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1. INTRODUCTION 
 
In general, any software architecture should be 
capable of handling a family of applications. 
Furthermore, a non-ad-hoc architecture, based on 
design principles and clear concepts, allows 
researchers with different backgrounds to talk and 
share each other’s experiences with less effort. Last, 
but not the least, it allows them to integrate their 
work on a larger project. 
There are currently available several software tools 
for the mission design and development for teams of 
real robots like TeamBots, Mission Lab and 
CHARON. 
TeamBots (Balch, 2002) is a collection of Java 
application programs and libraries designed to 
support multiagent systems. It supports simulation of 
robot control systems and execution of the same 
control systems on mobile robots. It includes a 
communication package (RoboComm), and Clay, a 
library to support behavior-based control systems. 
The simulation environment is written entirely in 
Java. Execution on mobile robots sometimes requires 
low-level libraries in C, but Java is used for all 
higher-level functions. 
Mission Lab (Arkin, 2002) is a mission specification 
software that uses visual programming and reusable 
components. It is composed by several subsystems 
such as console display, a visual configuration editor, 
a simulator, and a runtime and usability data logging 
module. MissionLab generates code that runs under a 
distributed architecture (e.g., the main user’s console 
can run on one computer while multiple robot control 
executables are distributed across a network, 
potentially on-board the actual robots they control.). 
CHARON (Esposito and Kumar, 2002) is a language 
for modular specification of interacting hybrid 
systems based on the notions of agent and mode. It 

provides operations for both an hierarchical 
description of the system architecture (referring to 
the agents relations), and an hierarchical description 
of the behavior of an agent. The discrete and 
continuous behaviors of an agent are described using 
modes. A mode is basically a hierarchical state 
machine, that is, a mode can have submodes and 
transitions connecting them. Agents in CHARON can 
communicate via shared variables and 
communication channels. Both event-driven discrete 
state and time-driven continuous state system 
descriptions are supported. 
In this paper, we describe an agent-based software 
architecture aiming at a considerably large set of 
applications involving multi-robot teams, based on 
simple and hopefully clear design principles that 
enable the development of multi-robot tasks under 
different architectural concepts at different levels of 
abstraction and by researchers with different 
backgrounds. 

2. CONCEPTUAL MODEL 
 
The conceptual model of the agent-based software 
architecture includes different types of agents that 
can be combined both hierarchically and in a 
distributed manner. 
The architecture support information fusion between 
several sensors and the sharing of information 
between the agents by a Blackboard (Roth, 1985) 
and is geared towards the cooperation between 
robots. 
Agents are generically organized hierarchically: “At 
the top of the hierarchy, the algorithms associated 
with the agents are likely to be planners, whilst at the 
bottom they are interfaces to control and sensing 
hardware.  The planner agents are able to control the 
execution of the lower level agents to service high-
level goals.” (Esposito and Kumar, 2002). 



The fundamental differences between our approach 
and the previous described ones are the use of a 
distributed blackboard for data sharing; the 
introduction of new agents types like the exclusive 
agent as well the introduction of new agent execution 
modes. 
The elements of the architecture are the Agents, the 
Blackboard, and the Control/Communication Ports. 
Next, each of them is described in detail. 

3. ELEMENTS 

3.1. Agent 
 
We define an Agent as an entity with its own 
execution context, its own state and memory and 
mechanisms to sense and take actions over the 
environment.  
Agents have a control interface used to control their 
execution. The control interface can be accessed 
remotely by other agents or by a human operator 
(Henning and Vinoski, 1999). Through the control 
interface, an Agent can be enabled, disabled and 
calibrated (see the execution modes). 
Agents share data by a data interface. Through this 
interface, the agents can sense and act over the world. 
There are Composite Agents and Simple Agents. 
 
• Composite agents are Agents that are composed 

by two or more agents. The principle behind 
composite agents is to abstract a group of related 
agents. An agent society can have several types 
of groups. Groups represent the way that agents 
relate or interact with each other. Composite 
agents allow a group of agents to be faced as a 
single agent by designers, by operators or by 
other parts of the system. For this to be possible, 
a composite agent must take control over the 
agents that compose him. Moreover, composite 
agents must be easy to use: their usage should be 
only a matter of choosing the right type of 
composite agent and then plugging the 
controlled agents. 

• Simple agents are agents that do not control 
other agents; they do not even need to know 
about the existence of other agents. Simple 
agents represent hardware devices, data fusion 
and control loops. 

 
The supported agent types are: 
 
• Concurrent Agent: composite agent that 

represents the simultaneous execution of two or 
more agents. All the agents plugged to this 
composite agent will execute simultaneously. 

• Exclusive Agent: Composite agent represents the 
exclusive execution of agents. It is used to make 
sure that only one of the plugged agents is 
executing at a given time. This is a type of agent 
similar to the micro-agents of the SocRob 
project, developed by this group (Lima and 
Custódio, 2002).  

• Periodic Agent – This agent executes a given 
function periodically. The period is specified. 
This agent can be used for data fusion and 
control loops. 

• Sensor Agent - A driver or a server to an 
hardware device of the sensor type. These are 
customized for each type of sensor. Usually they 
take data from the sensor to the blackboard. 

• Actuator Agent - A driver or a server to an 
hardware device of the actuator type. These are 
customized for each type of actuator. Usually 
they take commands from the blackboard to the 
actuator. 

 
The possible combinations among these agent types 
provide the flexibility required to build a Mission for 
a cooperative robotics project (Gamma et al., 1995). 
For special interactions that are not currently 
supported, the architecture is open to include other 
types of agents. 
We refer to the mission as the top-level task that the 
system should execute. In the same robotic system, 
we can have different missions. The mission is a 
particular agent instantiation. The agents 
implementation is made to promote the reusability of 
the same agent in different missions. 

3.2. Blackboard 
 
The Blackboard is a distributed structure that gives 
support to the data exchange between the Agents. 
Each entry on the blackboard is a collection of 
samples ordered by their creation time. Since all the 
data shared between the agents goes through the 
blackboard, reads and writes are concurrent to 
maximize performance. 

3.3. Ports 
 
Ports are an abstraction to keep the agents decoupled 
from other agents. When an agent is defined, his 
ports are kept unconnected. This approach enables 
using the same agent definition in different places 
and in different ways. There are two types of ports: 
control ports and data ports (Figure 1). 
Control ports are used within the Agent hierarchy to 
control agent execution. Each agent is endowed with 



one upper control interface. The upper interface has 
two defined control ports. 
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Figure 1 – Agent Control and Data Ports. 
 
One of the ports is the input control port; we can see 
it like the request port from where the agent receives 
notifications of actions to perform from higher-level 
agents. The other port is the output control port 
through which the agent reports progress to the high 
level agent. This is what we denote as a consistent 
interface for control.  
Composite agents also have a lower level control 
interface from where they can control and sense the 
agents beneath him. The lower level control interface 
is customized in accordance to the type of agent. For 
instance, an Exclusive Agent has as many lower level 
control ports as agents that he is controlling.  An 
additional data input port is used to enable the 
exclusive agent receiving the events that select which 
agent to execute (Fig. 2). 
 

 
Fig. 2 – A Composite Agent and two controlled 

agents beneath him. 
 
Data ports are used to connect the agents to the 
blackboard data entries, enabling agents to share 
data. More than one port can be connected to the 
same data entry. Several agents can be reading from 
the same place at the same time (Fig. 3). However if 
a data entry has more than a write port connected, 
some sort of contention resolution mechanism (such 
as in an Exclusive Agent) must be used. 

The data ports are linked together through the 
blackboard. For configuration flexibility of the 
agent’s hierarchy, the agent ports are not assigned in 
the definition of the agent. 
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Fig. 3 – Agent A is writing a value on the Blackboard 

that Agent B is reading. 
 
Ports are assigned in the instantiation of the agent 
hierarchy. 

4. EXECUTION MODES 
 
Traditionally, in Robotics, there is a trend towards 
giving importance only to the run-time impact of the 
robotic system architecture. Unfortunately, during 
several research phases, robots are stopped most of 
the time. Much time and resources are consumed in 
system design, system calibration and system 
analysis. These are very relevant issues often 
forgotten by Robotics researchers. A well-designed 
architecture targets the support and speed-up of these 
development phases. 
Usually, properties such as system distribution and 
concurrency are relevant during the mission 
execution, since they provide better resource 
allocation and robustness.  
Centralization and persistency are important 
properties when dealing with the robots prior to the 
mission execution or handling the data acquired after 
the mission execution. Those properties also help 
managing different missions for a team of robots. 
Even during mission execution, system distribution is 
not required all the time for all the aspects. To 
control the robots it is better to think of them as a 
fleet, and to be able to exert control over the fleet 
from a central place, when needed. 
Under this architecture, a different execution mode 
exists for each development phase of a multi-robot 
system.  
The system hardware is composed by a central 
station and by the robots. The robots and the central 
station use a wireless network for communication.  
The centralized execution modes of the software 
architecture are located on the central station. In spite 
of being centralized, they do interact with the robots 
(Fig. 4).  
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The control mode follows a distributed approach. 
This mode is spread across the robots (Fig. 4). 
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Fig. 4 – System Execution Modes – Example for the 

Rescue Project. 
 
Next, we describe each of the five execution modes 
available for the elements described in the previous 
section. 
First, we describe the Control Mode that refers 
mostly to the run-time interactions between the 
elements. Afterwards, we describe the Design Mode, 
the Calibration Mode, the Supervisory Control Mode 
and finally the Logging and Data Mode. 

4.1. Control Mode 
 
The control exerted by an upper-level agent over a 
lower-level agent is accomplished through special 
and well-defined functions: start, stop, set and reset. 
In this sense if we stop the agent that encapsulates 
the whole fleet, he will request his lower-level agents 
to stop, so a cascading reaction will stop all the 
agents’ hierarchy inside each of the robots, from the 
top down to the lowest level hardware agents, 
including the robots. A similar behavior happens 
with the start command. 

4.2. Design Mode 
 
The Design Mode is similar to a graphics-drawing 
program. In these programs, there are different tools 
for the different graphic objects, such as lines, 
squares and so on (MacKenzie and Arkin, 1998). 
In the Design Mode, instead of drawing tools for 
each type of graphic we have a drawing toolbox for 
each type of the supported agents, plus one additional 
toolbox for linking agents written in pure code. The 
output is a meta-language that represents an 
instantiation of the supported agents or the included 

code files when the agent is implemented in pure 
code. The language describes the connections 
between the agents. This meta-language is then 
transferred to the target robots for execution.  

4.3. Calibration Mode 
 
Usually, robots have controllers, sensory processing 
and hardware that must be configured or calibrated. 
Controllers, behaviors and perceptual processes have 
parameters that must be tuned. Usually this data is 
kept in text files for ease of modification without the 
need to recompile the code. For more complex 
calibration procedures (like color segmentation) 
special configuration processes must be executed 
sometimes. 
To simplify the calibration procedure for the robot 
fleet, each agent has an associated calibration 
window, which can be requested remotely before the 
start of the mission. The calibration data is persistent 
and can be used in a later mission. To keep 
management of the fleet a simple job, the calibration 
data is stored in the central station. This data is 
distributed to the robots before run time. 
The operator does the calibration following the 
instructions appearing in the remote window. For 
each agent involved the mission, the program asks 
the operator if he/she wishes to make a new 
calibration, to skip, to save or to load a previous one. 
This is done in a top-down manner. Answering skip 
to the agent that encapsulates the whole fleet will 
produce the result of all robots with all their agents 
being calibrated by the latest data used. 
This mode provides support on managing the data 
calibration files. It also supports the way the various 
data types are written and read from the files. 

4.4. Supervisory Control Mode 
 
Each of the agents has, in addition to the Calibration 
window, an associated Supervisory Control window, 
corresponding to the Supervisory Control Mode, 
designed to be user-friendly. Therefore, the agent that 
controls the motors has a user-interface appropriated 
for its specific task. This user-interface is different 
from the user-interface to a (higher-level) planner 
agent. There are common features to all agents like 
the request to start, the request to stop or the request 
to logging. These common features are present on the 
associated windows and are provided automatically. 
The supervisory control window uses the same 
program interface through which the agents receive 
control requests from higher-level agents and get data 
from the same program interface through which the 
agents report success, failure or progress to the 



higher-level agents. The only difference is the use of 
a graphical window for ease of human use. If the 
operator chooses to control an agent from the 
hierarchy, the framework should disable all control 
requests arriving at the controlled agent from other 
agents. 
In the supervisory control window, there is also a 
blackboard view. In the blackboard view, the 
supervisor can consult or modify the various types of 
variables. This is an extension of the blackboard view 
interface of the SocRob project (Lima et al., 2000). 

4.5. Logging and Data Mode 
 
Each of the agents can keep a logging file. If the 
supervisor chooses an agent whose activities are to 
be logged, that file is written locally inside each of 
the robots. After the mission ends, the log files are 
stored in the central station. During run-time, an 
operator can also choose to consult the logging of a 
particular agent. This mode logs, with the 
corresponding time tag, all the requests arriving and 
all reports departing an agent. Changes in the 
variables inside the blackboard can also be selected 
to be automatically logged by this mode, with the 
corresponding time tag. Additional logging should be 
made inside the code of the agent. 

5. AGENT ARCHITECTURE APPLIED ON 
RESCUE PROJECT 

 
Under the reference scenario for the Rescue project 
(Lima et al, 2003), a land robot should be able to 
build a topological map and be able to locate itself on 
that map as well as to show different navigation 
capabilities, such as topological navigation with 
obstacle avoidance. With the topological navigation 
the robot should be able to go from one topological 
state to an arbitrary topological state. It should be 
able to change from Topological Navigation to either 
Waypoint Navigation or User Operated Navigation. 
The following steps describe part of the top-down 
instantiation of such a Rescue Mission. 
 

 
Fig. 5 – System Top Agent 
 

Figure 5 shows the first system decomposition. 
Sensor and Actuator agents where kept out of the 
diagram for the ease of interpretation. In addition to 
one agent per sensor and one per actuator, the system 
is split into five main Agents. All these agents are 
running simultaneously, therefore they are inside a 
Concurrent Agent. 
 
Each of the agents is responsible for a subsystem: 
 
• Features Transform – This group of agents is 

responsible for picking raw data from the 
several sensors (sonar, laser, compass and 
image). The raw data is subsequently 
transformed into features that the Topological 
agents can use (Vale and Ribeiro, 2002; Vale 
and Ribeiro, 2003). 

• Navigation System – This group of agents is 
responsible for the either the topological or the 
metric navigation of the robot. The Navigation 
sub-system includes obstacle avoidance 
behavior. 

• Topological Localization – This agent gets the 
data-features and, comparing then with 
information taken from the topological map, 
determines where the robot is on the topological 
map (Vale and Ribeiro, 2002; Vale and Ribeiro, 
2003). 

• Topological Mapping – This agent is responsible 
for picking the features and building the 
topological map (Vale and Ribeiro, 2002; Vale 
and Ribeiro, 2003). 

• Metric Localization – This agent is responsible 
for picking raw data from several sensors 
(odometric, GPS and compass). This data is 
fused together to determine the robot metric 
position and velocity. 

 
The Fig. 6 depicts the data exchanged by the top 
rescue agents. The arrows represent data connections 
between the agents. As explained before, these 
connections are made throughout the blackboard. 
Arrows represent more than a value being 
exchanged. An arrow denotes that the starting agent 
is writing the data on blackboard entries. The pointed 
agent is reading the data from the blackboard entries. 
For ease of image reading only the TopologicalMap 
and TopologicalPosition data entries where 
represented. 
If the arrow forks it means that more than one agent 
is reading the same data.  When the arrow is double it 
means that the agent is reading and writing data. In 
the figure, the TopologicalLocalizationAgent is 
reading the TopologicalMap data and writing the 
TopologicalPosition data. 
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Fig. 6 – Data Flow for the first system 

decomposition. 
 
All the values on the blackboard of the land robot are 
readable over the network (Henning and Vinoski, 
1999). The land robot can ask the aerial robot to meet 
him. For now the aerial robot only has two behaviors: 
parametric navigation and camera target following. 
First the blimp tries to get to the land robot position 
using the blackboard land robot parametric position. 
If successful the blimp changes to camera target 
following, thus using an exclusive agent to change 
from one behavior to the other. 

6. CONCLUSIONS AND FUTURE WORK 
 
We have described an agent based software 
architecture whose key-points are: 
• Agents as Reusable Software Components. 

Agents can be controllable and can control other 
agents over the network. 

• Blackboard as a mean to share data over the 
network, addressing the problems of different 
agent execution rates and different agent 
locations. 

• Several Execution modes as a mean to increase 
the overall system usability. 

 
We have shown how to use the Proposed Agent 
Software Architecture applying it to the work already 
developed on the robots of our Rescue Project. 
Future work on this project includes moving the 
Topological Mapping Agent to the aerial robot 
instead of the Land Robot and the development of 
cooperative navigation agents. 
We also plan to use the software architecture on 
another R&D project where we are currently 
involved with a Portuguese company.  
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