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Abstract

This paper proposes an architecture, named
ALEC, for learning to make decisions in real-
world environments which takes into consid-
eration two alternative adaptation capabili-
ties: emotional and cognitive.

ALEC brings together two different systems
which have independently shown good em-
pirical results. Previous results suggest that
these systems may complement each other.

Moreover, one can argue that one of these
systems embodies properties usually associ-
ated with emotions and the other with cog-
nition. The similarities of the interaction of
the two systems and that of the human emo-
tion and cognition systems are highlighted.

1 Introduction

An agent designer, or its genes in the case of nat-
ural agents, may code the agent’s behavior to some
extent, but flexibility is required to deal with the un-
predictability and changing circumstances of the real
world. Moreover, it may be difficult for an agent’s
designer to predict the agent’s perceptions of the en-
vironment or to think in terms of its unfamiliar sen-
sory capabilities. These are reasons why adapta-
tion is advantageous. Nevertheless, even the learn-
ing mechanisms can be adapted to the desired agent-
environment interaction. In certain scenarios, spe-
cialized learning may have an advantage over gen-
eral knowledge which is much more difficult to ac-
quire. Animals do often benefit from domain-specific
learning mechanisms which have been shaped by their
specific problems through evolution [Gallistel et al.,
1991].

In the context of decision-making in real-world en-
vironments, autonomous adaptation is a difficult chal-
lenge. The complexity and noise in perceptual infor-
mation allied with the multitude of action choices can
overwhelm the agent if learning is not structured in
some way. The agent designer has an important role
in providing adequate learning tools. To start with,
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the agent must give the agent a basic value mechanism
to allow it to distinguish good outcomes from bad
outcomes. Building-in pre-processing of sensors and
pre-constructed behaviors instead of low-level motor
commands can help, but is a limiting factor on what
the agent can learn.

The designer can also build in alternative adap-
tation mechanisms specialized in different problems
which is the topic of this paper.

In [Gadanho and Hallam, 2001b; Gadanho and
Custédio, 2002], an emotion-based architecture was
proposed which uses emotions to guide the agent’s
adaptation to the environment. The agent has some
innate emotions that define its goals and then learns
emotion associations of environment state and action
pairs which determine its decisions. The agent uses
a Q-learning algorithm to learn its policy while it in-
teracts with its world. The policy is stored in neural
networks which allows to limit memory usage substan-
tially and accelerates the learning process, but can also
introduce inaccuracies and does not guarantee learn-
ing convergence [Bertsekas and Tsitsiklis, 1996].

The ALEC (Asynchronous Learning by Emotion and
Cognition) architecture proposed here aims at a bet-
ter learning performance by augmenting the previ-
ous emotion-based architecture with a cognitive sys-
tem which complements its current emotion-based
adaptation capabilities with explicit rule knowledge.
The different learning capabilities of the two systems
and their interaction should produce a more powerful
adaptation system. The cognitive system suggested is
the rule-decision system of the CLARION model [Sun
and Peterson, 1998a] which is described in Section 4.1.

A1LEC is based on the assumption that the cognitive
system can make more accurate predictions based on
rules of causality while the emotion associations have
less explanatory power but can make more extensive
predictions and further ahead in time.

In the next section, a description of the adapta-
tion problem to be solved by the agent is made. This
is followed by a detailed description of the reference
emotion-based architecture in Section 3 and the pro-
posed modifications in Section 4. Finally, the ALEC
architecture is discussed and conclusions are drawn.



2 The Adaptation Problem

The aim of the learning mechanisms presented next is
to allow an agent faced with realistic world conditions
to adapt on-line and autonomously to its environment.
In particular, the agent should be able to cope with
continuous time and space, while constrained by lim-
ited memory, time-pressure, noisy sensors and unreli-
able actuators. Furthermore, the agent is required to
perform a task with multiple and sometimes conflict-
ing goals which may require sequencing of actions.

Previous experiments [Gadanho and Hallam, 2001a;
Gadanho and Custédio, 2002] were carried out in a re-
alistic simulator [Michel, 1996] of a Khepera robot —
a small robot with left and right wheel motors, and
eight infrared sensors that allow it to detect object
proximity and ambient light. The experiments evalu-
ate the agent in a survival task that consists of main-
taining adequate energy levels in a simulated maze-
like environment with obstacles and energy sources
which are associated with lights the agent can sense
when nearby. The agent has basically three goals: to
maintain its energy, avoid collisions and move around
in its environment. Moreover, the extraction of en-
ergy is complicated by requiring the agent to learn
sequences of behaviors and temporarily overlook the
goal of avoiding obstacles in the process. The goal of
maintaining energy also requires the robot to find dif-
ferent energy sources in order to survive. ALEC is to
be tested under the same and possibly harder condi-
tions.

3 The Emotion-based Controller

Inspired by literature on emotions, previous work
has shown that reinforcement and deciding when to
switch behavior' can be addressed successfully to-
gether by an emotion model [Gadanho and Hal-
lam, 2001b]. The justification for the use of emo-
tions is that, in nature, emotions are usually asso-
ciated with either pleasant or unpleasant feelings that
can act as reinforcement [Tomkins, 1984; Bozinovski,
1982] and frequently pointed to as a source of in-
terruption of behavior [Sloman and Croucher, 1981;
Simon, 1967].

Later the emotion model was formalized into a goal
system with the purpose of establishing a clear dis-
tinction between motivations (or goals) and emotions
[Gadanho and Custédio, 2002]. In this system, emo-
tions take the form of simple evaluations or predic-
tions of the internal state of the agent. This goal
system is based on a set of homeostatic variables
which it attempts to maintain within certain bounds.
The idea of homeostatic values stems from neuro-
physiological research on emotions [Damasio, 1994;
1999] and has been modeled previously by the DARE
model [Macas et al., 2001; Sadio et al., 2001].

!Behavior-switching may be motivated by several fac-
tors: the behavior has reached or failed to reach its goal,
the behavior has become inappropriate due to changes in
circumstances, the behavior needs to be rewarded or pun-
ished. The correct timing of behavior-switching can be
vital [Gadanho and Hallam, 2001a).

The architecture tested so far — see Figure 1 —
is composed by two major systems: the goal system
and the adaptive system. The goal system evalu-
ates the performance of the adaptive system in terms
of the state of its homeostatic variables and deter-
mines when a behavior should be interrupted. The
adaptive system learns which behavior to select us-
ing reinforcement-learning techniques which rely on
neural-networks to store the utility values. The two
systems are described in detail next sections.

There are two further simpler systems which are
hand-designed: the perceptual and behavior systems.
The perceptual system is responsible for processing
crude perceptions into higher-level perceptions which
are expected to be more useful for the agent. The be-
havior system transforms simple behavior instructions
into motor commands, so that the agent does not have
to learn its action abilities from scratch.

3.1 Goal System

In an autonomous agent, the goal system can com-
plement a traditional reinforcement-learning adaptive
system in that it determines how well the adaptive sys-
tem is doing, or more specifically, the reinforcement it
is entitled to at each step. In the current work the
goal system is also responsible for determining when
behavior switching should occur.

The goals are explicitly identified and associated
with homeostatic variables. These are associated with
three different states: target, recovery and danger.
The state of each variable depends on its continu-
ous value which is grouped into three qualitative cat-
egories: optimal, acceptable, deficient and dangerous.
The variable remains in its target state as long as its
values are optimal or acceptable, but it only returns
to its target state once its values are optimal again.
The danger state is associated with dangerous values
and can be coupled with urgency of recovery.

To reflect the current hedonic state of the agent
a well-being value was constructed from the above.
This value depends primarily on the state value of the
homeostatic variables. If a variable is in the target
state it has a positive influence on the well-being, oth-
erwise it has a negative influence which is proportional
to its deviation from target values.

In order to have the system working correctly two
other influences on well-being are also required:

State change — when a homeostatic variable
changes from a state to another the well-being
is influenced positively if the change is towards a
better state and negatively otherwise;

Prediction of state change — when some per-
ceptual cue predicts the state change of a home-
ostatic variable, the influence is similar to the
above, but lower in value and varies with the ac-
curacy of the prediction and how soon the state
change is expected.

The two goal events just described were modeled
after emotions, in the sense that they result from the
detection of significant changes in the agent’s internal
state or predictions of such changes.
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Figure 1: The emotion-based controller.

Similarly to emotions which are associated with feel-
ings of 'pleasure’ or ’suffering’ depending on whether
this change is for the better or not, these goal events
influence the well-being value such that the infor-
mation of how good the event is is conveyed to the
agent through the reinforcement. One may distin-
guish between the emotion of happiness when a goal
is achieved (or predicted to be achieved) and the emo-
tion of sadness when of a goal state is lost (or about
to be lost).

The primary influence of the homeostatic variables,
on the other hand, is modeled after the natural back-
ground emotions which reflect the overall state of the
agent in terms of maintaining his homeostasis [Dama-
sio, 1999].

The goal events are also responsible for trigger-
ing the adaptive system for a new behavior selection,
which is also often associated with emotions.

For the task at hand three homeostatic variables
were identified: Energy, Welfare and Activity.

3.2 Adaptive System

The adaptive system implemented is a well
known reinforcement-learning algorithm: Q-learning
[Watkins, 1989]. Through this algorithm the agent
learns iteratively by trial and error the expected dis-
counted cumulative reinforcement that it will receive
after executing an action in response to a world state,
i.e. the utility vales (also called Q-values).

The traditional Q-learning usually uses a table,
which stores the utility value of each possible action
selection against every possible world state. In a real
environment, the use of this table requires some ar-
bitrary discretization of the continuous values pro-
vided by sensors. Furthermore, this can easily lead
to a extremely large number of possible environment

states resultant of the combination of the all the pos-
sible input values. An alternative to this method sug-
gested by [Lin, 1992] is to use neural networks to
learn by back-propagation the utility values of each
action. This method has the advantages of profiting
from generalization over the input space which acceler-
ates learning and being more resistant to noise. How-
ever, neural-networks on-line training may not be very
accurate.

The state information which is fed to the neural-
networks is the homeostatic variable values and three
perceptual values: light intensity, obstacle density and
energy availability.

The developed controller tries to maximize the re-
inforcement received by selecting between one of three
possible hand-designed behaviors:

Avoid obstacles — Turn away from the nearest ob-
stacle and move away from it. If the sensors can-
not detect any obstacle nearby, then remain still.

Seek Light — Go in the direction of the nearest
light. If no light can be seen, remain still.

Wall Following — If there is no wall in sight, move
forwards at full speed. Once a wall is found, fol-
low it. This behavior by itself is not very reliable
in that the robot can crash, i.e. become immobi-
lized against a wall. The avoid-obstacles behavior
can easily help in these situations.

At each trigger step, the agent may select between
performing the behavior which has proven to be better
in the past and therefore has the best utility value so
far, or selecting an arbitrary behavior to improve its
information about the utility of that behavior. The
selection function used was based on the Boltzmann-
Gibbs distribution and consists of selecting a behavior
with higher probability, the higher its utility value in



the current state.

4 Adding a cognitive system

This paper proposes the addition of a cognitive sys-
tem to the architecture described previously (see Fig-
ure 2). The Goal System and the Adaptive System
of this architecture are also referred to as the emotion
system. The cognition system is expected to provide
an alternative decision-making process to the emotion
system. It relies on more traditional A.I. reasoning
based on a collection of important discrete event in-
stances. This alternative memory representation has
two main advantages: it is not prone to the inaccu-
racies due to neural-network over-generalization; and
it allows the use of more conventional A.I. techniques
such as planning.

The cognitive system should collect information in-
dependently and step in to correct the emotion sys-
tem’s decisions. The cognitive system proposed is the
rule-based system of the CLARION model which is
described next.

4.1 The CLARION model

The CLARION model [Sun and Peterson, 1998a;
Sun et al., 2001] is a hybrid cognitive model which ad-
dresses the problem of bottom-up on-line learning of
low-level skills and high-level declarative knowledge.

It consists of two decision-making layers, each with
different adaptation capabilities. The bottom-layer
is a Q-learning system using neural-networks which
is very similar to the adaptive system described in
Section 3.2. The top-layer is a rule-based system
which is distinguishable from other rule systems in
that it is not derived of an a-priori pre-constructed
set of rules given externally. Instead, rules are ex-
tracted from the agent-environment interaction expe-
rience through the mediation of low-level skills [Sun
and Peterson, 1998b]. Other models are usually top-
down, i¢.e. through practice the agents turn high-level
knowledge into usable procedural skills [Sun et al.,
2001]. Nevertheless, a-priori knowledge can still be
easily given to the system in the form of rules and if
these are useful they will actually be assimilated into
procedural knowledge by the system [Sun et al., 2001].

Each individual rule is triggered by specific envi-
ronmental conditions and suggests an action choice.
Rule acquisition and revision is based on gradual ac-
cumulation of statistics, but is done in a one-shot and
all-or-nothing fashion. If some action is found suc-
cessful then the agent extracts a rule correspondent
to the decision made and adds it to its rule set. Sub-
sequently, the agent verifies the usefulness of the rule
by applying it: if the outcome is successful the agent
tries to generalize it by making it cover more environ-
mental states, otherwise it will make it more specific
and exclusive of the current case (it may even delete
it).

The success of the agent is measured in terms of its
immediate reinforcement and in terms of the differ-
ence of Q-values between the state where the decision
was made and the state reached after the decision was

taken. This means that rule learning takes into consid-
eration the information collected by the bottom-level.
Rule learning is limited to those cases for which the
model has sufficient experience and leaves the other
cases to the bottom-level which makes use of its gen-
eralization abilities [Sun and Peterson, 1998a).

The action decision taken at each moment may rely
on a top-level or a bottom-level suggestion. If the top-
level has a suggestion then the suggestion to be used
is selected probabilistic based on the recent relative
competence of the top-level and the bottom-level [Sun
and Peterson, 1998a). This means that as the top-level
becomes more competent it is used more often.

The authors report a synergy between the two
levels [Sun and Peterson, 1998a] and attribute
it to the complementary representations (discrete
vs.continuous) and learning methods (one-shot rule-
learning vs.gradual Q-value approximation) of the two
levels.

On the one hand, the top-level cannot learn with-
out the bottom-level, since it has no form of temporal
credit assignment and it needs the bottom-level’s long-
term predictions. On the other hand, the bottom-level
preforms worse without the help of the top-level due
to the inaccuracies of the back-propagation networks
(i.e. the blurring effect of their generalization abilities,
which can be partially alleviated when the crisp top-
level is added) [Sun et al., 2001]. Rules complement
the function approximator by detecting and correcting
over-generalization [Sun and Peterson, 1998a].

5 Discussion

ALEC approach implies that while emotion associa-
tions may be more powerful in its range capabilities,
they lack explanation power and may introduce errors
of over-generalization.

Cognitive knowledge on the other hand is re-
stricted to learning about simple short-term relations
of causality. Its information is more accurate, but at
a price. Since it’s not possible to store and consult all
the single events the agent experiences, it selects only
a few instances which seem most important.

In summary, the two learning capabilities solve the
problem of too much information provided by the
agent-environment interaction in two different ways:
one stores all events, but no information to distin-
guish between individual events, all events are mixed
together; the other one only extracts the most signifi-
cant events.

The way the emotion level influences the cognitive
level is akin to Damaésio’s somatic-marker hypothe-
sis [Damasio, 1994]. In his hypothesis, Damdsio sug-
gested that humans associate high-level cognitive de-
cisions with special feelings which have good or bad
connotations dependent on whether choices have been
emotionally associated with positive or negative long-
term outcomes. If these feelings are strong enough,
a choice may be immediately followed or discarded.
Interestingly, these markers do not have explanation
power and the reason for the selection may not be
clear. In fact, although the decision may be reached
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Figure 2: The ALEC architecture.

easily and immediately, the person may feel the need
to subsequently use high-level reasoning capabilities
to find a reason for the choice. Meanwhile, a fast
emotion-based decision could be reached which de-
pending of the urgency of the situation may be vital.

ALEC shows similar properties, when it uses emo-
tion associations to guide the cognitive system. Fur-
thermore, the rule system can correct the emotion sys-
tem when this reaches incorrect conclusions. Know-
ing the exceptions from previous experiences, it may
choose to ignore the emotion reactions, which al-
though powerful can be more unreliable.

The ALEC architecture is akin to the full CLARION
model, but has an important difference: the existence
of a well-defined goal system in ALEC. This opens
extra possibilities for the development of the rule sys-
tem. For instance, the rule system can be extended to
treat separately the various goals of the system and
learn how to individually reach the target states of
each one of the homeostatic variables. In fact, the rule
system can specialize in learning about transitions in
the agent’s internal state.

A related approach is the DARE model [Ventura
and Pinto-Ferreira, 1999; Macas et al., 2001; Sadio et
al., 2001] which is particularly concerned with the dual
evaluation of the perceptual stimulus [Damasio, 1994;
LeDoux, 1998]. In this model, there are two paths for
stimulus evaluation: the perceptual and the cognitive.
The perceptual designates the “quick and dirty” pro-
cessing usually associated with emotions. The cog-
nitive attempts to be a more sophisticated evalua-
tion provided by higher-level reasoning. These layers
may have their own separate learning mechanisms for
adapting their evaluations, but in the experiments the
perceptual evaluation is often implemented as innate
fixed knowledge and the cognitive layer always learns

from scratch.

In the DARE model, the perceptual layer extracts
relevant features and the cognitive layer task is to
identify objects. Nevertheless, a recurrent feature
of the implementations which shares with ALEC, is
that the perceptual level has a non-differentiated eval-
uation of events by their main characteristics while
the cognitive level accumulates a set of individual in-
stances of events.

A further advantage of ALEC is the infrastructure
for endowing the agent with innate knowledge about
the world in two distinct forms, as preferences/dislikes
at the emotion system or as simple action rules at
the cognitive system. For different problems of the
same task, the knowledge may be more evident to the
designer one way or the other.

6 Conclusion

In ALEC, extra designer knowledge is put into the
complexity of the learning system which is based on
two flexible structures endowed with different learning
capabilities. These structures which are modeled after
the human emotional and cognitive reasoning abilities
give the agent a more powerful adaptation capacity
than simpler learning mechanisms.

The existence of the cognition and emotion as
two interacting systems, both with important roles
in decision-making has been recently advocated by
neuro-physiological research [LeDoux, 1998; Damasio,
1994]. DARE is a prescriptive model of Damésio’s
ideas which makes use of this concept of dual deci-
sion path. Although its implementations thus far fol-
low simpler computational approaches with emphasis
on different theoretical aspects, the basic theoretical
ideas are in tune with the ones presented here.

ALEC has already been partially tested. Extensive



empirical results on the performance of the emotion-
based architecture have been presented elsewhere
[Gadanho and Hallam, 2001b]. The results demon-
strated that it was quite competent when compared
with more traditional approaches, in spite of the lim-
ited capabilities of the knowledge representation. The
rule system suggested for the cognitive system has also
been previously tested, with positive experimental re-
sults. Furthermore, these results suggest that the in-
troduction of this extra system may complement the
capabilities of the emotion system. Therefore, it is
expected that the proposed modifications to the ar-
chitecture will enhance the learning performance of
the agent.

Hopefully, ALEC will be an example of complex
emotion and cognitive systems with very different
adaptation and decision-making capabilities which
successfully cooperate in the control of an agent faced
with real world problems.
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