viewpoint independent and does not make any a pri-
ori assumption regarding lane geometry. The results can 
be used as input to higher level traffic monitoring sys-
tems for estimating traffic speed, frequency of lane 
changes, accident detection and classification of anoma-
lous driver behaviour.  
More results can be found at the author’s webpage2.  
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