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tThis paper proposes an ar
hite
ture, namedAle
, for learning to make de
isions in real-world environments whi
h takes into 
onsid-eration two alternative adaptation 
apabili-ties: emotional and 
ognitive.Ale
 brings together two di�erent systemswhi
h have independently shown good em-piri
al results. Previous results suggest thatthese systems may 
omplement ea
h other.Moreover, one 
an argue that one of thesesystems embodies properties usually asso
i-ated with emotions and the other with 
og-nition. The similarities of the intera
tion ofthe two systems and that of the human emo-tion and 
ognition systems are highlighted.1 Introdu
tionAn agent designer, or its genes in the 
ase of nat-ural agents, may 
ode the agent's behavior to someextent, but 
exibility is required to deal with the un-predi
tability and 
hanging 
ir
umstan
es of the realworld. Moreover, it may be diÆ
ult for an agent'sdesigner to predi
t the agent's per
eptions of the en-vironment or to think in terms of its unfamiliar sen-sory 
apabilities. These are reasons why adapta-tion is advantageous. Nevertheless, even the learn-ing me
hanisms 
an be adapted to the desired agent-environment intera
tion. In 
ertain s
enarios, spe-
ialized learning may have an advantage over gen-eral knowledge whi
h is mu
h more diÆ
ult to a
-quire. Animals do often bene�t from domain-spe
i�
learning me
hanisms whi
h have been shaped by theirspe
i�
 problems through evolution [Gallistel et al.,1991℄.In the 
ontext of de
ision-making in real-world en-vironments, autonomous adaptation is a diÆ
ult 
hal-lenge. The 
omplexity and noise in per
eptual infor-mation allied with the multitude of a
tion 
hoi
es 
anoverwhelm the agent if learning is not stru
tured insome way. The agent designer has an important rolein providing adequate learning tools. To start with,�Post-do
torate sponsored by the Portuguese Founda-tion for S
ien
e and Te
hnology.

the agent must give the agent a basi
 value me
hanismto allow it to distinguish good out
omes from badout
omes. Building-in pre-pro
essing of sensors andpre-
onstru
ted behaviors instead of low-level motor
ommands 
an help, but is a limiting fa
tor on whatthe agent 
an learn.The designer 
an also build in alternative adap-tation me
hanisms spe
ialized in di�erent problemswhi
h is the topi
 of this paper.In [Gadanho and Hallam, 2001b; Gadanho andCust�odio, 2002℄, an emotion-based ar
hite
ture wasproposed whi
h uses emotions to guide the agent'sadaptation to the environment. The agent has someinnate emotions that de�ne its goals and then learnsemotion asso
iations of environment state and a
tionpairs whi
h determine its de
isions. The agent usesa Q-learning algorithm to learn its poli
y while it in-tera
ts with its world. The poli
y is stored in neuralnetworks whi
h allows to limit memory usage substan-tially and a

elerates the learning pro
ess, but 
an alsointrodu
e ina

ura
ies and does not guarantee learn-ing 
onvergen
e [Bertsekas and Tsitsiklis, 1996℄.TheAle
 (Asyn
hronous Learning by Emotion andCognition) ar
hite
ture proposed here aims at a bet-ter learning performan
e by augmenting the previ-ous emotion-based ar
hite
ture with a 
ognitive sys-tem whi
h 
omplements its 
urrent emotion-basedadaptation 
apabilities with expli
it rule knowledge.The di�erent learning 
apabilities of the two systemsand their intera
tion should produ
e a more powerfuladaptation system. The 
ognitive system suggested isthe rule-de
ision system of the CLARION model [Sunand Peterson, 1998a℄ whi
h is des
ribed in Se
tion 4.1.Ale
 is based on the assumption that the 
ognitivesystem 
an make more a

urate predi
tions based onrules of 
ausality while the emotion asso
iations haveless explanatory power but 
an make more extensivepredi
tions and further ahead in time.In the next se
tion, a des
ription of the adapta-tion problem to be solved by the agent is made. Thisis followed by a detailed des
ription of the referen
eemotion-based ar
hite
ture in Se
tion 3 and the pro-posed modi�
ations in Se
tion 4. Finally, the Ale
ar
hite
ture is dis
ussed and 
on
lusions are drawn.



2 The Adaptation ProblemThe aim of the learning me
hanisms presented next isto allow an agent fa
ed with realisti
 world 
onditionsto adapt on-line and autonomously to its environment.In parti
ular, the agent should be able to 
ope with
ontinuous time and spa
e, while 
onstrained by lim-ited memory, time-pressure, noisy sensors and unreli-able a
tuators. Furthermore, the agent is required toperform a task with multiple and sometimes 
on
i
t-ing goals whi
h may require sequen
ing of a
tions.Previous experiments [Gadanho and Hallam, 2001a;Gadanho and Cust�odio, 2002℄ were 
arried out in a re-alisti
 simulator [Mi
hel, 1996℄ of a Khepera robot |a small robot with left and right wheel motors, andeight infrared sensors that allow it to dete
t obje
tproximity and ambient light. The experiments evalu-ate the agent in a survival task that 
onsists of main-taining adequate energy levels in a simulated maze-like environment with obsta
les and energy sour
eswhi
h are asso
iated with lights the agent 
an sensewhen nearby. The agent has basi
ally three goals: tomaintain its energy, avoid 
ollisions and move aroundin its environment. Moreover, the extra
tion of en-ergy is 
ompli
ated by requiring the agent to learnsequen
es of behaviors and temporarily overlook thegoal of avoiding obsta
les in the pro
ess. The goal ofmaintaining energy also requires the robot to �nd dif-ferent energy sour
es in order to survive. Ale
 is tobe tested under the same and possibly harder 
ondi-tions.3 The Emotion-based ControllerInspired by literature on emotions, previous workhas shown that reinfor
ement and de
iding when toswit
h behavior1 
an be addressed su

essfully to-gether by an emotion model [Gadanho and Hal-lam, 2001b℄. The justi�
ation for the use of emo-tions is that, in nature, emotions are usually asso-
iated with either pleasant or unpleasant feelings that
an a
t as reinfor
ement [Tomkins, 1984; Bozinovski,1982℄ and frequently pointed to as a sour
e of in-terruption of behavior [Sloman and Crou
her, 1981;Simon, 1967℄.Later the emotion model was formalized into a goalsystem with the purpose of establishing a 
lear dis-tin
tion between motivations (or goals) and emotions[Gadanho and Cust�odio, 2002℄. In this system, emo-tions take the form of simple evaluations or predi
-tions of the internal state of the agent. This goalsystem is based on a set of homeostati
 variableswhi
h it attempts to maintain within 
ertain bounds.The idea of homeostati
 values stems from neuro-physiologi
al resear
h on emotions [Damasio, 1994;1999℄ and has been modeled previously by the DAREmodel [Ma�
~as et al., 2001; Sadio et al., 2001℄.1Behavior-swit
hing may be motivated by several fa
-tors: the behavior has rea
hed or failed to rea
h its goal,the behavior has be
ome inappropriate due to 
hanges in
ir
umstan
es, the behavior needs to be rewarded or pun-ished. The 
orre
t timing of behavior-swit
hing 
an bevital [Gadanho and Hallam, 2001a℄.

The ar
hite
ture tested so far | see Figure 1 |is 
omposed by two major systems: the goal systemand the adaptive system. The goal system evalu-ates the performan
e of the adaptive system in termsof the state of its homeostati
 variables and deter-mines when a behavior should be interrupted. Theadaptive system learns whi
h behavior to sele
t us-ing reinfor
ement-learning te
hniques whi
h rely onneural-networks to store the utility values. The twosystems are des
ribed in detail next se
tions.There are two further simpler systems whi
h arehand-designed: the per
eptual and behavior systems.The per
eptual system is responsible for pro
essing
rude per
eptions into higher-level per
eptions whi
hare expe
ted to be more useful for the agent. The be-havior system transforms simple behavior instru
tionsinto motor 
ommands, so that the agent does not haveto learn its a
tion abilities from s
rat
h.3.1 Goal SystemIn an autonomous agent, the goal system 
an 
om-plement a traditional reinfor
ement-learning adaptivesystem in that it determines how well the adaptive sys-tem is doing, or more spe
i�
ally, the reinfor
ement itis entitled to at ea
h step. In the 
urrent work thegoal system is also responsible for determining whenbehavior swit
hing should o

ur.The goals are expli
itly identi�ed and asso
iatedwith homeostati
 variables. These are asso
iated withthree di�erent states: target, re
overy and danger.The state of ea
h variable depends on its 
ontinu-ous value whi
h is grouped into three qualitative 
at-egories: optimal, a

eptable, de�
ient and dangerous.The variable remains in its target state as long as itsvalues are optimal or a

eptable, but it only returnsto its target state on
e its values are optimal again.The danger state is asso
iated with dangerous valuesand 
an be 
oupled with urgen
y of re
overy.To re
e
t the 
urrent hedoni
 state of the agenta well-being value was 
onstru
ted from the above.This value depends primarily on the state value of thehomeostati
 variables. If a variable is in the targetstate it has a positive in
uen
e on the well-being, oth-erwise it has a negative in
uen
e whi
h is proportionalto its deviation from target values.In order to have the system working 
orre
tly twoother in
uen
es on well-being are also required:State 
hange | when a homeostati
 variable
hanges from a state to another the well-beingis in
uen
ed positively if the 
hange is towards abetter state and negatively otherwise;Predi
tion of state 
hange | when some per-
eptual 
ue predi
ts the state 
hange of a home-ostati
 variable, the in
uen
e is similar to theabove, but lower in value and varies with the a
-
ura
y of the predi
tion and how soon the state
hange is expe
ted.The two goal events just des
ribed were modeledafter emotions, in the sense that they result from thedete
tion of signi�
ant 
hanges in the agent's internalstate or predi
tions of su
h 
hanges.



Figure 1: The emotion-based 
ontroller.Similarly to emotions whi
h are asso
iated with feel-ings of 'pleasure' or 'su�ering' depending on whetherthis 
hange is for the better or not, these goal eventsin
uen
e the well-being value su
h that the infor-mation of how good the event is is 
onveyed to theagent through the reinfor
ement. One may distin-guish between the emotion of happiness when a goalis a
hieved (or predi
ted to be a
hieved) and the emo-tion of sadness when of a goal state is lost (or aboutto be lost).The primary in
uen
e of the homeostati
 variables,on the other hand, is modeled after the natural ba
k-ground emotions whi
h re
e
t the overall state of theagent in terms of maintaining his homeostasis [Dama-sio, 1999℄.The goal events are also responsible for trigger-ing the adaptive system for a new behavior sele
tion,whi
h is also often asso
iated with emotions.For the task at hand three homeostati
 variableswere identi�ed: Energy, Welfare and A
tivity.3.2 Adaptive SystemThe adaptive system implemented is a wellknown reinfor
ement-learning algorithm: Q-learning[Watkins, 1989℄. Through this algorithm the agentlearns iteratively by trial and error the expe
ted dis-
ounted 
umulative reinfor
ement that it will re
eiveafter exe
uting an a
tion in response to a world state,i.e. the utility vales (also 
alled Q-values).The traditional Q-learning usually uses a table,whi
h stores the utility value of ea
h possible a
tionsele
tion against every possible world state. In a realenvironment, the use of this table requires some ar-bitrary dis
retization of the 
ontinuous values pro-vided by sensors. Furthermore, this 
an easily leadto a extremely large number of possible environment

states resultant of the 
ombination of the all the pos-sible input values. An alternative to this method sug-gested by [Lin, 1992℄ is to use neural networks tolearn by ba
k-propagation the utility values of ea
ha
tion. This method has the advantages of pro�tingfrom generalization over the input spa
e whi
h a

eler-ates learning and being more resistant to noise. How-ever, neural-networks on-line training may not be verya

urate.The state information whi
h is fed to the neural-networks is the homeostati
 variable values and threeper
eptual values: light intensity, obsta
le density andenergy availability.The developed 
ontroller tries to maximize the re-infor
ement re
eived by sele
ting between one of threepossible hand-designed behaviors:Avoid obsta
les | Turn away from the nearest ob-sta
le and move away from it. If the sensors 
an-not dete
t any obsta
le nearby, then remain still.Seek Light | Go in the dire
tion of the nearestlight. If no light 
an be seen, remain still.Wall Following | If there is no wall in sight, moveforwards at full speed. On
e a wall is found, fol-low it. This behavior by itself is not very reliablein that the robot 
an 
rash, i.e. be
ome immobi-lized against a wall. The avoid-obsta
les behavior
an easily help in these situations.At ea
h trigger step, the agent may sele
t betweenperforming the behavior whi
h has proven to be betterin the past and therefore has the best utility value sofar, or sele
ting an arbitrary behavior to improve itsinformation about the utility of that behavior. Thesele
tion fun
tion used was based on the Boltzmann-Gibbs distribution and 
onsists of sele
ting a behaviorwith higher probability, the higher its utility value in



the 
urrent state.4 Adding a 
ognitive systemThis paper proposes the addition of a 
ognitive sys-tem to the ar
hite
ture des
ribed previously (see Fig-ure 2). The Goal System and the Adaptive Systemof this ar
hite
ture are also referred to as the emotionsystem. The 
ognition system is expe
ted to providean alternative de
ision-making pro
ess to the emotionsystem. It relies on more traditional A.I. reasoningbased on a 
olle
tion of important dis
rete event in-stan
es. This alternative memory representation hastwo main advantages: it is not prone to the ina

u-ra
ies due to neural-network over-generalization; andit allows the use of more 
onventional A.I. te
hniquessu
h as planning.The 
ognitive system should 
olle
t information in-dependently and step in to 
orre
t the emotion sys-tem's de
isions. The 
ognitive system proposed is therule-based system of the CLARION model whi
h isdes
ribed next.4.1 The CLARION modelThe CLARION model [Sun and Peterson, 1998a;Sun et al., 2001℄ is a hybrid 
ognitive model whi
h ad-dresses the problem of bottom-up on-line learning oflow-level skills and high-level de
larative knowledge.It 
onsists of two de
ision-making layers, ea
h withdi�erent adaptation 
apabilities. The bottom-layeris a Q-learning system using neural-networks whi
his very similar to the adaptive system des
ribed inSe
tion 3.2. The top-layer is a rule-based systemwhi
h is distinguishable from other rule systems inthat it is not derived of an a-priori pre-
onstru
tedset of rules given externally. Instead, rules are ex-tra
ted from the agent-environment intera
tion expe-rien
e through the mediation of low-level skills [Sunand Peterson, 1998b℄. Other models are usually top-down, i.e. through pra
ti
e the agents turn high-levelknowledge into usable pro
edural skills [Sun et al.,2001℄. Nevertheless, a-priori knowledge 
an still beeasily given to the system in the form of rules and ifthese are useful they will a
tually be assimilated intopro
edural knowledge by the system [Sun et al., 2001℄.Ea
h individual rule is triggered by spe
i�
 envi-ronmental 
onditions and suggests an a
tion 
hoi
e.Rule a
quisition and revision is based on gradual a
-
umulation of statisti
s, but is done in a one-shot andall-or-nothing fashion. If some a
tion is found su
-
essful then the agent extra
ts a rule 
orrespondentto the de
ision made and adds it to its rule set. Sub-sequently, the agent veri�es the usefulness of the ruleby applying it: if the out
ome is su

essful the agenttries to generalize it by making it 
over more environ-mental states, otherwise it will make it more spe
i�
and ex
lusive of the 
urrent 
ase (it may even deleteit).The su

ess of the agent is measured in terms of itsimmediate reinfor
ement and in terms of the di�er-en
e of Q-values between the state where the de
isionwas made and the state rea
hed after the de
ision was

taken. This means that rule learning takes into 
onsid-eration the information 
olle
ted by the bottom-level.Rule learning is limited to those 
ases for whi
h themodel has suÆ
ient experien
e and leaves the other
ases to the bottom-level whi
h makes use of its gen-eralization abilities [Sun and Peterson, 1998a℄.The a
tion de
ision taken at ea
h moment may relyon a top-level or a bottom-level suggestion. If the top-level has a suggestion then the suggestion to be usedis sele
ted probabilisti
 based on the re
ent relative
ompeten
e of the top-level and the bottom-level [Sunand Peterson, 1998a℄. This means that as the top-levelbe
omes more 
ompetent it is used more often.The authors report a synergy between the twolevels [Sun and Peterson, 1998a℄ and attributeit to the 
omplementary representations (dis
retevs.
ontinuous) and learning methods (one-shot rule-learning vs.gradual Q-value approximation) of the twolevels.On the one hand, the top-level 
annot learn with-out the bottom-level, sin
e it has no form of temporal
redit assignment and it needs the bottom-level's long-term predi
tions. On the other hand, the bottom-levelpreforms worse without the help of the top-level dueto the ina

ura
ies of the ba
k-propagation networks(i.e. the blurring e�e
t of their generalization abilities,whi
h 
an be partially alleviated when the 
risp top-level is added) [Sun et al., 2001℄. Rules 
omplementthe fun
tion approximator by dete
ting and 
orre
tingover-generalization [Sun and Peterson, 1998a℄.5 Dis
ussionAle
 approa
h implies that while emotion asso
ia-tions may be more powerful in its range 
apabilities,they la
k explanation power and may introdu
e errorsof over-generalization.Cognitive knowledge on the other hand is re-stri
ted to learning about simple short-term relationsof 
ausality. Its information is more a

urate, but ata pri
e. Sin
e it's not possible to store and 
onsult allthe single events the agent experien
es, it sele
ts onlya few instan
es whi
h seem most important.In summary, the two learning 
apabilities solve theproblem of too mu
h information provided by theagent-environment intera
tion in two di�erent ways:one stores all events, but no information to distin-guish between individual events, all events are mixedtogether; the other one only extra
ts the most signi�-
ant events.The way the emotion level in
uen
es the 
ognitivelevel is akin to Dam�asio's somati
-marker hypothe-sis [Damasio, 1994℄. In his hypothesis, Dam�asio sug-gested that humans asso
iate high-level 
ognitive de-
isions with spe
ial feelings whi
h have good or bad
onnotations dependent on whether 
hoi
es have beenemotionally asso
iated with positive or negative long-term out
omes. If these feelings are strong enough,a 
hoi
e may be immediately followed or dis
arded.Interestingly, these markers do not have explanationpower and the reason for the sele
tion may not be
lear. In fa
t, although the de
ision may be rea
hed



Figure 2: The Ale
 ar
hite
ture.easily and immediately, the person may feel the needto subsequently use high-level reasoning 
apabilitiesto �nd a reason for the 
hoi
e. Meanwhile, a fastemotion-based de
ision 
ould be rea
hed whi
h de-pending of the urgen
y of the situation may be vital.Ale
 shows similar properties, when it uses emo-tion asso
iations to guide the 
ognitive system. Fur-thermore, the rule system 
an 
orre
t the emotion sys-tem when this rea
hes in
orre
t 
on
lusions. Know-ing the ex
eptions from previous experien
es, it may
hoose to ignore the emotion rea
tions, whi
h al-though powerful 
an be more unreliable.The Ale
 ar
hite
ture is akin to the full CLARIONmodel, but has an important di�eren
e: the existen
eof a well-de�ned goal system in Ale
. This opensextra possibilities for the development of the rule sys-tem. For instan
e, the rule system 
an be extended totreat separately the various goals of the system andlearn how to individually rea
h the target states ofea
h one of the homeostati
 variables. In fa
t, the rulesystem 
an spe
ialize in learning about transitions inthe agent's internal state.A related approa
h is the DARE model [Venturaand Pinto-Ferreira, 1999; Ma�
~as et al., 2001; Sadio etal., 2001℄ whi
h is parti
ularly 
on
erned with the dualevaluation of the per
eptual stimulus [Damasio, 1994;LeDoux, 1998℄. In this model, there are two paths forstimulus evaluation: the per
eptual and the 
ognitive.The per
eptual designates the \qui
k and dirty" pro-
essing usually asso
iated with emotions. The 
og-nitive attempts to be a more sophisti
ated evalua-tion provided by higher-level reasoning. These layersmay have their own separate learning me
hanisms foradapting their evaluations, but in the experiments theper
eptual evaluation is often implemented as innate�xed knowledge and the 
ognitive layer always learns

from s
rat
h.In the DARE model, the per
eptual layer extra
tsrelevant features and the 
ognitive layer task is toidentify obje
ts. Nevertheless, a re
urrent featureof the implementations whi
h shares with Ale
, isthat the per
eptual level has a non-di�erentiated eval-uation of events by their main 
hara
teristi
s whilethe 
ognitive level a

umulates a set of individual in-stan
es of events.A further advantage of Ale
 is the infrastru
turefor endowing the agent with innate knowledge aboutthe world in two distin
t forms, as preferen
es/dislikesat the emotion system or as simple a
tion rules atthe 
ognitive system. For di�erent problems of thesame task, the knowledge may be more evident to thedesigner one way or the other.6 Con
lusionIn Ale
, extra designer knowledge is put into the
omplexity of the learning system whi
h is based ontwo 
exible stru
tures endowed with di�erent learning
apabilities. These stru
tures whi
h are modeled afterthe human emotional and 
ognitive reasoning abilitiesgive the agent a more powerful adaptation 
apa
itythan simpler learning me
hanisms.The existen
e of the 
ognition and emotion astwo intera
ting systems, both with important rolesin de
ision-making has been re
ently advo
ated byneuro-physiologi
al resear
h [LeDoux, 1998; Damasio,1994℄. DARE is a pres
riptive model of Dam�asio'sideas whi
h makes use of this 
on
ept of dual de
i-sion path. Although its implementations thus far fol-low simpler 
omputational approa
hes with emphasison di�erent theoreti
al aspe
ts, the basi
 theoreti
alideas are in tune with the ones presented here.Ale
 has already been partially tested. Extensive



empiri
al results on the performan
e of the emotion-based ar
hite
ture have been presented elsewhere[Gadanho and Hallam, 2001b℄. The results demon-strated that it was quite 
ompetent when 
omparedwith more traditional approa
hes, in spite of the lim-ited 
apabilities of the knowledge representation. Therule system suggested for the 
ognitive system has alsobeen previously tested, with positive experimental re-sults. Furthermore, these results suggest that the in-trodu
tion of this extra system may 
omplement the
apabilities of the emotion system. Therefore, it isexpe
ted that the proposed modi�
ations to the ar-
hite
ture will enhan
e the learning performan
e ofthe agent.Hopefully, Ale
 will be an example of 
omplexemotion and 
ognitive systems with very di�erentadaptation and de
ision-making 
apabilities whi
hsu

essfully 
ooperate in the 
ontrol of an agent fa
edwith real world problems.Referen
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