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ABSTRACT. Given a control system and a desired property, an abstracted system is a reduced system that
preserves the property of interest while ignoring modeling detail. In previous work, we considered abstractions
of linear and analytic control systems while preserving reachability properties. In this paper we consider the
abstraction problem for Hamiltonian control systems, and abstract systems while preserving their Hamilton-
ian structure. We show how the mechanical structure of Hamiltonian control systems can be exploited in the
abstraction process. We then focus on local accessibility preserving abstractions and provide conditions under
which local accessibility properties of the abstracted Hamiltonian system are equivalent to the accessibility
properties of the original Hamiltonian control system.
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1. INTRODUCTION

Abstractions of control systems are important for reducing the complexity of their analysis or design. From
an analysis perspective, given a large-scale control system and a property to be verified, one extracts a smaller
abstracted system with equivalent properties. Checking the property on the abstraction is then equivalent to
checking the property on the original system. From a design perspective, rather than designing a controller
for the original large scale system, one designs a controller for the smaller abstracted system, and then refines
the design to the original system while incorporating modeling detail.

A formal approach to a modeling framework of abstraction critically depends on whether we are able to con-
struct hierarchies of abstractions as well as characterize conditions under which various properties propagate
from the original to the abstracted system and vice versa. In [8], hierarchical abstractions of linear control sys-
tems were extracted using computationally efficient constructions, and conditions under which controllability
of the abstracted system implied controllability of the original system were obtained. This led to extremely

efficient hierarchical controllability algorithms.

In the same spirit, abstractions of analytic control systems were considered in [13]. The canonical construction
for linear systems was generalized to analytic systems, yielding a canonical construction for extracting abstrac-
tions of nonlinear control systems. The condition under which local accessibility of the abstracted system is
equivalent to the local accessibility of the original system captured the linear condition of [12].

In this paper, we proceed in the spirit of [13] and consider abstractions of Hamiltonian control systems. In
Hamiltonian control systems are completely specified by controlled Hamiltonians. This additional structure
allow a simplification of the abstraction process since the relevant information that must be captured by the
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abstracted system is simply the controlled Hamiltonian. On the other hand, to be able to relate the dynamics
induced by the controlled Hamiltonians we need to restrict the class of abstracting maps to those that preserve

the Hamiltonian structure.

Given a Hamiltonian control system on Poisson manifold M, and a (quotient) Poisson map ¢ : M — N,
we present a canonical construction that extracts an abstracted Hamiltonian system on N. This canonical
construction is dual to the construction of [13]. We then characterize abstracting maps for which the original

and abstracted system are equivalent from a local accessibility point of view.

Reduction of mechanical control systems is a very rich and mature area [5, 9, 7, 10]. The approach presented
in this paper is quite different from these established notions of reduction for mechanical systems. When
performing an abstraction one is interested in ignoring irrelevant modeling details. In this spirit one quotients
the original model by groups actions that do not necessarily represent symmetries. This extra freedom in
performing reduction is balanced by the fact that information about the system is lost when performing an
abstraction, whereas when reducing using symmetries no essential information is lost. However abstracting
a control system and in particular an Hamiltonian one is always possible therefore leading to a more general

notion of reduction.

The structure of this paper is as follows : In Section 2 we review Poisson geometry in order to establish
notation. In Section 3 we present a global definition of Hamiltonian control systems, and in Section 4 we
define abstractions of Hamiltonian control systems. In Section 5 we obtain a canonical construction for
abstracting Hamiltonian control systems, and characterize local accessibility equivalence between the original
and the abstracted system. Section 6 illustrated our results on a spherical pendulum example, and Section 7
points to interesting future research.

2. MATHEMATICAL PRELIMINARIES

In this section we review some basic facts from differential and Poisson geometry as well as control theory
and Hamiltonian control systems, in order to establish consistent notation. The reader may whish to consult

numerous books on these subjects such as [1, 2, 11, 6].

2.1. Differential Geometry. Let M be a differentiable manifold and T, M its tangent space at z € M. The
tangent bundle of M is denoted by TM = Uzen T, M and 7 is the canonical projection map « : TM — M
taking a tangent vector X (z) € T, M C T M to the base point € M. Dually we define the cotangent bundle
as T*M = UzemT; M, where T M is the cotangent space of M at z. Now let A/ and N be smooth manifolds
and ¢ : M — N a smooth map. Given a map ¢ : M — N, we denote by T, ¢ : T, M — Ty(,)N the induced

tangent which maps tangent vectors from T, M to tangent vectors at Ty(,)N.

A fiber bundle is a tuple (B, M,np,U,{O;}icr), where B, M and U are smooth manifolds called the total
space, the base space and standard fiber respectively. The map ng : B — M is a surjective submersion and
{O;}icr is an open cover of M such that for every i € I there exists a diffeomorphism ¥; : 71'];1(01») — 0; xU
satisfying 7, o ¥; = 7, where 7, is the projection from O; x U to O;. The submanifold 7=1(z) is called the
fiber at z € M.
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2.2. Poisson Geometry. For the purposes of this paper, it will be more natural to work with Poisson
manifolds, rather than symplectic manifolds '. A Poisson structure on manifold M is a bilinear map from
C®(M) x C®°(M) to C>®(M) called Poisson bracket, denoted by {f, g} or simply {f,g}, satisfying the

following identities

(2.1) {f,9}=-19, 1} skew-symmetry
(2.2) {f,{g. h}}+ {9, {h, f}}+{h,{f,9}} =0 Jacobi identity
(2.3) {fygh}t ={f,gth+ g{f, h} Leibnitz rule

A Poisson manifold (M, {,}rr) is a smooth manifold M equipped with a Poisson structure {, }a»s. Given a
smooth function h : M — R, the Poisson bracket allows us to obtain a Hamiltonian vector field X, with

Hamiltonian h using
(2.4) Lx,f=A{f;hy  VfeC®(M)

where Lx, f is the Lie derivative of f along X;. Note that the vector field X}, is well defined since the Poisson
bracket verifies the Leibnitz rule and therefore defines a derivation on C*°(M) ( [10]). Furthermore C*°(M)
equipped with {,} is a Lie algebra, also called a Poisson algebra. Associated with the Poisson bracket there

is a contravariant anti-symmetric two-tensor

(2.5) B:T"M xT*M — R
such that
(2.6) B(z)(df,dg) = {f,g}(z)

We say that the Poisson structure is non-degenerate if the map B# : T*M — T M defined by

dg(B*(df)) = B(df,dg)

is an isomorphism for every x € M. Given a map ¢ : (M, {, }mr) — (N, {, }n) between Poisson manifolds, we

say that ¢ preserves the Poisson structure or that ¢ is a Poisson map iff

(27) {fo(bago(b}M:{f,g}No(b

for every f,g € C°°(N). The classical Hamilton equations can be recovered using the Poisson bracket. Let
N be any manifold of dimension n, then M = T*N is a Poisson manifold of dimension 2n with natural
coordinates given by (g;, p;). The canonical Poisson bracket is

_ 0/ 99 9 99

Given a smooth map h: M — R the Hamiltonian vector field X}, is given in the natural coordinates by:

d ; i i _ Oh
d oh

which is just the usual form of Hamilton equations.

More detailed expositions on symplectic and Poisson geometry can be found in [10, 3]
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3. HAMILTONIAN CONTROL SYSTEMS

Before defining Hamiltonian control systems, we present a global definition of a control systems [11].

Definition 3.1 (Control System). A control system S = (U, F') consists of a fiber bundle 7 : U — M called
the control bundle and a smooth map F : U — TM which is fiber preserving, that is 7' o F = 7 where
7w’ : TM — M is the tangent bundle projection. Given a control system S = (U, F'), the control distribution
D of control system S, is naturally defined pointwise by D(z) = F(r~!(z)) for all z € M.

The control space U is modeled as a fiber bundle since in general the control inputs available may depend on
the current state of the system. In local coordinates, Definition 3.1 reduces to the familiar & = f(z,u) with
u € 7~ (z). Using this definition of control systems, the concept of trajectories of control systems becomes
as follows.

Definition 3.2 (Trajectories of Control Systems). A curve ¢ : [ — M, I C R} is called an trajectory of
control system S = (U, F), if there exists a curve ¢V : I — U satisfying:

7TOCU = C

d
ac(t) = F(Y)

Again in local coordinates, the above definition says that x(¢) is a trajectory of a control system if there exists
an input u(t) such that z(t) satisfies 2(t) = f(x(t),u(t)) and u(t) € U(x(t)) = 7 1(z(t)) for all t € I.

Hamiltonian control systems are control systems endowed with additional structure. The extra structure comes
from the fact that they model mechanical systems so they are essentially a collection of Hamiltonian vector
fields parameterized by the control input. The following global and coordinate free description of Hamiltonian

control systems is inspired from [14].

Definition 3.3 (Hamiltonian Control Systems). A Hamiltonian control system Sy = (U, H) consists of a
control bundle 7 : U — M over a Poisson manifold (M, {,}) with non-degenerate Poisson bracket, and a
smooth function H : U — R. With the Hamiltonian control system Sy = (U, H) we associate the collection
of Hamiltonian  as the collection of all smooth functions satisfying H(z) = H(x !(z)) for all x € M. This
family induces the control distribution Dy defined pointwise by Dy (z) = Xyy(,), where for all 2 € M, Xyy(,)
satisfies Lx,,,, f = {f,H}(z), that is Lx, ., f = {f h}(z) for all h € H(z), f € C>(M).

The map H should be thought of as a controlled Hamiltonian since it assigns a Hamiltonian function to
each control input. Note that the control bundle, and the controlled Hamiltonian completely specify the
Hamiltonian control system. In particular, by fixing the control input, one obtains a Hamiltonian vector field.

4. ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMS

Given a Hamiltonian control system? Sg,, defined on a Poisson manifold (M, {, }ar) our goal is to construct a

map ¢ : M — N, the abstraction map or aggregation map that will induce a new Hamiltonian control system

M

Sp, on the lower dimensional Poisson manifold (N, {, } ) having as trajectories ¢(c™), where ¢cM are Sy,

2From now on, Sty = (Un, Hyp) or simply Sgr,, denotes a Hamiltonian control system on Poisson manifold (M, {, }ar).
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trajectories. The concept of abstraction map for continuous, not necessarily Hamiltonian, control systems is
defined in [8].

Definition 4.1 (Abstracting Maps). Let Sy; and Sy be two control systems on manifolds M and N, respec-
tively. A smooth surjective submersion ¢ : M — N is called an abstraction or aggregation map iff for every
trajectory ¢M of Sy, ¢(cM) is a trajectory of Sy. Control system Sy is called a ¢-abstraction of Sys.

From the above definition it is clear that an abstraction captures all the trajectories of the original system, but
may also contain redundant trajectories. These redundant trajectories are not feasible by the original system
and are therefore undesired. Clearly, it is difficult to determine whether a control system is an abstraction
of another at the level of trajectories. One is then interested in a characterization of abstractions which is

equivalent to Definition 4.1 but checkable. To leads to the notion of ¢-related control systems.

Definition 4.2 (¢-related control systems [8]). Let Sy and Sy be two control systems defined on manifolds
M and N, respectively. Let ¢ : M — N be a surjective submersion. Then control systems Sy, and Sy are
¢-related iff for every x € M:

(41) T, (Dy(x)) € D ((x))

The notion of ¢-related control system is a generalization of the notion of ¢-related vector fields commonly
found in differential geometry. It is also evident that given a control system Sy, there is a minimal ¢-related
control system Sy, up to control parameterization. The relationship between ¢-abstractions and ¢-related
control systems is now given.

Theorem 4.3 ([12]). Let Sy and Sy be control systems on manifolds M and N, respectively, and ¢ : M — N

a smooth map. Then Sp; and Sy are ¢-related control systems if and only if Sy is a ¢-abstraction of Syy.

We now consider these notions for Hamiltonian control systems. Since Hamiltonian control systems are
uniquely determined by their controlled Hamiltonian, the notion of ¢-related control systems specializes to
Hamiltonian control systems as follows:

Definition 4.4 (¢-related Hamiltonian control systems). Let Sp,, and S, be two Hamiltonian control sys-
tems defined on Poisson manifolds (M, {, }s) and (N, {, }~), respectively. Let ¢ : M — N be a surjective
Poisson submersion, and let ¢ be defined by ¢p = (Bj‘;’é,)_1 oT¢o Bﬁ. Then Hamiltonian control systems
Sw,, and Sg, are ¢-related iff for all z € M,

(4.2) ¢p(dHu(z)) C dHN(¢())

Although the above definition is stated in terms of the exterior derivative of the family of Hamiltonian defining
the control systems, a canonical construction to be presented at section 4.8 will allows us to compute Hy
directly from from Hp;. The relation between ¢-related Hamiltonian control systems and ¢-abstractions

parallels the general case.

Proposition 4.5. Let Sg,, and S, be Hamiltonian control systems on Poisson manifolds (M, {, }m) and
(N,{,}n), respectively, and ¢ : M — N a smooth Poisson map. Then Sg,, and Sy, are ¢-related if and
only if Suy is a ¢-abstraction of Sg,, .
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Proof. 1t is enough to show that if ¢ is a Poisson map then Definitions 4.2 and 4.4 are equivalent for Hamiltonian
control systems. The result then follows from Theorem 4.3.

Definition 4.4 is equivalent to:

¢op(dHm(z)) C dHn(4(2) &
T.¢(Bj(dHum(z))) € BR(dHn(4(x)) &
T2 ¢(Duy (7)) € Duy(¢(2))
which is just Definition 4.2. O

Proposition 4.5 tell us that the abstracting process can be characterized at the level of the controlled Hamil-
tonians. This result should be expected since the controlled Hamiltonians completely specify the dynamics of

Hamiltonian control systems given a Poisson structure.

4.1. Constructing Poisson maps. In order to extract a Hamiltonian abstraction from an Hamiltonian
control system Sg,, on a Poisson manifold (M, {, } ), one needs a Poisson map ¢ : M — N that will induce
the abstraction on N. In many cases, however, one only knows which variables are unimportant and which
should be ignored. How should this information should be assembled to define an abstracting Poisson map?
We must ensure that (1) ¢ is a Poisson map, and (2) the Poisson bracket {, } 5 is non-degenerate. Even if ¢ is
Poisson and dim(N) is even it is not true, in general, that the bracket in N is non-degenerate as the following

example shows.

Let M = T*R® with the canonical bracket, that is {f, g}y = gqf,- gzi - gzi_ g;’i. Denote a point in M by
T = (q1:q27 QS:p1:p2:p3) and let ¢(q1aq27 QS:p1:p2:p3) = (q17q27 q37p1)' The map QS is Poisson as can eaSily be
verified but the bracket induced on N and given by

(43) oy =it - 2L

is degenerate since its rank is only 2. This example also shows that to avoid these problems one must make
sure that the directions collapsed by ¢ are conjugate. More precisely we have the following well known result,

Proposition 4.6. Let (M, {,} ) be a Poisson manifold with non-degenerate Poisson bracket and ¢ : M — N
an abstracting map. If for every X € Ker(T¢), X is Hamiltonian with Hamiltonian function h € C*(M)
and there exists a g € C™(M) such that {h,g}m # 0 and X, € Ker(T'¢) then ¢ is Poisson and induces a
non-degenerate Poisson bracket on N by:

(4-4) {fl:f2}N°¢:{f1°¢af2°¢}M

Proof. Since the map ¢ is a surjective submersion it defines a regular equivalence relation =4 by declaring two
points x and ' to be on the same equivalence class iff ¢(z) = ¢(z'). The equivalence classes of this relation are
described by the orbits of Ker(T'¢). Since every element of Ker(T¢) is Hamiltonian the orbit of Ker(T¢) is
an Hamiltonian action of R¥ with k = dim(Ker(T'¢)). The quotient manifold M/ =, which is diffeomorphic
to N inherits a Poisson structure defined by (4.4), see for example [9, 10].

We will only show that {, } 5 is non-degenerate. By Lie-Weinstein theorem [15] there is a local coordinate trans-

formation ¢ps : M — M such that in the new canonical coordinates (q1,q2, - - -, GmsP1, P2y« - - PmsCl,C2 - - -5 Cy)
the following holds {¢;,q;}m = {pi,pi}m = {qi,¢;}m = {pi,cj}m = {ci,c;}mr = 0 and {¢;, pj }mr = ;5. Since
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{, }a is non degenerate the coordinates reduce to (q1,¢2,...,qm,P1,P2,---,Pm). By assumption for every h
such that X, € Ker(T@) there is an g such that {h,g}n # 0, and we can write {ho ¢, g0 ¢y tm =
{h,g}ar oy Since {h,g}a # 0 it follows that {ho ¢y, g0 ¢y} # 0 meaning that h = ¢; and g = p;
for some i. We can assume without loss of generality, that the new canonical coordinates ¢y, go, ..., ¢, and
D1,D2,...,pn are such that X, and X, belong to Ker(T¢) for i = 1...n. Consider then the map ¢ =
<pX/‘,1 opopn : M — N defined on a open set around the point z € M. This map sends (g1, ..., qm,P1;- -+, Pm)
t0 (Gn+1s Gnt2s -« - s @my Pnt1, Pnt2s - - - » Dm) and therefore {, } x is nondegenerate at . Since this holds for any

x € M N is non degenerate Poisson manifold. O

To use Theorem 4.3 the Hamiltonian maps for Ker(T¢) need to belong to P(Has) so we have the following
construction to build an abstracting map ¢. Pick a collection of maps hi, hs, ..., hy, € C®(M) such that
h; € P(Hu) and determine the conjugate to h;, that is a map h{ such that {h;,h{}ar # 0. If hS also
belongs to P(Hasr) then any map ¢ such that Ker(T¢) = Span{Xn,, Xne, Xp,, Xng, ..., Xp,, Xpe } verifies
the conditions of Proposition 4.6. A illustration of this construction can be found in Section 6.

4.2. Canonical Construction. Given a Poisson map, Definition 4.4 provides us with a geometric definition
for Hamiltonian abstractions which is useful conceptually but not computationally. We now present a canonical
construction that will allow us to obtain an abstraction Sg, from an Hamiltonian control system Sg,, and a
Poisson map ¢ : M — N. Our construction is inspired from the canonical construction of [13], even though the
construction presented here uses codistributions as opposed to distributions. This is natural for Hamiltonian
systems since the differentials of the Hamiltonians capture all system information.

Definition 4.4 and, in particular, condition (4.2) require the union of all the values of dH s evaluated at
any z € ¢~'(y). A way of constructing this union is to define another family of maps F such that dF is
constant along ¢ *(y) and furthermore satisfies d#y; C dF. From this new family it suffices to compute
dHn(y) = dF(z) for some z € ¢~ (y) since dF is the same for any z € ¢~ *(y). In other words, we would like
to construct a family of maps F such that

1. dHpm CdF
2. For all z,2' € M such that ¢(z) = ¢(2'), dF(z) = dF(z').

Let K be the integrable distribution Ker(T'¢). Then the leaves of the foliation K correspond to points on M
that have the same image under ¢. In this setting, we would like to design the family F so that the resulting
codistribution dF is invariant with respect to the vector fields in K. This idea is captured in the following

proposition.

Proposition 4.7 (Invariant Codistributions). A collection F of smooth functions satisfies dF(z) = dF(x")
for all z,x' € M such that ¢(x) = ¢(z') if and only if Lkdf € dF for all K € K and all maps f € F.

Proof. Instead of working with the one-forms dfy, dfs, ..., dfy, spanning dF we can associate the v-form
a =dfi Adfs A ... Adf, with the vector space spanned by these forms since any other set of one-forms

{B1,B2,...,B,} spanning the same vector space verify 51 A B2 A ... A B, = Aa for some smooth function A.

We first show that if dF(z) = dF(z') for ¢(x) = ¢(z') then Lxdf € dF. Let ®;(x) be the integral curve of
some vector field K belonging to K satisfying ®q(z) = . The equality dF(z) = dF(z') can be replaced by
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dF(z) = dF(®4(x)) for all t € R. Differentiating with respect to time we get Lxa = 0 which is equal to
Lra = diga)+ix(dda)
= da(K)
Computing da(K) in coordinates and equating to zero we get that
(45) A(df,(K) =0 or d(dfi(K)) = azdf;

which simply means that dCk f; = Lxdf; = a;df; from which we conclude that Lxdf € dF for every f € F.
For the converse assume that Lxdf € dF. We want to show that

(4.6) alz) =a(®;) forallteR

But the derivative of (4.6) is true by assumption and (4.6) holds for ¢ = 0. O

Proposition 4.7 motivates a canonical constructive procedure to obtain the abstracted hamiltonian control
system Spg, given an hamiltonian control system Sg,, and an abstracting Poisson map ¢ : M — N. If we
denote the anihilating codistribution of K by K°, that is K° = {f € T*M | B(K)=0 VK € K} we can
construct a collection of Hamiltonians Hx based on Hjs as follows:

Definition 4.8 (Canonical construction). Let ¢ : (M, {,}»r) — (N, {, }~) be a Poisson map between man-
ifolds with non-degenerate Poisson brackets, and let Has be a collection of Hamiltonians on M. Denote by
Has the following family of smooth maps:

(4.7) ﬁM:HMUﬁKHMLJﬁKﬁKHMU...
for all K € K. The collection of Hamiltonians H defined by
(4.8) Hy =Hupoi

for any embedding i : N < M such that BE(ICO) C Ti(TN) is called canonically ¢-related to Hyy.

The collection of Hamiltonians obtained by construction of Definition 4.8 is canonical in the following sense.
Proposition 4.9 (Minimal Abstraction). The codistribution dH s is the smallest codistribution satisfying

1. dHp C dH s
2. For all 1,25 € M such that ¢(z1) = ¢(x2), dHar(z1) = dHar(z2).

and the Hamiltonian control system defined by Hn is the smallest Hamiltonian control system ¢-related to

Har

Proof. The collection of Hamiltonians #,; contains #,; by construction so that is follows trivially that it
satisfies property 1. It also verifies property 2 since by construction it satisfies the conditions of Proposition 4.7.
To show that this codistribution is the smallest one verifying these properties consider any other collection of
Hamiltonians Gys also verifying properties 1 and 2. Let h be any map such that h € Hyy, if dh € dH s then
dh € dGjs because Gy verifies property 1. Otherwise dh is obtained from a finite number of Lie derivatives
along K of some one-form in dH ;. Since Lxdf = dLk f, property 2 and Proposition 4.7 imply that dh € dGj,.
The above discussion shows that for all dh € dH s we have that dh € dGas, therefore d7 s is contained in
any other codistribution verifying properties 1 and 2.
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To prove the second assertion we need to show first that the Hamiltonian control system defined by Hy is
¢-related to Sm,,. To see that this is the case consider any hys € Has and any point x € M. By definition
of H there is a map hy satisfying hy = hjs o 4, for some ¢ embedding N into M through the point z. The
Hamiltonian Ay defines a Hamiltonian in M by hyo¢ and since ¢ is Poisson we have that T¢-Xp v 06 = Xny 0.

This means that if we can prove that:
(4.9) To Xnyos(7) = T - Xny, (2)

then ¢-relatedness of the control systems follows. Rewriting (4.9) as:

(LTo-x0ye09) (@) = (Lro.x,,9)(z) Vg€ CT(N)
& (d(f o) Xnyop)(@) = (d(f o) Xny)(2)
S {hnod, fodtu(z) = {hm,fodtu(x)
S {fodhnodtu(z) = {fod hultu(z)
& (d(hn o ¢ — hu) Xpog)(z) = 0

Since f o ¢ is constant on the leaves of K it follows that X .4 € B#,,(ICO) C Ti(TN). Therefore (d(hny o ¢ —
har) - Xgog)(x) = 0 since hy equals hys on the integral manifold (which is just N) of Ti(T'N) passing through

the point z. Since the argument does not depend on the point = the conclusion holds for all z € M.

To show that the Hamiltonian control system induced by Hn is the smallest one ¢-related to Sg,, we will
consider any other family of Hamiltonians Gy inducing a control system ¢-related to Sgr,,. This family defines
a codistribution on M verifying properties 1 and 2 by d(Gy o ¢). However since dHjs is contained in any
other such codistribution it follows that dH s C d(Gx o ¢) which is equivalent to ¢ (dHar) C ¢r(dGn o @)
and lead to the desired inclusion dHy C dGn. O

As asserted by Proposition 4.9 the abstraction obtained by the canonical construction is the smallest Hamil-
tonian control system ¢-related to Sg,,, therefore we are always able to compute the minimal ¢-abstraction
of any Hamiltonian control system given an abstracting Poisson map ¢.

5. LoCcAL ACCESSIBILITY EQUIVALENCE

In addition to propagating trajectories and Hamiltonians from the original Hamiltonian control system to
the abstracted Hamiltonian system, we will investigate how accessibility properties can be preserved in the

abstraction process. We first review several (local) accessibility properties for control systems [4, 6, 11].

Definition 5.1 (Reachable sets [6]). Let Sy be a control system on a smooth manifold M. For each T > 0
and each z € M, the set of points reachable from z at time T', denoted by Reach(z,T), is equal to the set
of terminal points ¢ (T) of Sys trajectories that originate at . The set of points reachable from z in T' or
fewer units of time, denoted by Reach(z, < T) is given by Reach(z, < T) = U;<rReach(z,T).

Definition 5.2. A control system Sy, is said to be

e Locally accessible from z there is a neighborhood V of z such that Reach(z,T) contains a non-empty
open set of M for all T > 0 and Reach(z,T) C V.

e Locally accessible if it is locally accessible from all x € M.

e Controllable if for all z € M, Reach(z,T) = M for some T
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Recall first that local accessibility properties of Hamiltonian control systems can be characterized by simple
rank conditions of the Poisson algebra generated by the controlled Hamiltonian.

Proposition 5.3 (Accessibility Rank Conditions [11]). Let Sgr,, be a Hamiltonian control system on a Pois-
son manifold (M,{,}n) of dimension m and denote by P(Hys) the Poisson algebra freely generated by the

collection of Hamiltonians Hpyy. Then:

o If dim(d(P(Ha(x)))) = m, then the control system S, is locally accessible at x € M.

o If dim(d(P(Hum(z)))) = m for all x € M, then control system Sg,, is locally accessible.

o If dim(d(P(Hn(2)))) = m for all x € M, Hpr is symmetric, that is h € Hyr = —h € Hyr, and M s
connected, then control system Sg,, is controllable.

Theorem 4.3 immediately propagates local accessibility from the original Hamiltonian system to its abstraction.

Proposition 5.4 (Local Accessibility Propagation). Let Hamiltonian control systems Sg,, and S, be ¢-
related with respect to a Poisson map ¢ : M — N. Then, if Su,, is (symmetrically) locally accessible (at
x € M) then Suy is also (symmetrically) locally accessible (at ¢(x) € N ). Also, if Sw,, is controllable then

Sty is controllable.

We now determine under what conditions on the abstracting maps, local accessibility of the original system
Sw,, is equivalent to local accessibility of its canonical abstraction Sgr, . In particular, we need to address the
problem of propagating accessibility from the abstracted system Sy, to the original system Sp,,. We start
by exploring the relationship between the Poisson algebras of canonically ¢-related Hamiltonian systems.

Lemma 5.5. Let Sg, be canonically ¢-related to Sg,,, then for all x € M we have

¢p (AP (Hum(z))) = dP(Hn)(4(x))

Proof. We start by showing that for any two functions hys, by, € C°(M) and any point x € M we have:

(5.1) Totd Xinne 3 (7) = Xiny nyyn (6(2))

with hx = ha o, hly = by, o i and any i embedding N into M through the point z. Since ¢ is Poisson we
have that:

(5.2) To¢ Xihn iy ywos (T) = Xiny nyn (0(7))
so that we only have to show that:
(5.3) Tt Xinpg iy 1ar () = Ta @ - Xiny nr 1 yos ()

This argument parallels the one in the proof of Proposition 4.9. The previous expression is equivalent to:

) = (LT6Xppm e, D@ Y ECTWN)
) = {foo.{hnod,hiyrod}m}m(z)

) = 0
)

)

(LT6:X 0,00 30, D)@

& {foo {hm, Wytnmtm(z

& {fod,{hm —hnod hiy —hiyodhutuml
(
(

5

& —{hy —hnod, {h\y, hiyod, fodtu}m(x
(54)  —{hy —hyod,{fod,hu —hnodtmim(z
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But since {h)y; — hiy 0 ¢, fo d}u(x) = (Lx,.,hhy — Dy o @) (2), Xjop € Bi,(lC") CTi(TN) and hh; = hly on
Ti(TN) we conclude that {h%, — hly o ¢, f o ¢}am(x) = 0 and similarly for {har — hn o ¢, f o ¢}ar(x). This
shows that equality (5.4) holds, and a induction argument extends (5.1) to:

(5.5) Tot - Xpaun) (@) = Xpaun) (6(2))
By making use of Proposition 4.4 the above expression is equivalent to:
(5.6) ¢B (AP(Hum(2))) = dP(Hn)(o(z))

Using the above lemma, accessibility equivalence between the two control systems can be now asserted.

Theorem 5.6 (Local Accessibility Equivalence). Let S, be canonically ¢-related to Sp,,. If every vector
field K; € Ker(T¢) is Hamiltonian with Hamiltonian function h; € C*°(M) and h; € P(Hn), then Su,, is

locally accessible if and only if Sk, is locally accessible.

Proof. We begin by showing how accessibility properties of Sy,, are propagated to Sg, . Suppose that Sg,, is
locally accessible, that is dP(Hr)(z) = Ty M for all z € M, then by Lemma 5.5 dP(Hn)(¢(z)) = ¢p(x)Ta M.
Since ¢p = (Bjt{t,)’1 oT¢po Bf,[ and both Bﬁ and Bf/[ are isomorphisms, and T'¢ is surjective, ¢p is also
surjective. We conclude therefore that dP(Hn)(y) = TN, for all y = ¢(x). But ¢ is surjective so Sp is
locally accessible.

Let us now show how accessibility properties of Sg, can be pulled back to Sg,,. We proceed by contradiction.
Assume that every K; € Ker(T'¢) is Hamiltonian with Hamiltonian function h; € P(Has) and that Sg, is
locally accessible while Sg,, is not. Then dP(Hn)(y) = T, N and by Lemma 5.5 ¢pdP(Hu)(z) = T; N
for all = such that ¢(z) = y. Since Sp,, is not locally accessible there exists some g € C*°(M) such that
dg(z) ¢ dP(H)(z), but ¢p is surjective so dg(z) must belong to Ker(¢p(z)). Taking into consideration
that dg(z) € Ker(¢p(x)) & X,(x) € Ker(T,¢) we have a contradiction since we were assuming that all
Hamiltonian functions of the vectors belonging to Ker(T,¢$) were also in P(Ha)(z) and g(z) ¢ P(Hu)(z).
This shows that Sg,, is in fact locally accessible from z. Since the argument does not depend on the particular

point z, Sgr,, is locally accessible. O

Corollary 5.7. Let Sy, be canonically ¢-related to Sy,,. If every K; € Ker(T¢) is Hamiltonian with
Hamiltonian function h; € C*(M), h; € P(Hn) and both Hyr and Hy are symmetric and furthermore both

M and N are connected then Sm,, is controllable iff Su, is controllable.

Theorem 5.6 provides moderate conditions to propagate accessibility properties in a hierarchy of abstractions.
In fact when dealing with systems affine in controls, that is, of the form H = Hy + ), Hyu; we can always
build a map ¢ satisfying the conditions of Theorem 5.6 by defining its kernel to be Xy, for some i provided
that the conjugate of H; belongs to the Poisson algebra generated by the control system. A example of this

construction is presented in the next section.

6. A SPHERICAL PENDULUM EXAMPLE

As an illustrative example, consider the spherical pendulum as a fully actuated mechanical control system.
This system can be used to model, for example, the stabilization of the spinning axis of a satellite or a pan
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and tilt camera. Consider a massless rigid rod of length [ fixed in one end by a spherical joint and having
a bulb of mass m on the other end. The configuration space for this control system is S? parameterized by
6 € [0,7] and ¢ € [0, 27[. The kinetic energy of the system is given by

(6.1) T = %ml2(92 +sin? 6 ¢?)

and the potential energy of the system is
(6.2) V = —mglcosf

Trough the Legendre transform of the Lagrangian L = T — V one arrives at the Hamiltonian

1
. Hy = 2
(6.3) 0= 513 P +

2
2mi? sin® @ Py — mgl cost

where py is given by py = mi*6 and ps = mi®sin®@ ¢. Since the system is fully actuated the Hamiltonian

control system Sy,, defined over M = T*S? with the canonical Poisson bracket is given by:
(64) HM = HO + H1u1 + H2U2

with H; = 6 and Hy = ¢ and where u; and uy are the control inputs.

The drift vector field associated with Hj is invariant under rotations around the vertical axis and could be
reduced using this symmetry. However to emphasize the advantages to the abstraction method we will abstract
away precisely the directions were there are no symmetries. Consider the abstracting map:

(6.5) ¢:T*S*> — T*S!
(6.6) (0, 0,p6,p8) = (b,p4)

It is clear that 6 € P(Hs) and the conjugate variable to 6, pg, also belongs to P(Has) since {Ho, 0}y =
—#pg, so the conditions of Proposition 4.6 are fulfilled meaning that ¢ is a Poisson map inducing a non-

degenerate bracket in T*S'.
Following the steps of the canonical construction one computes the family of maps:
(6.7) ﬁM:HMU{G,HM}MU{I)Q,HM}MU...

However it is enough to compute {6, Ho}n = 1z pg since dim(d(P(Hay U {1z ps}))) = 4 and all remaining
brackets can be generated by Has U {6, Hy}as. The collection of Hamiltonians canonically ¢-related to H s is
given by

(6.8) Hn = Span{

1, ) 1
o Pit 5P mgl cosb,0, ¢, WPG}

but where § and py are now regarded as control in puts since they are ranging in K. Introducing the new

control inputs v; = 0 and v = us the abstracting controlled Hamiltonian can be written as:

1
6.9 Hy = ——————p3 + ¢v
(6.9) N 2mi2 sin® v; Pot+ovs

Note that the terms depending only on 6 or pg have disappeared since regarding 6 and py as control inputs
reduced those terms as constants multiplying the control inputs and constants are associated with the null
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vector field. The equations of the new control system on N = T*S" are obtained through the induced Poisson
bracket (which is just the canonical one on N) and are given by:

; 1
6.10 =
(6.10) ¢ ml? sin® v, Py

(6.11) Py = V2

which define a controllable Hamiltonian control system on N.

7. CONCLUSIONS

In this paper, we have presented a hierarchical abstraction methodology for Hamiltonian nonlinear control
systems. The extra structure of mechanical systems was utilized in to provide constructive methods for
generating abstractions while maintaining the Hamiltonian structure. Furthermore we have characterized

accessibility equivalence through easily checkable conditions.

These results are very encouraging for hierarchical controlling mechanical systems. Refining controller design
from the abstracted to the original system is clearly important. Other research topics under current research
include the propagations of nonholonomic constraints among the different levels of the hierarchy, and better
understanding the relationship between Hamiltonian abstractions and more established notions of reduction
based on symmetries.
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