
ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMSPAULO TABUADA AND GEORGE J. PAPPASAbstra
t. Given a 
ontrol system and a desired property, an abstra
ted system is a redu
ed system thatpreserves the property of interest while ignoring modeling detail. In previous work, we 
onsidered abstra
tionsof linear and analyti
 
ontrol systems while preserving rea
hability properties. In this paper we 
onsider theabstra
tion problem for Hamiltonian 
ontrol systems, and abstra
t systems while preserving their Hamilton-ian stru
ture. We show how the me
hani
al stru
ture of Hamiltonian 
ontrol systems 
an be exploited in theabstra
tion pro
ess. We then fo
us on lo
al a

essibility preserving abstra
tions and provide 
onditions underwhi
h lo
al a

essibility properties of the abstra
ted Hamiltonian system are equivalent to the a

essibilityproperties of the original Hamiltonian 
ontrol system.CDC PAPER ID : CDC01-REG16201. Introdu
tionAbstra
tions of 
ontrol systems are important for redu
ing the 
omplexity of their analysis or design. Froman analysis perspe
tive, given a large-s
ale 
ontrol system and a property to be veri�ed, one extra
ts a smallerabstra
ted system with equivalent properties. Che
king the property on the abstra
tion is then equivalent to
he
king the property on the original system. From a design perspe
tive, rather than designing a 
ontrollerfor the original large s
ale system, one designs a 
ontroller for the smaller abstra
ted system, and then re�nesthe design to the original system while in
orporating modeling detail.A formal approa
h to a modeling framework of abstra
tion 
riti
ally depends on whether we are able to 
on-stru
t hierar
hies of abstra
tions as well as 
hara
terize 
onditions under whi
h various properties propagatefrom the original to the abstra
ted system and vi
e versa. In [8℄, hierar
hi
al abstra
tions of linear 
ontrol sys-tems were extra
ted using 
omputationally eÆ
ient 
onstru
tions, and 
onditions under whi
h 
ontrollabilityof the abstra
ted system implied 
ontrollability of the original system were obtained. This led to extremelyeÆ
ient hierar
hi
al 
ontrollability algorithms.In the same spirit, abstra
tions of analyti
 
ontrol systems were 
onsidered in [13℄. The 
anoni
al 
onstru
tionfor linear systems was generalized to analyti
 systems, yielding a 
anoni
al 
onstru
tion for extra
ting abstra
-tions of nonlinear 
ontrol systems. The 
ondition under whi
h lo
al a

essibility of the abstra
ted system isequivalent to the lo
al a

essibility of the original system 
aptured the linear 
ondition of [12℄.In this paper, we pro
eed in the spirit of [13℄ and 
onsider abstra
tions of Hamiltonian 
ontrol systems. InHamiltonian 
ontrol systems are 
ompletely spe
i�ed by 
ontrolled Hamiltonians. This additional stru
tureallow a simpli�
ation of the abstra
tion pro
ess sin
e the relevant information that must be 
aptured by theThis work was performed while the �rst author was visiting the University of Pennsylvania. This resear
h is partially sup-ported by DARPA under grant F33615-00-C-1707, DARPA Grant N66001-99-C-8510, the University of Pennsylvania Resear
hFoundation, and by Funda�
~ao para a Ciên
ia e Te
nologia under grant PRAXIS XXI/BD/18149/98.1



2 PAULO TABUADA AND GEORGE J. PAPPASabstra
ted system is simply the 
ontrolled Hamiltonian. On the other hand, to be able to relate the dynami
sindu
ed by the 
ontrolled Hamiltonians we need to restri
t the 
lass of abstra
ting maps to those that preservethe Hamiltonian stru
ture.Given a Hamiltonian 
ontrol system on Poisson manifold M , and a (quotient) Poisson map � : M �! N ,we present a 
anoni
al 
onstru
tion that extra
ts an abstra
ted Hamiltonian system on N . This 
anoni
al
onstru
tion is dual to the 
onstru
tion of [13℄. We then 
hara
terize abstra
ting maps for whi
h the originaland abstra
ted system are equivalent from a lo
al a

essibility point of view.Redu
tion of me
hani
al 
ontrol systems is a very ri
h and mature area [5, 9, 7, 10℄. The approa
h presentedin this paper is quite di�erent from these established notions of redu
tion for me
hani
al systems. Whenperforming an abstra
tion one is interested in ignoring irrelevant modeling details. In this spirit one quotientsthe original model by groups a
tions that do not ne
essarily represent symmetries. This extra freedom inperforming redu
tion is balan
ed by the fa
t that information about the system is lost when performing anabstra
tion, whereas when redu
ing using symmetries no essential information is lost. However abstra
tinga 
ontrol system and in parti
ular an Hamiltonian one is always possible therefore leading to a more generalnotion of redu
tion.The stru
ture of this paper is as follows : In Se
tion 2 we review Poisson geometry in order to establishnotation. In Se
tion 3 we present a global de�nition of Hamiltonian 
ontrol systems, and in Se
tion 4 wede�ne abstra
tions of Hamiltonian 
ontrol systems. In Se
tion 5 we obtain a 
anoni
al 
onstru
tion forabstra
ting Hamiltonian 
ontrol systems, and 
hara
terize lo
al a

essibility equivalen
e between the originaland the abstra
ted system. Se
tion 6 illustrated our results on a spheri
al pendulum example, and Se
tion 7points to interesting future resear
h.2. Mathemati
al PreliminariesIn this se
tion we review some basi
 fa
ts from di�erential and Poisson geometry as well as 
ontrol theoryand Hamiltonian 
ontrol systems, in order to establish 
onsistent notation. The reader may whish to 
onsultnumerous books on these subje
ts su
h as [1, 2, 11, 6℄.2.1. Di�erential Geometry. Let M be a di�erentiable manifold and TxM its tangent spa
e at x 2M . Thetangent bundle of M is denoted by TM = [x2MTxM and � is the 
anoni
al proje
tion map � : TM �! Mtaking a tangent ve
tor X(x) 2 TxM � TM to the base point x 2M . Dually we de�ne the 
otangent bundleas T �M = [x2MT �xM , where T �xM is the 
otangent spa
e of M at x. Now let M and N be smooth manifoldsand � : M �! N a smooth map. Given a map � : M �! N , we denote by Tx� : TxM �! T�(x)N the indu
edtangent whi
h maps tangent ve
tors from TxM to tangent ve
tors at T�(x)N .A �ber bundle is a tuple (B;M; �B ; U; fOigi2I), where B, M and U are smooth manifolds 
alled the totalspa
e, the base spa
e and standard �ber respe
tively. The map �B : B �! M is a surje
tive submersion andfOigi2I is an open 
over of M su
h that for every i 2 I there exists a di�eomorphism 	i : ��1B (Oi) �! Oi�Usatisfying �o Æ	i = �B , where �o is the proje
tion from Oi � U to Oi. The submanifold ��1(x) is 
alled the�ber at x 2M .



ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMS 32.2. Poisson Geometry. For the purposes of this paper, it will be more natural to work with Poissonmanifolds, rather than symple
ti
 manifolds 1. A Poisson stru
ture on manifold M is a bilinear map fromC1(M) � C1(M) to C1(M) 
alled Poisson bra
ket, denoted by ff; ggM or simply ff; gg, satisfying thefollowing identities ff; gg = �fg; fg skew-symmetry(2.1) ff; fg; hgg+ fg; fh; fgg+ fh; ff; ggg = 0 Ja
obi identity(2.2) ff; ghg = ff; ggh+ gff; hg Leibnitz rule(2.3)A Poisson manifold (M; f; gM ) is a smooth manifold M equipped with a Poisson stru
ture f; gM . Given asmooth fun
tion h : M �! R, the Poisson bra
ket allows us to obtain a Hamiltonian ve
tor �eld Xh withHamiltonian h using LXhf = ff; hg 8f 2 C1(M)(2.4)where LXhf is the Lie derivative of f along Xh. Note that the ve
tor �eld Xh is well de�ned sin
e the Poissonbra
ket veri�es the Leibnitz rule and therefore de�nes a derivation on C1(M) ( [10℄). Furthermore C1(M)equipped with f; g is a Lie algebra, also 
alled a Poisson algebra. Asso
iated with the Poisson bra
ket thereis a 
ontravariant anti-symmetri
 two-tensorB : T �M � T �M �! R(2.5)su
h that B(x)(df; dg) = ff; gg(x)(2.6)We say that the Poisson stru
ture is non-degenerate if the map B# : T �M �! TM de�ned bydg(B#(df)) = B(df; dg)is an isomorphism for every x 2M . Given a map � : (M; f; gM ) �! (N; f; gN) between Poisson manifolds, wesay that � preserves the Poisson stru
ture or that � is a Poisson map i�ff Æ �; g Æ �gM = ff; ggN Æ �(2.7)for every f; g 2 C1(N). The 
lassi
al Hamilton equations 
an be re
overed using the Poisson bra
ket. LetN be any manifold of dimension n, then M = T �N is a Poisson manifold of dimension 2n with natural
oordinates given by (qi; pi). The 
anoni
al Poisson bra
ket isff; gg = �f�qi �g�pi � �f�pi �g�qi(2.8)Given a smooth map h :M �! R the Hamiltonian ve
tor �eld Xh is given in the natural 
oordinates by:ddtqi = LXhqi = fqi; hg = �h�pi(2.9) ddtpi = LXhpi = fpi; hg = � �h�qi(2.10)whi
h is just the usual form of Hamilton equations.1More detailed expositions on symple
ti
 and Poisson geometry 
an be found in [10, 3℄



4 PAULO TABUADA AND GEORGE J. PAPPAS3. Hamiltonian Control SystemsBefore de�ning Hamiltonian 
ontrol systems, we present a global de�nition of a 
ontrol systems [11℄.De�nition 3.1 (Control System). A 
ontrol system S = (U; F ) 
onsists of a �ber bundle � : U �!M 
alledthe 
ontrol bundle and a smooth map F : U �! TM whi
h is �ber preserving, that is �0 Æ F = � where�0 : TM �! M is the tangent bundle proje
tion. Given a 
ontrol system S = (U; F ), the 
ontrol distributionD of 
ontrol system S, is naturally de�ned pointwise by D(x) = F (��1(x)) for all x 2M .The 
ontrol spa
e U is modeled as a �ber bundle sin
e in general the 
ontrol inputs available may depend onthe 
urrent state of the system. In lo
al 
oordinates, De�nition 3.1 redu
es to the familiar _x = f(x; u) withu 2 ��1(x). Using this de�nition of 
ontrol systems, the 
on
ept of traje
tories of 
ontrol systems be
omesas follows.De�nition 3.2 (Traje
tories of Control Systems). A 
urve 
 : I �! M , I � R+0 is 
alled an traje
tory of
ontrol system S = (U; F ), if there exists a 
urve 
U : I �! U satisfying:� Æ 
U = 
ddt
(t) = F (
U )Again in lo
al 
oordinates, the above de�nition says that x(t) is a traje
tory of a 
ontrol system if there existsan input u(t) su
h that x(t) satis�es _x(t) = f(x(t); u(t)) and u(t) 2 U(x(t)) = ��1(x(t)) for all t 2 I .Hamiltonian 
ontrol systems are 
ontrol systems endowed with additional stru
ture. The extra stru
ture 
omesfrom the fa
t that they model me
hani
al systems so they are essentially a 
olle
tion of Hamiltonian ve
tor�elds parameterized by the 
ontrol input. The following global and 
oordinate free des
ription of Hamiltonian
ontrol systems is inspired from [14℄.De�nition 3.3 (Hamiltonian Control Systems). A Hamiltonian 
ontrol system SH = (U;H) 
onsists of a
ontrol bundle � : U �! M over a Poisson manifold (M; f; g) with non-degenerate Poisson bra
ket, and asmooth fun
tion H : U �! R. With the Hamiltonian 
ontrol system SH = (U;H) we asso
iate the 
olle
tionof Hamiltonian H as the 
olle
tion of all smooth fun
tions satisfying H(x) = H(��1(x)) for all x 2 M . Thisfamily indu
es the 
ontrol distribution DH de�ned pointwise by DH(x) = XH(x), where for all x 2M , XH(x)satis�es LXH(x)f = ff;Hg(x), that is LXH(x)f = ff; hg(x) for all h 2 H(x), f 2 C1(M).The map H should be thought of as a 
ontrolled Hamiltonian sin
e it assigns a Hamiltonian fun
tion toea
h 
ontrol input. Note that the 
ontrol bundle, and the 
ontrolled Hamiltonian 
ompletely spe
ify theHamiltonian 
ontrol system. In parti
ular, by �xing the 
ontrol input, one obtains a Hamiltonian ve
tor �eld.4. Abstra
tions of Hamiltonian Control SystemsGiven a Hamiltonian 
ontrol system2 SHM de�ned on a Poisson manifold (M; f; gM) our goal is to 
onstru
t amap � :M �! N , the abstra
tion map or aggregation map that will indu
e a new Hamiltonian 
ontrol systemSHN on the lower dimensional Poisson manifold (N; f; gN) having as traje
tories �(
M ), where 
M are SHM2From now on, SHM = (UM ;HM ) or simply SHM denotes a Hamiltonian 
ontrol system on Poisson manifold (M; f; gM ).



ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMS 5traje
tories. The 
on
ept of abstra
tion map for 
ontinuous, not ne
essarily Hamiltonian, 
ontrol systems isde�ned in [8℄.De�nition 4.1 (Abstra
ting Maps). Let SM and SN be two 
ontrol systems on manifolds M and N , respe
-tively. A smooth surje
tive submersion � : M �! N is 
alled an abstra
tion or aggregation map i� for everytraje
tory 
M of SM , �(
M ) is a traje
tory of SN . Control system SN is 
alled a �-abstra
tion of SM .From the above de�nition it is 
lear that an abstra
tion 
aptures all the traje
tories of the original system, butmay also 
ontain redundant traje
tories. These redundant traje
tories are not feasible by the original systemand are therefore undesired. Clearly, it is diÆ
ult to determine whether a 
ontrol system is an abstra
tionof another at the level of traje
tories. One is then interested in a 
hara
terization of abstra
tions whi
h isequivalent to De�nition 4.1 but 
he
kable. To leads to the notion of �-related 
ontrol systems.De�nition 4.2 (�-related 
ontrol systems [8℄). Let SM and SN be two 
ontrol systems de�ned on manifoldsM and N , respe
tively. Let � : M �! N be a surje
tive submersion. Then 
ontrol systems SM and SN are�-related i� for every x 2M : Tx� (DM (x)) � DN (�(x))(4.1)The notion of �-related 
ontrol system is a generalization of the notion of �-related ve
tor �elds 
ommonlyfound in di�erential geometry. It is also evident that given a 
ontrol system SM , there is a minimal �-related
ontrol system SN , up to 
ontrol parameterization. The relationship between �-abstra
tions and �-related
ontrol systems is now given.Theorem 4.3 ([12℄). Let SM and SN be 
ontrol systems on manifolds M and N , respe
tively, and � :M �! Na smooth map. Then SM and SN are �-related 
ontrol systems if and only if SN is a �-abstra
tion of SM .We now 
onsider these notions for Hamiltonian 
ontrol systems. Sin
e Hamiltonian 
ontrol systems areuniquely determined by their 
ontrolled Hamiltonian, the notion of �-related 
ontrol systems spe
ializes toHamiltonian 
ontrol systems as follows:De�nition 4.4 (�-related Hamiltonian 
ontrol systems). Let SHM and SHN be two Hamiltonian 
ontrol sys-tems de�ned on Poisson manifolds (M; f; gM ) and (N; f; gN), respe
tively. Let � :M �! N be a surje
tivePoisson submersion, and let �B be de�ned by �B = (B#N )�1 Æ T� Æ B#M . Then Hamiltonian 
ontrol systemsSHM and SHN are �-related i� for all x 2M ,�B(dHM (x)) � dHN (�(x))(4.2)Although the above de�nition is stated in terms of the exterior derivative of the family of Hamiltonian de�ningthe 
ontrol systems, a 
anoni
al 
onstru
tion to be presented at se
tion 4.8 will allows us to 
ompute HNdire
tly from from HM . The relation between �-related Hamiltonian 
ontrol systems and �-abstra
tionsparallels the general 
ase.Proposition 4.5. Let SHM and SHN be Hamiltonian 
ontrol systems on Poisson manifolds (M; f; gM ) and(N; f; gN), respe
tively, and � : M �! N a smooth Poisson map. Then SHM and SHN are �-related if andonly if SHN is a �-abstra
tion of SHM .



6 PAULO TABUADA AND GEORGE J. PAPPASProof. It is enough to show that if � is a Poissonmap then De�nitions 4.2 and 4.4 are equivalent for Hamiltonian
ontrol systems. The result then follows from Theorem 4.3.De�nition 4.4 is equivalent to: �B(dHM (x)) � dHN (�(x)) ,Tx�(B#M (dHM (x))) � B#N (dHN (�(x))) ,Tx�(DHM (x)) � DHN (�(x))whi
h is just De�nition 4.2.Proposition 4.5 tell us that the abstra
ting pro
ess 
an be 
hara
terized at the level of the 
ontrolled Hamil-tonians. This result should be expe
ted sin
e the 
ontrolled Hamiltonians 
ompletely spe
ify the dynami
s ofHamiltonian 
ontrol systems given a Poisson stru
ture.4.1. Constru
ting Poisson maps. In order to extra
t a Hamiltonian abstra
tion from an Hamiltonian
ontrol system SHM on a Poisson manifold (M; f; gM ), one needs a Poisson map � :M �! N that will indu
ethe abstra
tion on N . In many 
ases, however, one only knows whi
h variables are unimportant and whi
hshould be ignored. How should this information should be assembled to de�ne an abstra
ting Poisson map?We must ensure that (1) � is a Poisson map, and (2) the Poisson bra
ket f; gN is non-degenerate. Even if � isPoisson and dim(N) is even it is not true, in general, that the bra
ket in N is non-degenerate as the followingexample shows.Let M = T �R3 with the 
anoni
al bra
ket, that is ff; ggM = �f�qi �g�pi � �f�pi �g�qi . Denote a point in M byx = (q1; q2; q3; p1; p2; p3) and let �(q1; q2; q3; p1; p2; p3) = (q1; q2; q3; p1). The map � is Poisson as 
an easily beveri�ed but the bra
ket indu
ed on N and given byff; ggN = �f�q1 �g�p1 � �f�p1 �g�q1(4.3)is degenerate sin
e its rank is only 2. This example also shows that to avoid these problems one must makesure that the dire
tions 
ollapsed by � are 
onjugate. More pre
isely we have the following well known result,Proposition 4.6. Let (M; f; gM ) be a Poisson manifold with non-degenerate Poisson bra
ket and � :M �! Nan abstra
ting map. If for every X 2 Ker(T�), X is Hamiltonian with Hamiltonian fun
tion h 2 C1(M)and there exists a g 2 C1(M) su
h that fh; ggM 6= 0 and Xg 2 Ker(T�) then � is Poisson and indu
es anon-degenerate Poisson bra
ket on N by:ff1; f2gN Æ � = ff1 Æ �; f2 Æ �gM(4.4)Proof. Sin
e the map � is a surje
tive submersion it de�nes a regular equivalen
e relation =� by de
laring twopoints x and x0 to be on the same equivalen
e 
lass i� �(x) = �(x0). The equivalen
e 
lasses of this relation aredes
ribed by the orbits of Ker(T�). Sin
e every element of Ker(T�) is Hamiltonian the orbit of Ker(T�) isan Hamiltonian a
tion of Rk with k = dim(Ker(T�)). The quotient manifold M= =� whi
h is di�eomorphi
to N inherits a Poisson stru
ture de�ned by (4.4), see for example [9, 10℄.We will only show that f; gN is non-degenerate. By Lie-Weinstein theorem [15℄ there is a lo
al 
oordinate trans-formation 'M : M �!M su
h that in the new 
anoni
al 
oordinates (q1; q2; : : : ; qm; p1; p2; : : : ; pm; 
1; 
2 : : : ; 
v)the following holds fqi; qjgM = fpi; pjgM = fqi; 
jgM = fpi; 
jgM = f
i; 
jgM = 0 and fqi; pjgM = Æij . Sin
e



ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMS 7f; gM is non degenerate the 
oordinates redu
e to (q1; q2; : : : ; qm; p1; p2; : : : ; pm). By assumption for every hsu
h that Xh 2 Ker(T�) there is an g su
h that fh; ggM 6= 0, and we 
an write fh Æ '�1M ; g Æ '�1M gM =fh; ggM Æ '�1M . Sin
e fh; ggM 6= 0 it follows that fh Æ '�1M ; g Æ '�1M gM 6= 0 meaning that h = qi and g = pifor some i. We 
an assume without loss of generality, that the new 
anoni
al 
oordinates q1; q2; : : : ; qn andp1; p2; : : : ; pn are su
h that Xqi and Xpi belong to Ker(T�) for i = 1 : : : n. Consider then the map � ='�1M Æ�Æ'N :M �! N de�ned on a open set around the point x 2M . This map sends (q1; : : : ; qm; p1; : : : ; pm)to (qn+1; qn+2; : : : ; qm; pn+1; pn+2; : : : ; pm) and therefore f; gN is nondegenerate at x. Sin
e this holds for anyx 2M N is non degenerate Poisson manifold.To use Theorem 4.3 the Hamiltonian maps for Ker(T�) need to belong to P(HM ) so we have the following
onstru
tion to build an abstra
ting map �. Pi
k a 
olle
tion of maps h1; h2; : : : ; hn 2 C1(M) su
h thathi 2 P(HM ) and determine the 
onjugate to hi, that is a map h
i su
h that fhi; h
igM 6= 0. If h
i alsobelongs to P(HM ) then any map � su
h that Ker(T�) = SpanfXh1 ; Xh
1 ; Xh2 ; Xh
2 ; : : : ; Xhn ; Xh
ng veri�esthe 
onditions of Proposition 4.6. A illustration of this 
onstru
tion 
an be found in Se
tion 6.4.2. Canoni
al Constru
tion. Given a Poisson map, De�nition 4.4 provides us with a geometri
 de�nitionfor Hamiltonian abstra
tions whi
h is useful 
on
eptually but not 
omputationally. We now present a 
anoni
al
onstru
tion that will allow us to obtain an abstra
tion SHN from an Hamiltonian 
ontrol system SHM and aPoisson map � :M �! N . Our 
onstru
tion is inspired from the 
anoni
al 
onstru
tion of [13℄, even though the
onstru
tion presented here uses 
odistributions as opposed to distributions. This is natural for Hamiltoniansystems sin
e the di�erentials of the Hamiltonians 
apture all system information.De�nition 4.4 and, in parti
ular, 
ondition (4.2) require the union of all the values of dHM evaluated atany x 2 ��1(y). A way of 
onstru
ting this union is to de�ne another family of maps F su
h that dF is
onstant along ��1(y) and furthermore satis�es dHM � dF . From this new family it suÆ
es to 
omputedHN (y) = dF(x) for some x 2 ��1(y) sin
e dF is the same for any x 2 ��1(y). In other words, we would liketo 
onstru
t a family of maps F su
h that1. dHM � dF2. For all x; x0 2M su
h that �(x) = �(x0), dF(x) = dF(x0).Let K be the integrable distribution Ker(T�). Then the leaves of the foliation K 
orrespond to points on Mthat have the same image under �. In this setting, we would like to design the family F so that the resulting
odistribution dF is invariant with respe
t to the ve
tor �elds in K. This idea is 
aptured in the followingproposition.Proposition 4.7 (Invariant Codistributions). A 
olle
tion F of smooth fun
tions satis�es dF(x) = dF(x0)for all x; x0 2M su
h that �(x) = �(x0) if and only if LKdf 2 dF for all K 2 K and all maps f 2 F .Proof. Instead of working with the one-forms df1, df2, : : : , dfv, spanning dF we 
an asso
iate the v-form� = df1 ^ df2 ^ : : : ^ dfv with the ve
tor spa
e spanned by these forms sin
e any other set of one-formsf�1; �2; : : : ; �vg spanning the same ve
tor spa
e verify �1 ^ �2 ^ : : : ^ �v = �� for some smooth fun
tion �.We �rst show that if dF(x) = dF(x0) for �(x) = �(x0) then LKdf 2 dF . Let �t(x) be the integral 
urve ofsome ve
tor �eld K belonging to K satisfying �0(x) = x. The equality dF(x) = dF(x0) 
an be repla
ed by



8 PAULO TABUADA AND GEORGE J. PAPPASdF(x) = dF(�t(x)) for all t 2 R. Di�erentiating with respe
t to time we get LK� = 0 whi
h is equal toLK� = d({K�) + {K(dd�)= d�(K)Computing d�(K) in 
oordinates and equating to zero we get thatd(dfi(K)) = 0 or d(dfi(K)) = ajdfj(4.5)whi
h simply means that dLKfi = LKdfi = ajdfj from whi
h we 
on
lude that LKdf 2 dF for every f 2 F .For the 
onverse assume that LKdf 2 dF . We want to show that�(x) = �(�t) for all t 2 R(4.6)But the derivative of (4.6) is true by assumption and (4.6) holds for t = 0.Proposition 4.7 motivates a 
anoni
al 
onstru
tive pro
edure to obtain the abstra
ted hamiltonian 
ontrolsystem SHN given an hamiltonian 
ontrol system SHM and an abstra
ting Poisson map � :M �! N . If wedenote the anihilating 
odistribution of K by Ko, that is Ko = f� 2 T �M j �(K) = 0 8K 2 Kg we 
an
onstru
t a 
olle
tion of Hamiltonians HN based on HM as follows:De�nition 4.8 (Canoni
al 
onstru
tion). Let � : (M; f; gM ) �! (N; f; gN) be a Poisson map between man-ifolds with non-degenerate Poisson bra
kets, and let HM be a 
olle
tion of Hamiltonians on M . Denote byHM the following family of smooth maps:HM = HM [ LKHM [ LKLKHM [ : : :(4.7)for all K 2 K. The 
olle
tion of Hamiltonians HN de�ned byHN = HM Æ i(4.8)for any embedding i : N ,!M su
h that B#M (Ko) � T i(TN) is 
alled 
anoni
ally �-related to HM .The 
olle
tion of Hamiltonians obtained by 
onstru
tion of De�nition 4.8 is 
anoni
al in the following sense.Proposition 4.9 (Minimal Abstra
tion). The 
odistribution dHM is the smallest 
odistribution satisfying1. dHM � dHM2. For all x1; x2 2M su
h that �(x1) = �(x2), dHM (x1) = dHM (x2).and the Hamiltonian 
ontrol system de�ned by HN is the smallest Hamiltonian 
ontrol system �-related toHM .Proof. The 
olle
tion of Hamiltonians HM 
ontains HM by 
onstru
tion so that is follows trivially that itsatis�es property 1. It also veri�es property 2 sin
e by 
onstru
tion it satis�es the 
onditions of Proposition 4.7.To show that this 
odistribution is the smallest one verifying these properties 
onsider any other 
olle
tion ofHamiltonians GM also verifying properties 1 and 2. Let h be any map su
h that h 2 HM , if dh 2 dHM thendh 2 dGM be
ause GM veri�es property 1. Otherwise dh is obtained from a �nite number of Lie derivativesalongK of some one-form in dHM . Sin
e LKdf = dLKf , property 2 and Proposition 4.7 imply that dh 2 dGM .The above dis
ussion shows that for all dh 2 dHM we have that dh 2 dGM , therefore dHM is 
ontained inany other 
odistribution verifying properties 1 and 2.
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ond assertion we need to show �rst that the Hamiltonian 
ontrol system de�ned by HN is�-related to SHM . To see that this is the 
ase 
onsider any hM 2 HM and any point x 2 M . By de�nitionof HN there is a map hN satisfying hN = hM Æ i, for some i embedding N into M through the point x. TheHamiltonian hN de�nes a Hamiltonian inM by hN Æ� and sin
e � is Poisson we have that T��XhNÆ� = XhN Æ�.This means that if we 
an prove that: Tx� �XhNÆ�(x) = Tx� �XhM (x)(4.9)then �-relatedness of the 
ontrol systems follows. Rewriting (4.9) as:(LT��XhN Æ�g)(x) = (LT��XhM g)(x) 8g 2 C1(N), (d(f Æ �) �XhNÆ�)(x) = (d(f Æ �) �XhM )(x), fhN Æ �; f Æ �gM (x) = fhM ; f Æ �gM (x), ff Æ �; hN Æ �gM (x) = ff Æ �; hMgM (x), (d(hN Æ �� hM ) �XfÆ�)(x) = 0Sin
e f Æ � is 
onstant on the leaves of K it follows that XfÆ� 2 B#M (Ko) � T i(TN). Therefore (d(hN Æ � �hM ) �XfÆ�)(x) = 0 sin
e hN equals hM on the integral manifold (whi
h is just N) of T i(TN) passing throughthe point x. Sin
e the argument does not depend on the point x the 
on
lusion holds for all x 2M .To show that the Hamiltonian 
ontrol system indu
ed by HN is the smallest one �-related to SHM we will
onsider any other family of Hamiltonians GN indu
ing a 
ontrol system �-related to SHM . This family de�nesa 
odistribution on M verifying properties 1 and 2 by d(GN Æ �). However sin
e dHM is 
ontained in anyother su
h 
odistribution it follows that dHM � d(GN Æ �) whi
h is equivalent to �B(dHM ) � �B(dGN Æ �)and lead to the desired in
lusion dHN � dGN .As asserted by Proposition 4.9 the abstra
tion obtained by the 
anoni
al 
onstru
tion is the smallest Hamil-tonian 
ontrol system �-related to SHM , therefore we are always able to 
ompute the minimal �-abstra
tionof any Hamiltonian 
ontrol system given an abstra
ting Poisson map �.5. Lo
al A

essibility Equivalen
eIn addition to propagating traje
tories and Hamiltonians from the original Hamiltonian 
ontrol system tothe abstra
ted Hamiltonian system, we will investigate how a

essibility properties 
an be preserved in theabstra
tion pro
ess. We �rst review several (lo
al) a

essibility properties for 
ontrol systems [4, 6, 11℄.De�nition 5.1 (Rea
hable sets [6℄). Let SM be a 
ontrol system on a smooth manifold M . For ea
h T > 0and ea
h x 2 M , the set of points rea
hable from x at time T , denoted by Rea
h(x; T ), is equal to the setof terminal points 
M (T ) of SM traje
tories that originate at x. The set of points rea
hable from x in T orfewer units of time, denoted by Rea
h(x;� T ) is given by Rea
h(x;� T ) = [t�TRea
h(x; T ).De�nition 5.2. A 
ontrol system SM is said to be� Lo
ally a

essible from x there is a neighborhood V of x su
h that Rea
h(x; T ) 
ontains a non-emptyopen set of M for all T > 0 and Rea
h(x; T ) � V .� Lo
ally a

essible if it is lo
ally a

essible from all x 2M .� Controllable if for all x 2M , Rea
h(x; T ) =M for some T .
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all �rst that lo
al a

essibility properties of Hamiltonian 
ontrol systems 
an be 
hara
terized by simplerank 
onditions of the Poisson algebra generated by the 
ontrolled Hamiltonian.Proposition 5.3 (A

essibility Rank Conditions [11℄). Let SHM be a Hamiltonian 
ontrol system on a Pois-son manifold (M; f; gM ) of dimension m and denote by P(HM ) the Poisson algebra freely generated by the
olle
tion of Hamiltonians HM . Then:� If dim(d(P(HM (x)))) = m, then the 
ontrol system SHM is lo
ally a

essible at x 2M .� If dim(d(P(HM (x)))) = m for all x 2M , then 
ontrol system SHM is lo
ally a

essible.� If dim(d(P(HM (x)))) = m for all x 2 M , HM is symmetri
, that is h 2 HM ) �h 2 HM , and M is
onne
ted, then 
ontrol system SHM is 
ontrollable.Theorem 4.3 immediately propagates lo
al a

essibility from the original Hamiltonian system to its abstra
tion.Proposition 5.4 (Lo
al A

essibility Propagation). Let Hamiltonian 
ontrol systems SHM and SHN be �-related with respe
t to a Poisson map � : M �! N . Then, if SHM is (symmetri
ally) lo
ally a

essible (atx 2 M) then SHN is also (symmetri
ally) lo
ally a

essible (at �(x) 2 N). Also, if SHM is 
ontrollable thenSHN is 
ontrollable.We now determine under what 
onditions on the abstra
ting maps, lo
al a

essibility of the original systemSHM is equivalent to lo
al a

essibility of its 
anoni
al abstra
tion SHN . In parti
ular, we need to address theproblem of propagating a

essibility from the abstra
ted system SHN to the original system SHM . We startby exploring the relationship between the Poisson algebras of 
anoni
ally �-related Hamiltonian systems.Lemma 5.5. Let SHN be 
anoni
ally �-related to SHM , then for all x 2M we have�B (dP(HM (x))) = dP(HN )(�(x))Proof. We start by showing that for any two fun
tions hM ; h0M 2 C1(M) and any point x 2M we have:Tx� �XfhM ;h0MgM (x) = XfhN ;h0NgN (�(x))(5.1)with hN = hM Æ i, h0N = h0M Æ i and any i embedding N into M through the point x. Sin
e � is Poisson wehave that: Tx� �XfhN ;h0NgNÆ�(x) = XfhN ;h0NgN (�(x))(5.2)so that we only have to show that:Tx� �XfhM ;h0MgM (x) = Tx� �XfhN ;h0NgNÆ�(x)(5.3)This argument parallels the one in the proof of Proposition 4.9. The previous expression is equivalent to:(LT��XfhM;h0M gM f)(x) = (LT��XfhNÆ�;h0NÆ�gM f)(x) 8f 2 C1(N), ff Æ �; fhM ; h0MgMgM (x) = ff Æ �; fhN Æ �; h0M Æ �gMgM (x), ff Æ �; fhM � hN Æ �; h0M � h0N Æ �gMgM (x) = 0, �fhM � hN Æ �; fh0M ; h0N Æ �; f Æ �gMgM (x)�fh0M � h0N Æ �; ff Æ �; hM � hN Æ �gMgM (x) = 0(5.4)



ABSTRACTIONS OF HAMILTONIAN CONTROL SYSTEMS 11But sin
e fh0M � h0N Æ �; f Æ �gM (x) = (LXfÆ�h0M � h0N Æ �)(x), XfÆ� 2 B#M (Ko) � T i(TN) and h0M = h0N onT i(TN) we 
on
lude that fh0M � h0N Æ �; f Æ �gM (x) = 0 and similarly for fhM � hN Æ �; f Æ �gM (x). Thisshows that equality (5.4) holds, and a indu
tion argument extends (5.1) to:Tx� �XP(HM )(x) = XP(HN)(�(x))(5.5)By making use of Proposition 4.4 the above expression is equivalent to:�B (dP(HM (x))) = dP(HN )(�(x))(5.6)Using the above lemma, a

essibility equivalen
e between the two 
ontrol systems 
an be now asserted.Theorem 5.6 (Lo
al A

essibility Equivalen
e). Let SHN be 
anoni
ally �-related to SHM . If every ve
tor�eld Ki 2 Ker(T�) is Hamiltonian with Hamiltonian fun
tion hi 2 C1(M) and hi 2 P(HM ), then SHM islo
ally a

essible if and only if SHN is lo
ally a

essible.Proof. We begin by showing how a

essibility properties of SHM are propagated to SHN . Suppose that SHM islo
ally a

essible, that is dP(HM )(x) = T �xM for all x 2M , then by Lemma 5.5 dP(HN)(�(x)) = �B(x)T �xM .Sin
e �B = (B#N )�1 Æ T� Æ B#M and both B#N and B#M are isomorphisms, and T� is surje
tive, �B is alsosurje
tive. We 
on
lude therefore that dP(HN )(y) = T �yN , for all y = �(x). But � is surje
tive so SHN islo
ally a

essible.Let us now show how a

essibility properties of SHN 
an be pulled ba
k to SHM . We pro
eed by 
ontradi
tion.Assume that every Ki 2 Ker(T�) is Hamiltonian with Hamiltonian fun
tion hi 2 P(HM ) and that SHN islo
ally a

essible while SHM is not. Then dP(HN )(y) = T �yN and by Lemma 5.5 �BdP(HM )(x) = T �yNfor all x su
h that �(x) = y. Sin
e SHM is not lo
ally a

essible there exists some g 2 C1(M) su
h thatdg(x) =2 dP(HM )(x), but �B is surje
tive so dg(x) must belong to Ker(�B(x)). Taking into 
onsiderationthat dg(x) 2 Ker(�B(x)) , Xg(x) 2 Ker(Tx�) we have a 
ontradi
tion sin
e we were assuming that allHamiltonian fun
tions of the ve
tors belonging to Ker(Tx�) were also in P(HM )(x) and g(x) =2 P(HM )(x).This shows that SHM is in fa
t lo
ally a

essible from x. Sin
e the argument does not depend on the parti
ularpoint x, SHM is lo
ally a

essible.Corollary 5.7. Let SHN be 
anoni
ally �-related to SHM . If every Ki 2 Ker(T�) is Hamiltonian withHamiltonian fun
tion hi 2 C1(M), hi 2 P(HM ) and both HM and HN are symmetri
 and furthermore bothM and N are 
onne
ted then SHM is 
ontrollable i� SHN is 
ontrollable.Theorem 5.6 provides moderate 
onditions to propagate a

essibility properties in a hierar
hy of abstra
tions.In fa
t when dealing with systems aÆne in 
ontrols, that is, of the form H = H0 +PiHiui we 
an alwaysbuild a map � satisfying the 
onditions of Theorem 5.6 by de�ning its kernel to be XHi for some i providedthat the 
onjugate of Hi belongs to the Poisson algebra generated by the 
ontrol system. A example of this
onstru
tion is presented in the next se
tion.6. A spheri
al pendulum exampleAs an illustrative example, 
onsider the spheri
al pendulum as a fully a
tuated me
hani
al 
ontrol system.This system 
an be used to model, for example, the stabilization of the spinning axis of a satellite or a pan
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amera. Consider a massless rigid rod of length l �xed in one end by a spheri
al joint and havinga bulb of mass m on the other end. The 
on�guration spa
e for this 
ontrol system is S2 parameterized by� 2 [0; �[ and � 2 [0; 2�[. The kineti
 energy of the system is given byT = 12ml2( _�2 + sin2 � _�2)(6.1)and the potential energy of the system is V = �mgl 
os �(6.2)Trough the Legendre transform of the Lagrangian L = T � V one arrives at the HamiltonianH0 = 12ml2 p2� + 12ml2 sin2 � p2� �mgl 
os �(6.3)where p� is given by p� = ml2 _� and p� = ml2 sin2 � _�. Sin
e the system is fully a
tuated the Hamiltonian
ontrol system SHM de�ned over M = T �S2 with the 
anoni
al Poisson bra
ket is given by:HM = H0 +H1u1 +H2u2(6.4)with H1 = � and H2 = � and where u1 and u2 are the 
ontrol inputs.The drift ve
tor �eld asso
iated with H0 is invariant under rotations around the verti
al axis and 
ould beredu
ed using this symmetry. However to emphasize the advantages to the abstra
tion method we will abstra
taway pre
isely the dire
tions were there are no symmetries. Consider the abstra
ting map:� : T �S2 �! T �S1(6.5) (�; �; p�; p�) 7! (�; p�)(6.6)It is 
lear that � 2 P(HM ) and the 
onjugate variable to �, p�, also belongs to P(HM ) sin
e fH0; �gM =� 1ml2 p�, so the 
onditions of Proposition 4.6 are ful�lled meaning that � is a Poisson map indu
ing a non-degenerate bra
ket in T �S1.Following the steps of the 
anoni
al 
onstru
tion one 
omputes the family of maps:HM = HM [ f�;HMgM [ fp�;HMgM [ : : :(6.7)However it is enough to 
ompute f�;H0gM = 1ml2 p� sin
e dim(d(P(HM [ f 1ml2 p�g))) = 4 and all remainingbra
kets 
an be generated by HM [ f�;H0gM . The 
olle
tion of Hamiltonians 
anoni
ally �-related to HM isgiven by HN = Spanf 12ml2 p2� + 12ml2 sin2 � p2� �mgl 
os �; �; �; 1ml2 p�g(6.8)but where � and p� are now regarded as 
ontrol in puts sin
e they are ranging in K. Introdu
ing the new
ontrol inputs v1 = � and v2 = u2 the abstra
ting 
ontrolled Hamiltonian 
an be written as:HN = 12ml2 sin2 v1 p2� + � v2(6.9)Note that the terms depending only on � or p� have disappeared sin
e regarding � and p� as 
ontrol inputsredu
ed those terms as 
onstants multiplying the 
ontrol inputs and 
onstants are asso
iated with the null
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tor �eld. The equations of the new 
ontrol system on N = T �S1 are obtained through the indu
ed Poissonbra
ket (whi
h is just the 
anoni
al one on N) and are given by:_� = 1ml2 sin2 v1 p�(6.10) _p� = v2(6.11)whi
h de�ne a 
ontrollable Hamiltonian 
ontrol system on N .7. Con
lusionsIn this paper, we have presented a hierar
hi
al abstra
tion methodology for Hamiltonian nonlinear 
ontrolsystems. The extra stru
ture of me
hani
al systems was utilized in to provide 
onstru
tive methods forgenerating abstra
tions while maintaining the Hamiltonian stru
ture. Furthermore we have 
hara
terizeda

essibility equivalen
e through easily 
he
kable 
onditions.These results are very en
ouraging for hierar
hi
al 
ontrolling me
hani
al systems. Re�ning 
ontroller designfrom the abstra
ted to the original system is 
learly important. Other resear
h topi
s under 
urrent resear
hin
lude the propagations of nonholonomi
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