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INTRODUCTION

Foveated active visual systems are widely present in animal life. Despite having limited visual and
processing resources, biological systems are capable of very complex visual behaviors with extraordinary
performances. A representation of the environment with high-resolution and a wide �eld of view are
capabilities provided by the contribution of the space-variant ocular geometry and the ability to move
the eyes.

The use of foveated images can also provide important bene�ts in arti�cial systems. The most common
space-variant image representation is the log-polar mapping, introduced in [1], due to its similarity to
the retinal resolution and organization on the visual cortex of primates[2, 3]. Its application to arti�cial
vision was �rst motivated by its perceptually based data compression capabilities. When compared to the
usual cartesian images, log-polar images allow faster sampling rates without reducing the size of the �eld
of view and the resolution on the central part of the retina (fovea) [4]. In the last years, however, it has
been noticed that the log-polar geometry also provides important algorithmic bene�ts such as rotation
and scale invariance [5], easy computation of time-to-contact [6], increased stereo resolution on verging
systems [4], better sensitivity for vergence control [7, 8], etc. For instance in [8], it is shown that the use
of log-polar images extends the range of object sizes that can be tracked using a simple translation model.
In this work we increase the \order" of the transformation towards the planar model and show that these
advantages can still be observed. To accomplish this goal we designed a tracking system composed by a
camera with pan and tilt degrees of freedom, capable of keeping attention �xed on slowly moving objects.

Visual attention mechanisms are commonly de�ned as the ability to direct visual resources to certain
objects in �eld of view. In biological systems, attention mechanisms are very complex processes that
involve high-level and low-level neuronal systems and are in
uenced by di�erent kinds of visual stimuli.
In this work we do not try to address attention mechanisms to the full extent, but to make some analogies
between biological evidence and the computer vision perspective, in what is related to visual tracking
applications. In terms of visual activity a common classi�cation distinguishes between overt and covert
attention shifts. The �rst one involves eye movements to center the object of interest in the fovea,
directing physical resources (retinal photo-receptors) to inspect the object. The latter do not require
ocular motion and allocates \brain" resources to inspect a visual entity even if it is located in the periphery
of the visual �eld. We believe that this classi�cation also makes sense in the \engineering" of an arti�cial
visual tracking application. We design our system based on the cooperation of two mechanisms: (i) the
implicit{tracking / covert attention mechanism, which is implemented by a novel image registration

1This work was partially funded by projects ESPRIT-LTR 30185, NARVAL and VIRGO-TMR FMRX-CT96-0049.
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Figure 1: (left) The original foveal image, fovo(x), de�nes a target template representing the appear-
ance of the object of interest. (middle) At time t the target moves to the periphery and is observed at
the fovea image, fovt(x). (right) A \virtual saccade" displaces the focus attention to the predicted
location of the target. The target is \pulled" to the center of a \virtual fovea", vft(x),which augments
the number of \pixels" containing target{related information.

algorithm to keep track of object motion in a passive manner, i.e. without moving the cameras; (ii) the
explicit{tracking / overt attention behaviour, which is implemented by controlling the camera pan
and tilt angles to keep the object in the center of the fovea, where more information can be obtained for
motion estimation.

The paper organization is the following. Section 2 describes the implicit{tracking module that im-
plements the covert-attention behaviour, focusing on the problem of target position estimation using
model-based appearance prototypes and comparing the proposed method with classical ones. In section
3 we overview the explicit{tracking module, responsible by the overt-attention behaviour, and describe a
system simulator used to obtain results with ground truth data. Section 4 presents the adopted foveated
image representation (log-polar) and discuss the advantage of this geometry over the conventional one
(cartesian), mainly in what concerns to tracking applications. Results are shown in section 5 and illus-
trate the main contributions of this work: the advantages of using a foveated image representation; the
real-time (25 Hz) performance of the cooperating behaviours; and the robustness to deviations from the
assumed geometric model.

IMPLICIT{TRACKING AND THE COVERT ATTENTION MECHANISM

Covert attention is related to the ability to attend to objects without moving the eyes. In biological
systems this is achieved by directing neuronal resources to the location of the object of interest, similarly
to performing a \virtual saccade" towards the object. In reality, true saccades can not perform certain
types of transformations on the observed images (e.g. scaling), so we introduce the term \virtual saccade"
to express, in an intuitive manner, more general image transformations. The process of allocating neuronal
resources to certain regions of the visual �eld involves complex mechanisms and, depending on the subject
motivational state, objects can be detected by color, shape, motion, texture, etc. In our computational
framework we de�ne one object of interest by its appearance (texture) on the �rst acquired image and
call it target template. In the next time instances, the system should be able to locate the object in
the visual �eld and keep track of its varying position (see Fig. 1). This is a very hard problem since
an exhaustive search of the object appearance on the visual �eld is computationally prohibitive and
classical local optimization algorithms have a very limited search range. We propose an algorithm that
represents a compromise between local and global optimization methods and exhibits good search range
and convergence properties with controlled computational cost. In analogy with biological evidence, the
system will direct the computational resources to the estimated object position, implementing a target
centered \virtual fovea", to maximize the amount of object related information extracted from the
image.

Computational Framework

Computing target locations is, in general, equivalent to solve the \correspondence problem", which is
one of the most diÆcult problems of computer vision. Many research e�orts are still directed to develop
strategies to �nd corresponding features between two or more images. This problem arises in many
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Figure 2: (left) The correspondence map m transforms point coordinates from the initial to the �nal
target positions. (right) For an ideal allocation of resources, the spotlight of attention (virtual fovea)
must be \shifted" according to the same map m.
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Figure 3: 2D planar transformations express possible 2D deformations of the target. Are composed by
translation, rotation, scaling, shear and curl.

di�erent forms, and most applications in computer vision must address it one way or another. Optic
Flow and Stereo are two methods that depend extensively on matching issues.

In a purely geometric framework, let us consider the target support region represented as a set of
2D image points objo =

�
x10; � � � ;x

n
0

	
. Given a new image, these points are displaced to di�erent

coordinates objt =
�
x1t ; � � � ;x

n
t

	
. This \disparity" can be represented by a map m that establishes the

correspondence between point coordinates on the initial and �nal target positions (see Fig. 2):

objt = m(objo) (1)

The target localization problem consists in computing an estimate m̂ of this correspondence map. In a
general setting, this problem is computationally hard and ill{posed (e.g. the aperture problem [9]). In
order to deal with these diÆculties, some assumptions are commonly made:

1. Information at each corresponding point is the same in the initial and �nal images (eg. the Bright-
ness Constancy Assumption { BCA [9]), or changes according to some appropriate model. Assuming
BCA means that all changes in brightness between the initial and �nal foveal images are completely
described by the true correspondence map m�:

fovo(x) = fovt(m
�(x)) (2)

2. The mapping function follows some model, i.e. it is not completely arbitrary. We model the
mapping function using a planar model, with the motivation that planar surfaces can be found in
many human made environments and represent good approximations for other kind of surfaces.
The planar projective transformations can be represented by an 8 parameter vector �, and the
mapping function is rewritten as m(x;�). In a cartesian image plane, the motion �eld of a moving
3D plane is given by the following equation:

xt =m (x0;�) =

�
�1 � x0 + �2 � y0 + �3

�7 � x0 + �8 � y0 + 1
;
�4 � x0 + �5 � y0 + �6

�7 � x0 + �8 � y0 + 1

�T

(3)

Fig. 3 illustrates some common planar transformations.

3. An initial guess �� can be obtained at any time instant, reducing the search space to a neighborhood
of the initial solution. This is a realistic assumption since the displacement of physical objects is
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Figure 4: The full motion transformation m(x;�) is obtained by �rst applying a known predicted trans-
formation (\virtual saccade") m(x; ��) and then computing the remaining unknown residual transfor-
mation m(x; ~�). (left { �xed reference frame) objo, objv and objt represent the original, predicted
and current positions of the target, viewed from a �xed reference frame (the fovea). (right { moving
reference frame) The evolution of the current target appearance when the reference frame changes
from the original fovea (fov) to the virtual fovea (vf) and to the true target location (t).
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Figure 5: The computation of the residual motion m(x; ~�) is estimated in the \virtual fovea" reference
system. The target template is \inverse transformed" by m(x; ~�) until it best matches the appearance of
the current target.

constrained by inertial physical laws. It can be obtained simply as the estimate of the target location
parameters in the previous time instant �(t � 1) or by a suitable prediction based on past time
information and/or the motion model, like in a Kalman Filter [10]. With this predicted location,
we can redirect our \virtual fovea" to the vicinity of the expected target position:

vft(x) = fovt(m(x)) (4)

Thus, the application of the correspondence map m expresses a \virtual saccade" in image
coordinates. In a latter section, we show that virtual saccades can be eÆciently emulated by
software in both cartesian and log-polar coordinates.

In general, the initial guess �� does not coincide with the true location and a residual error ~� must be
computed by image processing algorithms. Using the two components (prediction �� and innovation
~� ), we de�ne the composition rule that generates the full motion �eld (see Fig. 4):

m(x;�) = m(m(x; ��); ~�) (5)

With these assumptions we can recast the tracking problem as one of determining the \innovation
term" ~�. This can be obtained by minimizing a least squares objective function:

O(~�) =
X
x

�
vft(x)� fovo(m

�1(x; ~�))
�

(6)

The image vft(x) (virtual fovea) is obtained by transforming the current image fovt(x) with the predicted
location parameters �� (see Eq. 4). It is equivalent to what one would see after performing a \virtual sac-
cade" to the predicted location of the target. The image fovo(m

�1(x; ~�)) is called the deformed template

and represents the transformation on the target template required to match the target appearance in the
\virtual fovea" (see Fig. 5).
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Classical Optimization Methods To minimize this error function, several strategies can be used,
ranging from exhaustive search methods (global) to gradient based techniques (local).

The most straightforward and precise method is exhaustive search, but is also the most compu-
tationally demanding. This method consists in computing the error between the current image and the
deformed template for \all" possible deformations ~�. In practice, we must test a dense set of discrete
hypothesis ~�i and choose the one that globally minimizes the error.

Contrasting with the previous technique, the class of gradient methods use only information in a
local neighborhood of the error function. Despite existing several methods of this class, they are all based
on the fact that a local minimum of the error function may be achieved by iteratively moving the solution
in the opposite direction of the local gradient. They assume that the error function is smooth enough
to avoid local minima and the initial condition is close to the real solution. Usually these methods are
less computationally expensive but have a much smaller convergence interval and require an appropriate
control of the iterative procedure to avoid divergence and oscillations.

A very simple iterative implementation of the algorithm can be described as follows { start with an
initial estimate ~�0 and update it by subtracting a fraction � of the error function until convergence is
achieved:

~�(k+1) = ~�(k) + 2�
X
x

@fovo(m
�1(x; ~�))

@~�

h
vft(x) � fovo(m

�1(x; ~�(k)))
i

(7)

where the partial derivatives are computed at ~� = 0.
The previous two algorithms represent extreme cases of the use of global and local information,

showing also extreme performances in terms of the convergence intervals and computational complexity.
In the next section we present an algorithm that pretends to extend the convergence interval relative to
local methods but with a controlled computational complexity. A simple experiment will illustrate its
performance in comparison with the classical methods.

Appearance Prototypes

We propose an algorithm that balances computational complexity and range of convergence. It is not
as demanding as exhaustive search because it is based on a sparse sampling instead of dense sampling.
Also, it is not as local as usual gradient descent methods since we can represent our data with samples
(prototypes) that cover a wide search range.

Considering the estimation of a planar transformation, we de�ne a set of samples V = f~�i; i 2 (1 � � �m)g
of the 8 dimensional parameter space. This set must form a basis and cover a suitable interval of the
search space. Once a target template fovo is selected, we can transform it according to such deformations
and build a set of appearance prototypes :

R =
�
Ri = fovo

�
m�1(x; ~�i

�
); i 2 (1 � � �m)

	
(8)

Each appearance prototype represents the expected appearance of the \virtual fovea" vf(x) if the true
residual transformation is ~�i. Fig. 6 shows an example of a prototype transformation. A priori knowledge

Figure 6: The \appearance prototype" (right) is obtained by transforming the reference image (left)
according to a prototype transformation (the one shown includes translation and rotation)

can be used in the choice of the sampling vectors. For instance, they should sample more densely
the expected image deformations and range | if our expected deformation model consists basically on
translations with a uniform distribution on the range -6 to 6 pixels, we may de�ne sample vectors spaced
uniformly within that range.
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Figure 7: Translation estimation with di�erent optimization methods: (left) Local gradient method.
Notice the limited convergence range (about �8 pixels). Di�erent lines correspond to di�erent number of
iterations (10; 20; � � � ; 150). (right) Prototype sampling method. Di�erent lines correspond to di�erent
number of iterations (2; 4; � � � ; 14).

The basic assumption on the proposed method is that the \di�erential" information observed in the
\virtual fovea" (D = vft� fovo) can be represented as a linear combination of the \di�erentials" of the
appearance prototypes (R0

i = Ri � fovo), with coeÆcients k = (k1; � � � ; km)
T . The objective function to

minimize becomes:

O (k) �
X

(D �

mX
i=1

ki � R
0

i

�2
(9)

A closed-form least{squares method can be used to compute the coeÆcients k and the location parameters
are obtained by linearly combining the prototype vectors [11]:

~� =
X
i

ki � ~�i (10)

One of the advantages of this method over standard local gradient descent methods is the ability to
customize the set of sample vectors according to the kind and range of expected image deformations.
Also with the increase of computational power, we can easily add new sample vectors to improve the
estimation results. The algorithm can be customized in order to estimate the larger and more constrained
motions in the �rst iterations and the �ner and more generic transformations in the last iterations, which
improve its robustness.

Experiment Let us consider one simple example and compare the performance of three algorithms:
gradient descent, appearance prototypes and exhaustive sampling. The experiment consists in de�ning a
reference template as in Fig. 1 and simulating a target translation from �30 to 30 pixels in small steps
(0:1 pixels). For each translation we apply the di�erent algorithms and compare the solutions.

Results are presented in Fig. 7. The �rst plot is relative to translation estimation by the gradient
descent method. Several curves are presented, corresponding to the estimated translation with di�erent
number of iterations (10; 20; � � �150). We can observe that the convergence interval of this algorithm is
limited to about �8 pixels. Another aspect of concern is the convergence speed of this kind of algorithms.
The number of iterations depends on the required precision { if translation is small, good estimates can be
obtained with a few iterations, but more iterations are required in the limits of the convergence interval.
The second plots shows the performance of the appearance prototypes method. Again several curves
are presented for the evolution of the estimation process with di�erent number of iterations (2; 4; � � � 14).
We can observe that the convergence interval is much larger in comparison with the gradient descent
method. Also, the convergence rate is higher { the algorithm reaches a stable solution in about 10
iterations. The results that correspond to the exhaustive sampling method are not shown because the
estimated value was always identical to the real one. However, though the precision and robustness of
this method is the best, its computation is too demanding for high dimension spaces.

OVERT ATTENTION AND ACTIVE TRACKING

Overt attention is responsible to place the attended object in the center on the visual �eld using eye/head
motion. The purpose of this behaviour is related to the space-variant resolution of the retina. By placing
the object of interest in the fovea the visual system maximizes the amount of information extracted from
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Figure 8: (left) Pan/Tilt camera. The axis of rotation are assumed to intersect in the camera optical
center. (right) Simulated images with targets of scales 36% and 2:25%.

the object. Furthermore, in tracking tasks, this behaviour maximizes the possible target displacements
while still keeping the object in the �eld of view.

In this work we consider a pan/tilt camera, and develop an explicit{tracking module to keep the
observed object in the vicinity of the image center. This behaviour increases the amount of object
data obtained by the implicit{tracking module. Since the explicit{tracking module is driven by motion
measurements computed by the implicit{tracking module, we can say that both modules cooperate on
the tracking task.

Camera Kinematics and Control

The camera used in this work has a simple pan/tilt con�guration, as shown in Fig. 8. The explicit{
tracking goal is to control the pan and tilt angles (�p; �t) according to the position of the template
obtained by the implicit{tracking algorithm. The purpose is to make the optical axis intersect the center
of the target template. When that happens, the image error (x; y) is zero. Otherwise, it is related to the
angular position of the target relative to the camera optical axis. Although the real kinematic relations
between image error and angular error are non linear, we will control the pan and tilt angular velocities
of the camera with a linear proportional controller on the image error:

_�p = �kpx ; _�t = �kty (11)

Simulator To evaluate the performance of the algorithms with ground truth data we developed a
simulator for the system. We assume a simple �rst order dynamic model for the velocity of the camera
joints with a time constant of 200 msec and the sampling frequency is 10Hz (100 msec), which de�ne a
relatively slow dynamics. Therefore the control is not \one step" but instead has a lag that depends on
target velocity and the camera model parameters.

We use two planar surfaces to simulate the environment : one is the background located 10m away
from the camera and the other is the target at 0:5m. We tested di�erent scales for the target, from 36%
to 2:25% of the full image area (see Fig. 8).

THE LOG-POLAR MAPPING

The foveated image representation used in this work is based on a log-polar image sampling. Beside its
similarity to the human retina and visual cortex, one of the main characteristics of this representation is
data reduction. This is obtained by reducing the resolution at the image periphery but maintaining high
resolution in the fovea such that the overall information contained in the image is still perceivable. Just to
illustrate this fact, in our particular implementation we map 128x128 cartesian images to 64x32 log-polar
images and achieve 8 times increase in eÆciency (both storage and speed). The log-polar transformation
is de�ned as a conformal mapping from the points on the cartesian plane x = (x; y) to points in the
cortical plane z = (�; �) [1], as represented in Fig. 9. The mapping is described by :

[�; �]
t
= l (x; y) =

h
log(

p
x2 + y2); arctan

y

x

it
(12)

[x; y]
t
= l�1 (�; �) =

�
e� cos �; e� sin �

�t
(13)

In this work we are mainly concerned in tracking moving objects. Apart from other bene�cial algorithmic
properties, the main advantage of the log-polar geometry for tracking applications is the higher informa-
tive content of objects occupying the fovea with respect to coarsely sampled background elements in the
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Figure 9: The log{polar transformation maps points from the cartesian plane (left) to the cortical plane
(middle). The e�ective image resolution becomes coarser in the periphery, as can be observed in the
retinal plane (right).

image periphery [8]. This embeds an implicit focus of attention in the center of the visual �eld where the
target is expected to be most of the time.

The log-polar mapping preserves the shape of objects that undergo centered scale changes and rota-
tions (it is scale and rotation invariant). This fact has been used to easily compute time{to{colision[12]
and control vergence [7]. However, it is not \shift invariant" i.e. does not preserve the shape of ob-
jects under translation. This fact is usually referred a less desirable property because translations are
very common transformations in tracking applications and there in no \easy" way to emulate them in
the log-polar plane. While in cartesian coordinates a translation can be emulated by shifting the im-
age coordinates, in log-polar it corresponds to a complicated and coupled transformation of coordinates.
Notwithstanding, it can be computed and stored in a generic look{up{table.

Although cartesian coordinates were considered in the previous sections, the extension to log-polar
coordinates is straightforward. Notice that 3D planar motion produces 2D transformations composed by
intuitive deformations in the cartesian image plane (translation, rotation, etc.). In log-polar coordinates
these deformations are not so intuitive and thus we prefer to de�ne 2D transformations in cartesian
coordinates. Then we express the corresponding log-polar deformations in terms of a map between the
cartesian and log-polar warping �elds. By using eqs. (12), (13) and (3), we obtain:

z0 = l
�
m
�
l�1 (z)

��
) mlog = l Æm Æ l�1 (14)

Both m and mlog are nonlinear functions of the motion parameters �, and have closed-form expressions.
Thus, the transformation of an image according to a correspondence map is basically the same in carte-
sian and log-polar domains. However, since log-polar images have less pixels, transformations are faster
to compute, which is important to achieve high sampling rates and better tracking performance. To im-
plement these transformations (both in cartesian and log-polar images) we use the Intel Image Processing

Library [13]. This library contains optimized code with MMX instructions and performs linear or bicubic
interpolation to avoid aliasing in the generated images, being capable of computing one log-polar warp
in less than 10 msec in a PII 400Mhz machine. This way we can eÆciently emulate not only translations
but also any other types of transformations in log-polar images.

RESULTS

Several experiments are shown to evaluate the performance of the proposed methodologies. In particular
we are interested in testing the motion estimation algorithm, evaluating the bene�ts of using foveated
images and evaluating the planar model ability to approximate the geometry of other objects. For
these purposes, we presents two simulated situations (the open{loop and closed{loop test) and one
experiment with real images (the robustness to non-planarity test).

Open-loop test { log-polar vs cartesian images In this simulated experiment we test implicit{
tracking alone and compare the use of log-polar and cartesian images with objects of di�erent sizes. The
actual dimension of the object is not known a priori, therefore the system selects an initial template that
occupies the full image. The target translates linearly in 3D space. At each time instance the algorithm
estimates target position, which is used as initial guess to the next time step. In Fig. 10 we present plots
of the estimated template position for the log-polar and cartesian versions of the algorithm. From these
plots we can observe that the performance of both versions is good for large objects but degrades when

8



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
estimation of target position with log−polar images

image index

pi
xe

l

* − target position ground−truth

scale = 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.30

0.25

0.20

0.15

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
estimation of target position with cartesian images

image index

pi
xe

l

* − target position ground−truth

scale = 0.6, 0.55, 0.5, 0.45

0.4

0.35

0.30

0.250.20
0.15

Figure 10: Comparison between log-polar (left) and cartesian (right) versions of the open-loop experi-
ment. The true and estimated target position are represented for targets of several dimensions.
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Figure 11: Estimated (+) versus true (�) position of target the target. Comparison between log-polar
and cartesian versions of the algorithm with 36% and 9% size objects

target size diminishes. Notwithstanding, the log-polar version copes smaller objects than the cartesian
version.

Closed-loop test { cooperating behaviours This is also a simulated experiment and illustrate
the integration of implicit and explicit{tracking behaviours. Simulated camera pan and tilt angles are
controlled to keep the observation direction on the centre of the target. The target moves with constant
velocity during the �rst 15 time steps and then stops. In this case the displacements can be larger than
in the implicit{tracking experiments because the target is actively kept inside the �eld of view. Results
are shown in Fig. 11 Notice in the plots that a 9% size object is not tracked by the cartesian algorithm.
Even for 36% size cartesian tracking not very stable and sometimes looses track of target motion. The
log-polar algorithm performs very well in both cases, presenting a tracking error less than two pixels in
the image plane.

Real images { robustness to non-planarity This experiment is performed with a real non-planar
target placed in front of the camera. The target was rotated along its vertical axis which corresponds
to image transformations not following the assumed planar model. Results of the implicit{tracking
module are presented in Fig. 12 in a qualitative way, since no ground truth data is available in this case.
A quadrangular line surrounding the target illustrates the computed transformation. With log-polar
images, the algorithm computes a coherent planar approximation for this transformation. Results for the
cartesian case are also presented and show that it fails to reliably approximate the target deformation.

CONCLUSIONS

We have presented a framework for attention �xation on moving targets composed by the integration of
two behaviours: implicit{tracking and explicit{tracking. These behaviours are analogous to the covert
and overt visual attention mechanisms in what is related to eye movements. The main conclusions to
retain from this work are the following:

� Target location is based on motion continuity and geometric models (planar), reducing the search
range to a vicinity of the initial solution, and the dimension of the search space to the number of
model parameters.

� Targets are de�ned and detected on log-polar images, increasing computational eÆciency and ro-
bustness to target scaling and non-planarity.
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Figure 12: Computing an approximation to a non-planar transformation with real images { the overlaid
window represents the computed transformation. (top row) With log-polar images. (bottom row)
With cartesian images.

� An optimization strategy (the appearance prototypes) is introduced, representing a compromise
between local/global optimization methods and evidencing good convergence/range properties with
controlled computational cost.

� The explicit{tracking module moves the observation direction towards the target, increasing the
amount of target related information available and augmenting the amplitude of possible target
motions.

Experimental results, obtained in simulated and real setups, support these conclusions. Further work will
focus on the integration of other visual cues for target detection and validation (color, shape, motion,
etc.).
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