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A b s t ra ct . T his paper addres s es the problem of tracking objects with
complex motion dynamics or s hape changes . It is as s u med that s ome of
the vis u al featu res detected in the image ( e.g. edge s trokes ) are ou tliers
i.e., they do not belong to the object bou ndary. A robu s t tracking algo-
rithm is propos ed which allows to effi ciently track an object with complex
s hape or motion changes in clu tter environments . T he algorithm relies
on the u s e of s witched models , i.e., a bank of s tochas tic motion models
s witched according to a probabilis tic mechanis m. Robu s t filtering meth-
ods are u s ed to es timate the label of the active model as well as the s tate
trajectory.

1 I ntr oduction

Object tracking has various applications in the scope of medical diagnosis, surveil-
lance and human-machine interface. It is usually assumed that the object shape
and motion slowly vary during the observation interval, being described by a
finite set of parameters.

Typically a stochastic difference equation is used to described the evolution
of the shape and motion parameters. These assumptions are not valid in the
presence of abrupt changes or complex parameter trajectories which can only be
described by nonlinear dynamic systems. Two examples concern the estimation
of the lips boundaries e.g., for speech recognition or face animation and the
estimation or the human motion [4].

To deal with these difficulties, it was recently advocated the use of switched
dynamical models i.e., a set of models switched according to a probabilistic rule,
each of them being tailored to a specific motion regime or shape evolution [5–
7]. Two problems have to be addressed if we want to use switched dynamic
models for shape tracking. First, given a video sequence we have to determine
which model is active at each instant of time. This is the labeling problem.
Second, we have to estimate the state of the active model using the available
data. This amounts to estimate the shape and motion parameters of the object
to be tracked. These problems have been addressed either by non parametric
techniques [5] or by parametric ones, based on the propagation of Gaussian
mixtures [6, 7].



Although switched models are able to describe complex motion and shape
evolution, they fail in the presence of outliers i.e., if the image measurements con-
tain invalid data. Typically, the tracker loses the object boundary when wrong
edge points are detected in the image, e.g., edge points belonging to the back-
ground or to inner regions of the object to be tracked. This is a major drawback
which prevents the application of such models in many tracking problems. This
difficulty is addressed here. A robust tracking algorithm is presented which ex-
tends the method described in [6, 7]. The proposed tracker is based on two key
concepts. First, middle level features (strokes) are used instead of low level ones
(edge points). Second, two labels (valid/invalid) are considered for each stroke.
These techniques have been used with success when a single model is adopted
to track the object [8]. The proposed algorithm allows a robust performance of
the switched multiple model tracker in the presence of outliers.

2 Switched Dynamical M odels

In order to estimate the object position and deformation, three steps are consid-
ered [2]: contour prediction, image measurement and contour update. The first
step predicts the position of the object boundary in the next image. The second
step computes image features in the vicinity of the predicted contour e.g., by
sampling the predicted contour at equally spaced points. The third step uses the
image measurements to update the contour estimate. It is assumed that image
features (edges points) either belong to the boundary of the object to be tracked
or they are produced by the background or inner edges (outliers). The main
difficulty lies in the presence of false alarms or detection failures which produce
undesirable effects. One way to deal with this situation is by considering that
each feature is either valid or invalid. This approach is not practical since it
involves 2N hypothesis (data interpretations), N being the number of detected
features (sometimes hundreds). We adopt a different approach to reduce the
number of hypothesis. The edge points are linked in M strokes, and each stroke
is classified either as valid or invalid. This reduces the number of hypothesis to
2M , with M � N .

Let x(t) ∈ �n be a vector containing the shape parameters of the object
to be tracked (e.g. control points of a spline curve). We assume that the state
vector is generated by a set of a stochastic difference equations [9]

x(t) = Ak(t−1),k(t)x(t− 1) +w(t) (1)

where w(t) ∼ N (0, Qk(t−1),k(t)) is a white Gaussian noise, k(t) ∈ {1, . . . ,m} is
the label of the active model at instant t and m is the number of steady state
models (see Fig. 1). Additional models are considered at transitions (matrices
A, Q depend on k(t) and k(t− 1)). It is assumed that the label sequence k(t) is
a first order Markov process with the transition probability

Trq = p(k(t) = q | k(t− 1) = r) (2)
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F ig. 1. Ba nk o f sw itc he d mo de ls.

where r, q ∈ {1, . . . ,m}, and m the number of steady state models. Switched
dynamic models were studied in control theory and aeronautics to deal with
abrupt changes in dynamic systems (e.g., see [9], [3]). The application of these
models in object tracking has been considered in [6], assuming that all the data
points are valid. In this paper the available observations are the strokes detected
in the image. However, we do not know which strokes belong to the object
boundary and should therefore be considered as valid. Since this information is
not available a label (valid/invalid) is assigned to each stroke and all the label
sequences are considered. Each label sequence is denoted as a data interpretation.
An interpretation Ii is defined as a binary sequence I1i , . . . , I

M
i , where Iji ∈ {0,1}

is the label of the j-th stroke in the i-th interpretation.

Let y(t) be the vector of all image features detected at instant t and let
yi(t) be a vector with all valid features according in the i-th interpretation,
(yi(t) ⊂ y(t)). It will be assumed that the sensor model for the i-th interpretation
is given by

yi(t) = Cix(t) + η(t) (3)

where η(t) ∼ N (0,Ri) is a white Gaussian noise and Ci is the shape matrix
associated to the i-th interpretation.

Fig.2 shows an example in which there are 23 interpretations. A possible
interpretation is Ii = (110). In this case, matrix Ci includes the rows associated
with the indexes {b1, ..., e1, b2, ..., e2} of the image features considered as true.
The observation matrices Ci, Cj associated with two interpretations Ii,Ij are
different since the observation vectors yi, yj contain different data features and
they usually have different dimensions.

The state of a switched multiple model is characterized by the transition
density p(x(t), k(t) | x(t− 1), k(t− 1)), which can be split as follows
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F ig. 2. Initia l sha pe e stima te a nd ima g e stro k e s.

p(x(t), k(t) | x(t−1), k(t−1)) = p
(
x(t) | k(t), x(t−1), k(t−1)

)
p
(
k(t) | x(t−1), k(t−1)

)
(4)

The first factor depends on the dynamic equation (1) while the second is an
element of the transition matrix of the Markov chain Tk(t−1),k(t).

3 Density P r opagation

The problem to be solved can be formulated as follows: given a set of observations
Y t = {y(1), . . . y(t)} which may contain outliers, what is the best estimate of

the state and model label x̂(t), k̂(t).
This is a nonlinear filtering problem. If the joint probability density func-

tion, conditioned on the observations is evaluated p(x(t), k(t) | Y t), estimates of

the unknown parameters (x̂(t), k̂(t)) can be obtained by using the maximum a

posteriori (MAP) method

(x̂(t), k̂(t)) = arg max
x(t),k(t)

p(x(t), k(t) | Y t) (5)

Using the law of total probabilities, the a posteriori density becomes

p(x(t), k(t) | Y t) =
∑
Kt− 1

cKtp(x(t) | Kt, Y t) (6)

where cKt = p(Kt | Y t) and Kt = {k(1), . . . , k(t)} is the model label sequence
up to instant t. Since p(x(t) | Kt, Y t) is a Gaussian density, the joint density
p(x(t), k(t) | Y t) defined in (6) is a mixture of Gaussians, each of them being
associated to different label sequence Kt.

The computation of the mixture modes depends on the method being used. If
all the observations are valid, each p(x(t) | Kt, Y t) (Gaussian component) can be
updated by Kalman filtering and this is the optimal solution [6]. However, when
y(t) is contaminated with outliers, robust filtering methods must be adopted. In
fact, assuming that the model sequence Kt is known, the mean and covariance



matrix can be computed using the S-PDAF method, recently proposed in [8],
inspired in the work of Bar-Shalom and Fortmann [1] in the context of target
tracking. To update the coefficients cKt in the switched model case, a new update
law is required. After straightforward manipulation,

cKt = γ cKt− 1 Tk(t−1)k(t)

∑
i

kαi(t)
M∏
j = 1

e
j∏

n = bj

kE
j

i (sn, t) (7)

where γ is the normalization constant; ck(t−1) is the predicted mixture coefficient;
Tk(t−1)k(t) is an element of the transition matrix of the Markov chain; αi(t) =
P (Ii(t) | Y t) is the association probability assigned to the data interpretation
Ii(t); M is the number of strokes; bj , ej are the indexes of the j-th stroke; E is a
normal or uniform distribution, depending on the stroke j being considered as
valid/invalid in the interpretation Ii(t).

The Kalman filter is a particular case of S-PDAF since a single model is used
and all the data is considered as valid. Therefore, E becomes independent of j
and i. In this case, equation (7) can be written in this case as

cKt = γ cKt− 1 Tk(t−1)k(t)

L∏
n = 1

kE(sn, t) (8)

The mean and covariance of the state estimates are updated by the S-PDAF,
(see [8] for details)

x̂Kt = x̂(t | t− 1) +
mt∑
i= 1

αi(t)Ki(t)νi(t) (9)

PKt =

[
I −

mt∑
i = 1

αi(t)Ki(t)Ci

]
P (t | t − 1)

+
mt∑
i = 0

αi(t)xi(t)xi(t)
T − x̂(t | t)x̂(t | t)T (10)

where Ki(k), νi(k) are the Kalman gain and innovation associated to the in-
terpretation Ii(k). The filter defined in (6-10) will be denoted as RMM robust

multi-model tracker.
The computation of (7,9,10) is organized in a tree structure, each branch

being characterized by (see Fig. 3), xKt , PKt and cKt . The structure illustrated
in Fig. 3 suggests that the number of leaves (Gaussian mixtures) increases as
time goes by. Assuming that we have m label values, the mixture will have mt

modes at time t. It is crucial to limit the growth, in order to obtain a practical
solution. Several strategies can be applied to achieve this goal, e.g., by using
mode merging and elimination [6]. In this paper the second method is adopted
by discarding the mixture components with small enough coefficients.

Let us now consider the estimation of the unknown variables x(t), k(t). The
model label K(t) is estimated by the MAP method as follows
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F ig. 3. T re e struc ture o f RM M (m = 3 ).

k̂(t) = argmax
q

P{k(t) = q | Y t} (11)

= argmax
q

∑
Kt:k(t)= q

cKt

∫
p(x(t) | Kt, Y t)dx(t) (12)

To estimate the state vector, the mean square error method was used instead
for the sake of simplicity, leading to

qx̂Kt = γ
∑

Kt:k(t)= q

cKt

∑
i

kαi(t)
kxi(t | t) (13)

The state estimate is a weighted sum of the estimates associated to the tree
paths ending with the q label.

Shape representation and feature detection are performed as described in [8]
and will not be discussed here.

4 E xper imental Results

The RMM tracker was used in the estimation of the boundaries of objects with
significant shape changes. An example of lip tracking is presented. A compari-
son between the proposed method and the Kalman multi-model (KMM) filter
described in [7] is given.

Two dynamic models were used to describe lip motion. The first model
(model 1) performs a vertical contraction of the object boundary using the
boundary estimate computed at the previous frame. The second model (model
2) expands the object contour (see Fig. 4). The first model is tailored to describe
the evolution of the lip contour while the mouth is closing while the second model
is useful when the mouth is opening.

In Fig. 5, we can see the performance of the KMM, RMM trackers using the
same input data. It is clear that the outliers produced by the nose and teeth intro-
duce strong distortions in the shape estimates obtained with the KMM tracker,



F ig. 4. C o nto ur pre dic tio n using mo de ls 1 (do ts) a nd 2 (da she d line ).

leading to useless results after a few number of frames. The robust tracker de-
scribed in this paper overcomes this difficulties and exhibits good tracking per-
formance in this experiment.

F ig. 5. Lip tra c k ing w ith K M M tra c k e r (first ro w , a c tiv e mo de l: 2 1 1 ) a nd RM M
tra c k e r (se c o nd ro w , a c tiv e mo de l: 2 1 2 ), (fra me s 8 , 9 , 1 3 ).

A more difficult situation is presented in Fig. 6. In this case, the KMM
tracker loses the boundary of the lips and fails to estimate the correct dynamic
model. Fig. 6 shows the results given by RMM filter (second row) showing a
remarkable robustness with respect to outliers. We have even increased the search
area during the feature detection phase, therefore allowing more outliers. The
algorithm selects the expansion model in these frames since it is the one which



describes best the opening of the mouth. It is shown the robustness of the RMM
even in the presence of a large number of clutter features.

F ig. 6. Lip tra c k ing w ith K M M tra c k e r (first ro w , a c tiv e mo de l: 2 1 1 ) a nd RM M
tra c k e r (se c o nd ro w , a c tiv e mo de l: 2 2 2 ), (fra me s 1 6 , 2 7 , 4 6 ).

Figure 7 show the performance of the RMM algorithm in the presence of
sudden shape changes. Three consecutive frames are shown in this figure. The
use of multiple models allows to track sudden changes of motion or shape defor-
mation. The expansion model is selected in this example to track the opening of
the mouth. It is also displayed the predicted contours obtained by both models
showing that the expansion model performs better in these three frames.

5 Conclusions

A new algorithm has been described for object tracking in video sequences. This
algorithm allows the use of switched dynamic models, modeled by a bank of
stochastic difference equations. Furthermore, it is assumed that the visual fea-
tures detected in the image contain outliers, i.e., invalid features which do not
belong to the object boundary. A robust filtering algorithm is proposed which
is able to deal with multiple dynamics and invalid observations. This is accom-
plished by computing the propagation of the a posteriori density using Gaus-
sian mixtures. Experimental results presented in the paper show that significant
improvements are achieved, comparing to the results obtained by the Kalman
MM filter which was recently proposed in [6, 7]. The algorithm was tested in lip
tracking operations. It was experimentally observed that the proposed method



F ig. 7. Lip tra c k ing w ith RM M : pre dic te d c o nto urs (first ro w ) a nd e stima te d c o nto urs
(se c o nd ro w ), (fra me s 4 5 , 4 6 , 4 7 ), a c tiv e mo de l: 2 2 2 ).

efficiently copes with the presence of abrupt shape changes and noisy measure-
ments corrupted by outliers. This is clearly seen in some test sequences in which
the mouth suddenly opens or closes. The RMM tracker still manages to estimate
the lips contours well in these cases.
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