Hybrid abstractions
that preserve timed languages

Paulo Tabuada' and George J. Pappas®

! Instituto de Sistemas e Robética, Instituto Superior Técnico
1049-001 Lisboa - Portugal, tabuada@isr.ist.utl.pt
2 Department of Electrical Engineering, University of Pennsylvania
Philadelphia, PA 19104, pappasg@ee.upenn.edu

Abstract. In this paper we consider the problem of extracting an ab-
straction from a hybrid control system while preserving timed languages.
Such consistent abstractions are clearly useful as the abstracted, higher
level model could be used for controller synthesis or verification of the
more complicated lower level model. The class of abstracting maps we
consider in this paper compress only the continuous states without aggre-
gating any discrete states. Given such an abstracting map, we determine
natural conditions that determine when trajectories of the original hybrid
system can be generated by the abstracted hybrid system. Conversely,
we determine conditions under which the two hybrid systems generate
exactly the same timed language.

1 Introduction

The analysis and synthesis of hybrid control systems has received tremendous
attention recently. The scale of the motivating applications, such as air traf-
fic management systems [15] or automotive engine control systems [4], require
that the resulting analysis and control methodologies scale up efficiently, in or-
der to facilitate the realistic application of computational methods to real-scale
examples.

One of the fundamental approaches to reducing the complexity of large scale
system analysis and design is the process of abstraction. From an analysis per-
spective, given a model and a property of interest, one tries to extract a simpler
model, an abstraction, that preserves the property of interest while ignoring ir-
relevant details. This approach has been used successfully in extracting discrete
abstractions of hybrid systems while preserving many properties that can be
expressed in various temporal logics [3].

From a design perspective, given a hybrid control system, one would like
to extract an abstracted hybrid system, perform the design at the higher level
abstraction, and then refine the design at the lower level. In this hierarchical
setting, a methodology which extracts a hierarchy of hybrid system models at
various levels of abstraction is critical.

Due to the complexity of combinatorial problems, the notion of abstraction is
more mature in theoretical computer science than control theory. For purely dis-
crete systems, the notions of language equivalence, simulation, and bisimulation

are established [10]. For purely continuous systems, however, these concepts are
only recently beginning to emerge. In particular, in [12], a notion of abstraction
for continuous systems was formalized. In [11] reachability preserving abstrac-
tions of continuous linear systems were characterized, leading to hierarchical
reachability algorithms for linear control systems. In [13], these results where
generalized for nonlinear analytic systems. A general theory of abstraction for
hybrid systems will clearly merge the continuous and discrete approaches.

In this paper, we address the problem of extracting a hybrid abstraction from
a hybrid control model while preserving timed languages. Given a hybrid system,
the timed language is simply the timed trajectory of the discrete states. There-
fore, the timed language maintains the discrete state the system is in as well as
relevant timing information.

This problem is important for a variety for reasons. For scheduling multiple
physical processes (such as air traffic management systems), the higher level may
be simply interested in which discrete mode each process is in (landing, holding,
etc.) and when. Therefore the higher level (air traffic control) would like then to
use the simplest possible model of an aircraft that is compatible with the original
aircraft dynamics but also with the scheduling operation. Furthermore, the re-
sults of this paper can be easily adapted to properly extract hybrid abstractions
from purely continuous systems [14]. Finally, the results of the paper are the fist
steps towards a more general abstraction methodology for hybrid systems.

In order for the abstracted model to generate the same discrete symbols,
we consider aggregating only the continuous dynamics. Abstracting the con-
tinuous dynamics while preserving the timed language requires the abstraction
process to be done in manner that allows us to detect all the discrete transi-
tions. This places a natural condition between the abstracting maps, guards and
invariants of the discrete transitions. Assuming that our aggregating maps sat-
isfy these conditions, we show that hybrid trajectories of the original model can
be simulated by the abstracted model. Consequently, the abstracted model also
generates the same timed language. In general, the abstracted system is not a
timed automaton [2], as we may need to preserve richer continuous dynamics in
order to properly detect the discrete transitions.

In order to ensure that timed trajectories of the abstracted model are feasible
by the original hybrid model, we rely heavily on the abstraction results for con-
tinuous systems [13]. These results give us constructive methods for extracting
hierarchies of nonlinear control systems while preserving exact time controllabil-
ity. Exact time controllability allows us to preserve a form of timed reachability.
Using these results, we can place additional conditions on our abstracting maps
in order to ensure that in each discrete location, the ability to reach a certain
guard at the same time can be done at both levels of abstraction. This allows us
to show that the timed language generated at the high level can be implemented
at the lower level.

This paper is organized as follows : In Section 2, we review the continuous

abstraction methodology as presented in [11,13]. In Section 3, we define hybrid
systems, and determine conditions under which the hybrid abstraction and the

original hybrid system model can generate the same timed language. Our con-
structions are briefly illustrated by a simple example in Section 4, but the reader
is referred to a more detailed application in [14]. Section 5 contains interesting
issues for further research.

2 Abstractions of Continuous Systems

Contrary to differential equations whose abstractions are characterized by very
strict conditions, abstractions of control systems involve only moderate con-
ditions due to the nondeterministic nature of control systems. In subsequent
discussion, we assume the reader is familiar with differential geometric concepts
at the level presented in [1].

2.1 Abstractions of Control Systems
We begin with an abstract definition of a control system:

Definition 1 (Control System). A control system S = (U, F) consists of a
fiber bundle m : U — M called the control bundle and a smooth map F : U
— TM which is fiber preserving, that is ©’' o F = m where ©' : TM — M s
the tangent bundle projection. Given a control system S = (U, F), the control
distribution D of control system S, is naturally defined pointwise by D(z) =
F(rn=Y(x)) for all x € M.

The control space U is modeled as a fiber bundle since in general the con-
trol inputs available may depend on the current state of the system. On a local
coordinate chart, Definition 1 can be read as %z = f(z,u) with u € 7~ (2),
therefore recovering the traditional form of the control system. Before intro-
ducing the notion of abstraction for continuous control systems, the concept of
trajectories of control systems is required:

Definition 2 (Trajectories of Control Systems). A curve ¢ : [— M,
I C R} is called a trajectory of control system S = (U, F) if there eists a curve
cV i I — U satisfying:

mocl =¢
d d
0t = ce(5) = e(1) = F(")

Again in local coordinates, the above definition simply says that z(t) is a
solution to a control system if there exists an input u(t) € U(z(t)) = 7~ (x(t))
satisfying £z(t) = f(z(t),u(t)). Our goal is to construct a map ¢ : M — N,
the abstraction map or aggregation map, that will induce a new control sys-
tem (Un, Fn) on the lower dimensional manifold N having as trajectories ¢(c),
where ¢ are S trajectories. The concept of abstraction map for continuous control
systems is defined as follows:

Definition 3 (Abstraction Map). Let Sy = (Unp, Fir) and Sy = (Un, Fn)
be two control systems on manifolds M and N, respectively. A map ¢: M — N
is called an abstraction or aggregation map iff for every trajectory c™ of Sar,
#(cM) is a trajectory of Sn. Control system Sy is called a ¢-abstraction of Syr.

The above definition is clearly inspired from the notions of language equiva-
lence and simulation of transition systems [10]. From Definition 3, it is clear that
an abstraction captures all the trajectories of the original system, but may also
contain redundant trajectories. These redundant trajectories are not feasible by
the original system and are therefore undesired.

Since Definition 3 defines abstractions at the level of trajectories, it is difficult
to determine whether a control system is an abstraction of another one, since
this would require integration of the control systems. One is then interested in
a characterization of abstractions which is equivalent to Definition 3 but easily
checkable. To pursue this, one needs to introduce the notion of ¢-related control
systems.

Definition 4 (¢-related control systems). Let Sy = (Un, Fr) and Sy =
(Bn, Fn) be two control systems defined on manifolds M and N, respectively. Let
¢ : M — N be a smooth map. Then control systems Sy; and Sy are ¢-related
iff for every x € M

o (Fur(m3f @)) € P (73 (6(2))) (1)

The notion of ¢-related control systems is a generalization of ¢-related vector
fields commonly found in differential geometry as explained in [11]. Tt is evident
that given two systems that are ¢-related to a control system their intersec-
tion is also ¢-related. This immediately suggests that given a control system
and a map ¢, there is a minimal ¢-related control system, in which case the
inclusion (1) can be replaced by equality!. We can now provide the connection
between abstractions and ¢-related control systems:

Theorem 1 ([12,11]). Let Sy and Sy be control systems on manifolds M and
N, respectively, and ¢ : M — N a smooth map. Then Sy, and Sy are ¢-related
if and only if SN is a ¢-abstraction of Syy.

The control system Sy is called the minimal ¢-abstraction of a control system
Sy iff Sy is the minimal system that is ¢-related to Sy;.

For analytic control systems there is a constructive method which given a
control system Sp; and a map ¢ : M — N, generates a ¢-abstraction Sy. This
construction, which generalizes the construction for linear systems described
in [11], is now briefly reviewed. The reader is referred to [13] for more details.

Given two distributions A and B on manifold M, define a distribution [A, B]
by declaring [A, B](p) to be the subspace of T, M generated by vectors of the form
[X,Y](p), where X,V are any two analytic vector fields in .4 and B respectively,

! Note that this minimal element is unique up to a change of coordinates.

and [X,Y] is their Lie bracket. By resorting to this constructive method, define
the distribution D, as:

5]\/[ZICUDMU[IC,DM]U[IC,[IC,DM]]U... (2)

where K is the integrable distribution Ker(¢.), ¢. is the push forward map of ¢,
and Dy the distribution associated with control system Sps. Distribution Dy
allows us to construct the minimal ¢-abstraction on N as:

D (y) = 6. (Du (@) (3)

for any x € ¢~ (y). If Sy is extracted from Sy, using this canonical construction,
then control system Sy will be referred to as canonically ¢-related to Syy.

2.2 Controllability Equivalence

In general, since the abstracted system is less constrained, the abstracted model
may allow evolutions that might not be implementable on the original system.
However the original system and its abstraction can still be rendered equivalent
regarding some properties of interest. In this paper, we will focus on exact time
controllability which is defined using the reachable sets of control system Sy;:

Definition 5 (Reachable set [7]). For each T > 0, and each z in M, the set
of points reachable from x at time T, denoted by Reach(z,T), is equal to the set
of terminal points cM(T) of Syr trajectories that originate at x.

Definition 6 (Exact Time Controllability). A control system is said to be
exact time controllable if for any T > 0, Reach(z,T) = M for any x € M.

Consider two systems Sy, and Sy and a surjective map ¢ : M — N. Control
systems Sys and Sy are equivalent from an exact time controllability point of
view if the following property holds: there exists an Sjs trajectory connecting
x1 € M toxs € M in time T if and only if there exists a Sy trajectory connecting
¢(x1) € N to ¢(z2) € N also in time T'. This property is clearly reminiscent of
timed-bisimulations [10].

If we assume that the control system is affine in the control, that is, on local
charts it can be written as:

k
Fle,u) = f@)+ Y gi@u (@

then we can characterize exact time controllability through the Lie algebra gen-
erated by {g1(x), g2(2), ..., gr(z)} and denoted by Lie,(Sar).

Theorem 2 ([7]). An analytic control system Sy affine in control, as defined
in (4), is exact time controllable if Lie,(Sn(z)) = Tp M for every x € M.

We defer the reader to [6, 7] for further details regarding the various notions and
concepts of controllability. The main theorem regarding controllability equiva-
lence of abstractions (see [13]) can now be restated as follows:

Theorem 3 (Exact Time Controllability Equivalence). Let Sy and Sy
be two analytic control systems on analytic manifolds M and N, respectively,
and let N be an embedded submanifold of M. Let ¢ : M — N be an analytic
surjective submersion. If Sy is canonically ¢-related to Sy and

Ker(¢.) C Liey(Sur) (5)
then Sy is exact time controllable iff Sy is.

Equations (2,3) and Theorem 3 provide a constructive way of building con-
tinuous abstractions that propagate reachable sets, and in particular exact time
controllability. When additional properties must be propagated, additional con-
straints must be imposed on the abstracting maps.

3 Hybrid Control Abstractions

Although hybrid abstractions follow the same conceptual ideas of discrete and
continuous abstractions, their study is somewhat more involved due to the com-
plicated nature of hybrid trajectories. We start with a hybrid system model that
allows different continuous spaces in each discrete location.

Definition 7 (Hybrid Control System). A hybrid control system is a tuple
H = (X, Xy, S, Inv, R) with the following components:

X is the state space of the hybrid control system and is given by a family of
smooth manifolds X = {M,},cq indezed® by a finite set Q. Each state thus
has the form (x,q), where x € M, is the continuous part of the state, and
q € Q is the discrete part.

— Xo = {MQ}seq, C X is the set of initial states.

S:Q — {(Uy, Fy) : (Ug, Fy) is a control system on My} assigns to each
discrete state ¢ € Q a control system (U,, Fy) which governs the evolution of
the continuous part of the state. Thus in discrete location q, the continuous
part of the state satisfies %x = f(x,q,u) with u € 7 (x,q).

Inv: Q — 2% assigns to each location q € Q an invariant set Inv(q) C M.
— RC X x X is a relation capturing the discrete jumps.

Hybrid systems are typically represented as finite graphs with vertices @,
and edges FE defined by

E={(¢,¢d) e QxQ| ((z,q9),(z',q¢")) € R for x € Inv(q) and z' € Inv(q")}.

2 When all the manifolds M, are equal, then the state space X is X = M x Q.

With each edge e = (¢,q') € E we associate a guard set defined as
Guard(e) = {z € Inv(q) | ((z,q), (2',¢")) € R for some z' € Inv(q")}
and a set-valued reset map
Reset(e,z) = {z' € Inv(q") | ((=,q), (2',q")) € R}.

Trajectories of the hybrid system H originate at any initial state (x,q) € Xo and
consist of concatenations of continuous flows and discrete jumps. Continuous
flows keep the discrete part of the state constant at ¢, and the continuous part
evolves over time according to the control system %x = f(xz,q,u), as long as
remains inside the invariant set Inv(q). If during the continuous flow, it happens
that € Guard(e) for some e = (¢q,q') € E, then the edge e becomes enabled.
The state of the hybrid system may then instantaneously jump from (z,q) to
any (z',q") with 2’ € Reset(e, z). Then the process repeats, and the continuous
part of the state evolves according to the control system %az = f(z,q',u). We
shall therefore assume that a trajectory of an hybrid control system is a map? ¢

from a time set T to the state space X = {M,},eq of H, that is:

§:T — {Mg}eeq
T = (x(7),q(7)) (6)

An abstracting map for hybrid systems can now be defined in the same way it
was defined for continuous systems.

Definition 8 (Abstraction Map). Let Hx = (X, Xy, Sx,Invx,Rx) and
Hy = (Y,Yy, Sy, Invy, Ry) be two hybrid control systems with X = {My}4e0
andY = {Np}pep. A map ¢ : X — Y is called an abstraction or aggregation
map iff for every trajectory c'x of Hx, ¢(ctx) is a trajectory of Hy .

Even though, we are interested in general abstracting maps, we now focus on
a subclass of abstracting maps that are suitable for preserving timed languages.

3.1 Timed Language Generated by a Hybrid System

In this paper we shall focus on abstractions that render the original system
and its abstraction equivalent regarding the timed language they can generate.
The timed string corresponding to a trajectory &(7) = (z(7),q(7)) of an hybrid
control system is simply given by ¢(t). Naturally ¢(¢) can be regarded as a timed
string? since it can be written in the more usual form {(t, Q(t))}teR;f' The timed
language generated by an hybrid control system is therefore defined as:

? When multiple discrete jumps in zero time are allowed, a more complex notion of
time is required to regard an hybrid trajectory as a map, see for example [9].

* The string s = g(t) can be transformed to retain only the discrete states, and the
first instance of time at which the system has changed discrete state. The results
presented in this paper are however independent of that transformation.

Definition 9 (Timed language of a hybrid system). Let H be a hybrid
control system. The timed language generated by H and denoted by X is given
by all the strings q(t), where q(t) is the discrete part of an hybrid trajectory

§(r) = (2(7),q(7)) of H.

With this notion of timed language, timed language equivalence between two
hybrid system requires the discrete behavior of the hybrid abstraction to be equal
to the discrete behavior of the original system. Therefore aggregation can only
happen on the continuous part of the hybrid system. We will therefore restrict
the class of abstracting maps to the following form:

¢ : {Mq}qGQ - {Nq}qu
o(z,q) = (¢(2),q) (7)

that is, if ¢ is written as ¢ = (¢ar, ¢g), then ¢g is the identity map on @ = P.

Even though for continuous systems we can always extract abstractions that
preserve trajectories, for hybrid control systems additional constraints must be
imposed on the abstracting map to ensure timed language equivalence. This is
because the discrete dynamics rely heavily on certain sets, such as the guards
and the invariants, and we have to ensure that these sets are abstracted correctly
at the higher level.

3.2 Propagating Guards and Invariants

Let us zoom into a discrete state and consider the relevant sets which trigger
the discrete dynamics, namely the guards and the invariants. Timed language
equivalence requires that these sets must be aggregated in a consistent way.

Figure 1 represents the state space of the original system with the guard
defined by a relation of the type zo > const. When performing an abstraction
using the map ¢(z1,22) = zo, in the abstracted system it is still possible to
determine if the continuous part of the trajectory belongs or not on the guard.
No information required by the discrete dynamics was lost in the abstracting
process. However if the abstracting map is ¢(x1,z2) = 21 it is no longer possible
to determine if the continuous part of the trajectory belongs or not to the guard,
therefore it is not possible to generate the same timed language.

The essential property to be propagated is therefore the ability to distinguish
between sets ¢(A) and ¢(B) in the abstracted system if and only if it is possible
to distinguish between relevant sets A and B in the original system. The relevant
sets can be encoded in a partition of the state space, where each equivalence class
of the partition corresponds to a possible combination of guards and invariants.
The required partition can be modeled as a map ¥, defined as:

Wy M — D (8)

where D is a finite set. We assume that the map ¥, results in a topologically
well behaved partition®. Partition propagation can now be defined as:

% For example, the partition can be a subanalytic stratification [8].

\\Q§<

%

%
X1

Fig. 1. Detecting a guard.

Definition 10 (Partition Propagation). An abstracting map ¢ : M — N
propagates a partition Wy iff there exists a partition on N defined by a map
Uy : N — D such that the following diagram commutes.

¢

M N

U Uy

D (9)
or equivalently iff Uar(xz) = Uy o ¢(x).

Note that propagating the partitions is stronger than preserving the partition
which only requires that Wpr(z1) = Ppr(z2) = ¥n o ¢(x1) = PN o d(z2) and
allows, for example, merging two W), equivalence classes into a single equivalence
class in ¥y. This is not a desirable situation since the ability to distinguish
between the two equivalence classes is lost.

Although Definition 10 captures the fundamental property that the abstract-
ing map should possess it does not characterize it directly. A characterization is
given in the following proposition:

Proposition 1. An abstracting map ¢ : M — N propagates a partition Wy,
iff the preimage under ¢ of a point y € N is totally contained in a single ¥py
equivalence class, equivalently, if for all y € N there exists one and only one
d € D such that Wy 0 ¢~ (y) = {d}.

Proof. (Sufficiency) We proceed by contradiction. Suppose that ¥y (z) = ¥y o
¢(x) and there exist two different elements a,b € M that belong to two different
W), equivalence classes, that is ¥y (a) # Pp(b). Admit further that they are
mapped into the same point in N, ¢(a) = ¢(b). We have that @s(a) = Unog(a),
but since ¢(a) = ¢(b), Unog(a) = Unop(b) = Wy (b). Therefore ¥ps(a) = Py (b)
a contradiction.

3

(Necessity) We define explicitly the map ¥y as Un(y) = Pp(z) for all
z € ¢~ (y) which is well defined since ¢~!(y) is contained in a single ¥; equiv-
alence class. O

Proposition 1 states partition propagation conditions explicity on the ab-
stracting map ¢, but they are very difficult to check in general. However it is
rather intuitive that a sufficient condition for partition propagation is symmetry,
as expressed in the next proposition.

Proposition 2. Suppose that the partition Wy; on manifold M is invariant un-
der the action of a group G, then the abstracting map ¢ defined as the projection
from the manifold M to the orbit space M /G propagates the partition Wyy.

Proof. If the W), equivalence classes are invariant under G action, then the orbit
through the point g, namely O, = {z € M : x = gxo V,ec} is contained in
a W) equivalence class. Since the preimages under ¢ are precisely the sets O,
the conditions of Proposition 1 are satisfied. O

In fact, symmetry is also a necessary condition when more structure is im-
posed on the set M and the map ¢. To study general nonlinear abstracting maps
we consider that M and N are smooth manifolds and that the abstracting map
¢ is a smooth surjective submersion. Resorting to this differentiable structure,
Proposition 1 specializes to:

Proposition 3. A smooth surjective submersion ¢ : M — N between smooth
manifolds propagates a partition Wy if and only if the partition equivalence
classes are invariant under Ker(¢y).

Proof. (Sufficiency) The vectors in Ker(¢.) span an involuntive distribution
which has constant rank at every x € M since the map ¢ is a submersion. By
Frobenius theorem [1] there exists an integrating manifold that can be described
as the action of RP, with p = dim(K), on M given by v = ¢1(t1) 0 ¢a(t2) 0... 0
¢, (tp). Each ¢;(t;) is the flow of the vector field Z? from the generators of K, that
is K = Span{Z',Z?,...,ZP}. The partition equivalence classes are therefore
invariant under this action and by Proposition 2 the partition is propagated.
(Necessity) The preimage of a point y € N by ¢ is a smooth submanifold of M
when the derivative of ¢, is surjective, which is the case since ¢ is an submersion.
The tangent space of the submanifold ¢~!(y) is given by the vectors X € TM
that belong to Ker(¢,). Since the partition is propagated the preimage of a
point y € N by ¢ is totally contained inside a partition equivalence class and
therefore the partition equivalence classes are invariant under Ker(¢.). O

The above characterizations of the abstracting maps are critical in order to
propagate discrete trajectories from the original hybrid control system to the
abstracted one while ensuring timed language equivalence.

3.3 Hybrid Abstractions

Given a hybrid system, Hx and an abstracting map ¢, we now present a con-
struction that generates an hybrid abstraction Hy. The abstraction process de-
pends on the observation that the continuous dynamics in a particular discrete
state is essentially decoupled from the continuous dynamics in the other discrete
state, the only link being given by the Reset map. It is therefore possible to use
a different abstracting map ¢, in each discrete state ¢ € () of the hybrid system
Hx . More formally:

Definition 11 (Construction of hybrid abstractions). Consider hybrid
control system Hx = (X, Xo,Sx,Invx,Rx) with X = {M;},eq and consider
the collection of maps & = {¢q}eeq, ¢q : My — Ny. The resulting hybrid ab-
straction Hy = (Y, Yy, Sy, Invy, Ry) is a tuple consisting of:

— Forall g € Q, Ny = ¢4(M,), therefore the state space is Y = {N;}qeq-
— Yo = {N)}eeqo where NJ = ¢o(MY).
— Sy is a function that maps each q € Q to the minimal ¢4-abstraction of the
corresponding control system Sx (q) using the canonical construction (2,3).
~ Invy(q) = &,(Invx(q)).
— Ry ={((1,0), (', d") €Y xY : (y,q) = ¢g(x,9) N (¥, ¢') = ¢g(z',q') A
((z,q),(z',q") € Rx}. More specifically we have
e Guardy (e) = ¢4, (Guardx (e))
* Resety (e, ;) = ¢,; o Resetx (e, ¢,.' (xi)) for all e = (qi,q;) € E, x € M.

Therefore the discrete state space remains unaltered and only the continuous
state space is aggregated from M, to N, is each discrete location ¢ € @, and
similarly for the set of initial conditions. The continuous control system Sx (q)
is replaced by its minimal ¢,-abstraction. The new invariant on each location
g € @ is the image of the initial invariant under ¢,, that is ¢,(Invx(g)). The
reset relation Ry is the image of the reset relation Rx by the abstracting map
resulting in the new guards being the image of the initial guards by the abstract-
ing map. The reset maps Resety are given by the image under ¢4, of the reset
maps Resetx evaluated at every point of the set valued map qﬁq_il. The main
result relating hybrid abstraction constructed through Definition 11 and timed
language equivalence can now be stated as follows:

Theorem 4 (Timed language equivalent hybrid abstractions). Let Hx
and Hy be hybrid control systems and suppose Hy is obtained from Hx using
Definition 11. If the family of maps ® = {@q}qeq is such that the invariants and
guards in each discrete location g € Q are invariant under Ker(dq.) then Hy is
a P-abstraction of Hx.

If furthermore Ker(¢q«) C Liey(Snm(q)) for each ¢ € Q then Hx and Hy
generate the same timed language.

Proof. To show that Hy is a $-abstraction of Hx we need to show that for every
trajectory efIx = (2(7),q(7)), ®(cfx) is a trajectory of Hy. For any trajectory
(z(1),q(r)) of Hx, (z(0),q(0)) € Xo, therefore &(z(0),q(0)) = (#4(0),q(0)) € Yo

T2 >0 qo
z:=—1— |2y
I = 7%332-!—1,29:? +zu T2 =22 T =Ty +zf
;'v:z:%wlfxfa;éfwgu ig:sillm1+x1x§+1t
1 >0
x1xe < 0 1.1::71,‘1.1‘ x1 <0
Ty =1+ |2y

Fig. 2. Hybrid control system Hx.

since NY = ¢,(M). As long as the trajectory cfx flows continuously on a
state ¢ € @, z(7) is a trajectory of Sx(q), therefore y(7) is a trajectory of
Sy (q) since Sy (p) is ¢q-related to Sx(¢) and z(7) € Invx(q) implies y(7) €
Invy (q) by construction and partition propagation. When z(7) enters a guard
Guardx (e), y(7) enters Guardy (e) by construction and partition propagation.
If the hybrid control system Hx jumps from location g; to location ¢; then Hy
can also take the same transition since the finite graphs of Hy and Hx are equal
and the corresponding transitions become enabled at the same time. After the
jump z(7) € Resetx(e,z') and therefore y(7) € Resety(e,y’) by construction
of Resety. Since the trajectory c¢x is composed of continuous flows and jumps
and Hy simulates both, a finite induction argument on the number of jumps
concludes the proof.

To show timed language equivalence it suffices to show that hybrid control
system Hx is capable of simulating the continuous part of every Hy trajectory
since both systems have the same finite graph. This is now a direct consequence
of using the minimal control abstraction Sy (q) of control system Sys(g) in each
discrete location ¢ € () as Theorem 3 asserts that both control systems are exact
time controllability equivalent. O

4 Example

We illustrate our results by a simple example. Consider the hybrid control system
Hx displayed in Figure 2. Using as abstracting maps ¢4, = z122 and ¢4, = 1
we extract the timed language equivalent abstraction presented in Figure 3. Due
to space restrictions, we shall present the details regarding state g-. We start by
noting that Inwv(ge) is invariant under Ker(¢g,.) = K = 6%2 since K is every-
where tangent to the surfaces 1 = const. The guard is given by the complement
of the invariant and is, therefore, also invariant under K. The next step is to
determine if ¢,, satisfies Theorem 3 conditions, but this is automatically true
since K = g1(x), and therefore K € Lie,{g1(x)} = {¢1(2)}. The new dynamics
in each location can be determined through the construction (2, 3). Writing the

dynamics as & = f(z) + g(z)u we compute [K, f] = X1 = % + 2:51332% and

Fig. 3. Hybrid abstraction Hy of the hybrid control system Hx.

K, X|] = X, = 22, -2-. However X5 in linearly dependent on g so that:

dza
Du ={f,9,X1} (10)
Computing the pushforward by ¢,, of Dys(x) we get:
a 0

— 11
61‘1‘61‘1 ()

4o« (D (2)) = {(22 + 27)
In N coordinates, (given by z'), 21 equals z' and x5 is now regarded as a control
input v. The new dynamics is then given by z' = 14+2'°+v and after introducing a
new control input given by u' = v+1+z'% we get finally ' = u’. The invariant on
N becames z; = 2’ < 0 and the guard reads ' > 0. To determine the new reset
map one computes ¢_ ' (2') = {(x1,22) € M : ; = 2’ Az € R}. Using this data

the reset map of the hybrid automaton Hy is z; := —1—|z'| = —1—2' (since the
guard is only enable for 1 > 0) and x5 := 1+ [0, +00[= [1, +oc[. Aplying ¢, to
this reset maps gives the new reset map ' := (=1—2')([1, +00[) =]—o00, =1 —2'].

Note how in this case the nonlinear dynamics could be simplified in such a
way that HYTECH [5] or other similar tool can be used to analyze the resulting
abstraction. For a more complicated example which extracts a hybrid abstraction
from a purely continuous system, the reader is referred to [14].

5 Conclusions

In this paper, we have considered the problem of extracting hybrid abstractions
from hybrid control systems while preserving timed languages. Generalizing the
results of this paper to more general abstracting maps and more general prop-
erties is clearly important. Different properties may require different conditions
on the abstracting maps, as well as different compatibility conditions between
the abstracting maps and the guards, invariants, and continuous dynamics.

Acknowledgment: This work was performed while the first author was visiting
the University of Pennsylvania. This research is partially supported by DARPA
MoBIES grant F33615-00-C-1707, DARPA JFACC Grant N66001-99-C-8510,
the University of Pennsylvania Research Foundation, and by Fundacio para a
Ciéncia e Tecnologia under grant PRAXIS XXI/BD/18149/98.

References

1.

2.

=~

10.
11.

12.

13.

14.

15.

R. Abraham, J. Marsden, and T. Ratiu. Manifolds, Tensor Analysis and Applica-
tions. Applied Mathematical Sciences. Springer-Verlag, 1988.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

Rajeev Alur, Tom Henzinger, Gerardo Lafferriere, and George J. Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971-984, July 2000.

. A. Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello, and A. L. Sangiovanni-

Vicentelli. Automotive engine control and hybrid systems: Challenges and oppor-
tunities. Proceedings of the IEEE, 88(7):888-912, July 2000.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In
E. Brinksma, W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, editors,
TACAS 95: Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science 1019, pages 41-71. Springer-
Verlag, 1995.

A. Isidori. Nonlinear Control Systems. Springer-Verlag, second edition, 1989.
Velimir Jurdjevic. Geometric Control Theory. Cambridge University Press, 1997.
Gerardo Lafferriere, George J. Pappas, and Shankar Sastry. Subanalytic stratifi-
cations and bisimulations. In T. Henzinger and S. Sastry, editors, Hybrid Systems
: Computation and Control, volume 1386 of Lecture Notes in Computer Science,
pages 205—-220. Springer Verlag, Berlin, 1998.

John Lygeros, Claire Tomlin, and Shankar Sastry. Controllers for reachability
specifications for hybrid systems. Automatica, 35(3):349-370, 1999.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

George J. Pappas, Gerardo Lafferriere, and Shankar Sastry. Hierarchically consis-
tent control systems. IEEE Transactions on Automatic Control, 45(6):1144-1160,
June 2000.

George J. Pappas and Shankar Sastry. Towards continuous abstractions of dy-
namical and control systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
editors, Hybrid Systems IV, volume 1273 of Lecture Notes in Computer Science,
pages 329-341. Springer Verlag, Berlin, Germany, 1997.

George J. Pappas and Slobodan Simic. Consistent hierarchies of nonlinear ab-
stractions. In Proceedings of the 39th IEEE Conference in Decision and Control.
Sydney, Australia, December 2000.

Paulo Tabuada, George J. Pappas, and Pedro Lima. Hybrid abstractions: A search
and rescue case study. In Proceedings of the 2001 European Control Conference,
Porto, September 2001. Submitted.

Claire Tomlin, George J. Pappas, and Shankar Sastry. Conflict resolution for air
traffic management : A study in muti-agent hybrid systems. IEEE Transactions
on Automatic Control, 43(4):509-521, April 1998.

