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t. In this paper we 
onsider the problem of extra
ting an ab-stra
tion from a hybrid 
ontrol system while preserving timed languages.Su
h 
onsistent abstra
tions are 
learly useful as the abstra
ted, higherlevel model 
ould be used for 
ontroller synthesis or veri�
ation of themore 
ompli
ated lower level model. The 
lass of abstra
ting maps we
onsider in this paper 
ompress only the 
ontinuous states without aggre-gating any dis
rete states. Given su
h an abstra
ting map, we determinenatural 
onditions that determine when traje
tories of the original hybridsystem 
an be generated by the abstra
ted hybrid system. Conversely,we determine 
onditions under whi
h the two hybrid systems generateexa
tly the same timed language.1 Introdu
tionThe analysis and synthesis of hybrid 
ontrol systems has re
eived tremendousattention re
ently. The s
ale of the motivating appli
ations, su
h as air traf-�
 management systems [15℄ or automotive engine 
ontrol systems [4℄, requirethat the resulting analysis and 
ontrol methodologies s
ale up eÆ
iently, in or-der to fa
ilitate the realisti
 appli
ation of 
omputational methods to real-s
aleexamples.One of the fundamental approa
hes to redu
ing the 
omplexity of large s
alesystem analysis and design is the pro
ess of abstra
tion. From an analysis per-spe
tive, given a model and a property of interest, one tries to extra
t a simplermodel, an abstra
tion, that preserves the property of interest while ignoring ir-relevant details. This approa
h has been used su

essfully in extra
ting dis
reteabstra
tions of hybrid systems while preserving many properties that 
an beexpressed in various temporal logi
s [3℄.From a design perspe
tive, given a hybrid 
ontrol system, one would liketo extra
t an abstra
ted hybrid system, perform the design at the higher levelabstra
tion, and then re�ne the design at the lower level. In this hierar
hi
alsetting, a methodology whi
h extra
ts a hierar
hy of hybrid system models atvarious levels of abstra
tion is 
riti
al.Due to the 
omplexity of 
ombinatorial problems, the notion of abstra
tion ismore mature in theoreti
al 
omputer s
ien
e than 
ontrol theory. For purely dis-
rete systems, the notions of language equivalen
e, simulation, and bisimulation



are established [10℄. For purely 
ontinuous systems, however, these 
on
epts areonly re
ently beginning to emerge. In parti
ular, in [12℄, a notion of abstra
tionfor 
ontinuous systems was formalized. In [11℄ rea
hability preserving abstra
-tions of 
ontinuous linear systems were 
hara
terized, leading to hierar
hi
alrea
hability algorithms for linear 
ontrol systems. In [13℄, these results wheregeneralized for nonlinear analyti
 systems. A general theory of abstra
tion forhybrid systems will 
learly merge the 
ontinuous and dis
rete approa
hes.In this paper, we address the problem of extra
ting a hybrid abstra
tion froma hybrid 
ontrol model while preserving timed languages. Given a hybrid system,the timed language is simply the timed traje
tory of the dis
rete states. There-fore, the timed language maintains the dis
rete state the system is in as well asrelevant timing information.This problem is important for a variety for reasons. For s
heduling multiplephysi
al pro
esses (su
h as air traÆ
 management systems), the higher level maybe simply interested in whi
h dis
rete mode ea
h pro
ess is in (landing, holding,et
.) and when. Therefore the higher level (air traÆ
 
ontrol) would like then touse the simplest possible model of an air
raft that is 
ompatible with the originalair
raft dynami
s but also with the s
heduling operation. Furthermore, the re-sults of this paper 
an be easily adapted to properly extra
t hybrid abstra
tionsfrom purely 
ontinuous systems [14℄. Finally, the results of the paper are the �ststeps towards a more general abstra
tion methodology for hybrid systems.In order for the abstra
ted model to generate the same dis
rete symbols,we 
onsider aggregating only the 
ontinuous dynami
s. Abstra
ting the 
on-tinuous dynami
s while preserving the timed language requires the abstra
tionpro
ess to be done in manner that allows us to dete
t all the dis
rete transi-tions. This pla
es a natural 
ondition between the abstra
ting maps, guards andinvariants of the dis
rete transitions. Assuming that our aggregating maps sat-isfy these 
onditions, we show that hybrid traje
tories of the original model 
anbe simulated by the abstra
ted model. Consequently, the abstra
ted model alsogenerates the same timed language. In general, the abstra
ted system is not atimed automaton [2℄, as we may need to preserve ri
her 
ontinuous dynami
s inorder to properly dete
t the dis
rete transitions.In order to ensure that timed traje
tories of the abstra
ted model are feasibleby the original hybrid model, we rely heavily on the abstra
tion results for 
on-tinuous systems [13℄. These results give us 
onstru
tive methods for extra
tinghierar
hies of nonlinear 
ontrol systems while preserving exa
t time 
ontrollabil-ity. Exa
t time 
ontrollability allows us to preserve a form of timed rea
hability.Using these results, we 
an pla
e additional 
onditions on our abstra
ting mapsin order to ensure that in ea
h dis
rete lo
ation, the ability to rea
h a 
ertainguard at the same time 
an be done at both levels of abstra
tion. This allows usto show that the timed language generated at the high level 
an be implementedat the lower level.This paper is organized as follows : In Se
tion 2, we review the 
ontinuousabstra
tion methodology as presented in [11, 13℄. In Se
tion 3, we de�ne hybridsystems, and determine 
onditions under whi
h the hybrid abstra
tion and the



original hybrid system model 
an generate the same timed language. Our 
on-stru
tions are brie
y illustrated by a simple example in Se
tion 4, but the readeris referred to a more detailed appli
ation in [14℄. Se
tion 5 
ontains interestingissues for further resear
h.2 Abstra
tions of Continuous SystemsContrary to di�erential equations whose abstra
tions are 
hara
terized by verystri
t 
onditions, abstra
tions of 
ontrol systems involve only moderate 
on-ditions due to the nondeterministi
 nature of 
ontrol systems. In subsequentdis
ussion, we assume the reader is familiar with di�erential geometri
 
on
eptsat the level presented in [1℄.2.1 Abstra
tions of Control SystemsWe begin with an abstra
t de�nition of a 
ontrol system:De�nition 1 (Control System). A 
ontrol system S = (U; F ) 
onsists of a�ber bundle � : U �! M 
alled the 
ontrol bundle and a smooth map F : U�! TM whi
h is �ber preserving, that is �0 Æ F = � where �0 : TM �! M isthe tangent bundle proje
tion. Given a 
ontrol system S = (U; F ), the 
ontroldistribution D of 
ontrol system S, is naturally de�ned pointwise by D(x) =F (��1(x)) for all x 2M .The 
ontrol spa
e U is modeled as a �ber bundle sin
e in general the 
on-trol inputs available may depend on the 
urrent state of the system. On a lo
al
oordinate 
hart, De�nition 1 
an be read as ddtx = f(x; u) with u 2 ��1(x),therefore re
overing the traditional form of the 
ontrol system. Before intro-du
ing the notion of abstra
tion for 
ontinuous 
ontrol systems, the 
on
ept oftraje
tories of 
ontrol systems is required:De�nition 2 (Traje
tories of Control Systems). A 
urve 
 : I �! M ,I � R+0 is 
alled a traje
tory of 
ontrol system S = (U; F ) if there exists a 
urve
U : I �! U satisfying: � Æ 
U = 
ddt 
(t) = 
�( ddt ) = 
�(1) = F (
U )Again in lo
al 
oordinates, the above de�nition simply says that x(t) is asolution to a 
ontrol system if there exists an input u(t) 2 U(x(t)) = ��1(x(t))satisfying ddtx(t) = f(x(t); u(t)). Our goal is to 
onstru
t a map � :M �! N ,the abstra
tion map or aggregation map, that will indu
e a new 
ontrol sys-tem (UN ; FN ) on the lower dimensional manifold N having as traje
tories �(
),where 
 are S traje
tories. The 
on
ept of abstra
tion map for 
ontinuous 
ontrolsystems is de�ned as follows:



De�nition 3 (Abstra
tion Map). Let SM = (UM ; FM ) and SN = (UN ; FN )be two 
ontrol systems on manifolds M and N , respe
tively. A map � : M �! Nis 
alled an abstra
tion or aggregation map i� for every traje
tory 
M of SM ,�(
M ) is a traje
tory of SN . Control system SN is 
alled a �-abstra
tion of SM .The above de�nition is 
learly inspired from the notions of language equiva-len
e and simulation of transition systems [10℄. From De�nition 3, it is 
lear thatan abstra
tion 
aptures all the traje
tories of the original system, but may also
ontain redundant traje
tories. These redundant traje
tories are not feasible bythe original system and are therefore undesired.Sin
e De�nition 3 de�nes abstra
tions at the level of traje
tories, it is diÆ
ultto determine whether a 
ontrol system is an abstra
tion of another one, sin
ethis would require integration of the 
ontrol systems. One is then interested ina 
hara
terization of abstra
tions whi
h is equivalent to De�nition 3 but easily
he
kable. To pursue this, one needs to introdu
e the notion of �-related 
ontrolsystems.De�nition 4 (�-related 
ontrol systems). Let SM = (UM ; FM ) and SN =(BN ; FN ) be two 
ontrol systems de�ned on manifolds M and N , respe
tively. Let� : M �! N be a smooth map. Then 
ontrol systems SM and SN are �-relatedi� for every x 2M ���FM���1M (x)�� � FN���1N (�(x))� (1)The notion of �-related 
ontrol systems is a generalization of �-related ve
tor�elds 
ommonly found in di�erential geometry as explained in [11℄. It is evidentthat given two systems that are �-related to a 
ontrol system their interse
-tion is also �-related. This immediately suggests that given a 
ontrol systemand a map �, there is a minimal �-related 
ontrol system, in whi
h 
ase thein
lusion (1) 
an be repla
ed by equality1. We 
an now provide the 
onne
tionbetween abstra
tions and �-related 
ontrol systems:Theorem 1 ([12, 11℄). Let SM and SN be 
ontrol systems on manifolds M andN , respe
tively, and � :M �! N a smooth map. Then SM and SN are �-relatedif and only if SN is a �-abstra
tion of SM .The 
ontrol system SN is 
alled theminimal �-abstra
tion of a 
ontrol systemSM i� SN is the minimal system that is �-related to SM .For analyti
 
ontrol systems there is a 
onstru
tive method whi
h given a
ontrol system SM and a map � : M �! N , generates a �-abstra
tion SN . This
onstru
tion, whi
h generalizes the 
onstru
tion for linear systems des
ribedin [11℄, is now brie
y reviewed. The reader is referred to [13℄ for more details.Given two distributions A and B on manifold M , de�ne a distribution [A;B℄by de
laring [A;B℄(p) to be the subspa
e of TpM generated by ve
tors of the form[X;Y ℄(p), where X ,Y are any two analyti
 ve
tor �elds in A and B respe
tively,1 Note that this minimal element is unique up to a 
hange of 
oordinates.



and [X;Y ℄ is their Lie bra
ket. By resorting to this 
onstru
tive method, de�nethe distribution DM as:DM = K [ DM [ [K;DM ℄ [ [K; [K;DM ℄℄ [ : : : (2)where K is the integrable distribution Ker(��), �� is the push forward map of �,and DM the distribution asso
iated with 
ontrol system SM . Distribution DMallows us to 
onstru
t the minimal �-abstra
tion on N as:DN (y) = ���DM (x)� (3)for any x 2 ��1(y). If SN is extra
ted from SM using this 
anoni
al 
onstru
tion,then 
ontrol system SN will be referred to as 
anoni
ally �-related to SM .2.2 Controllability Equivalen
eIn general, sin
e the abstra
ted system is less 
onstrained, the abstra
ted modelmay allow evolutions that might not be implementable on the original system.However the original system and its abstra
tion 
an still be rendered equivalentregarding some properties of interest. In this paper, we will fo
us on exa
t time
ontrollability whi
h is de�ned using the rea
hable sets of 
ontrol system SM :De�nition 5 (Rea
hable set [7℄). For ea
h T > 0, and ea
h x in M , the setof points rea
hable from x at time T , denoted by Rea
h(x; T ), is equal to the setof terminal points 
M (T ) of SM traje
tories that originate at x.De�nition 6 (Exa
t Time Controllability). A 
ontrol system is said to beexa
t time 
ontrollable if for any T > 0, Rea
h(x; T ) =M for any x 2M .Consider two systems SM and SN and a surje
tive map � :M �! N . Controlsystems SM and SN are equivalent from an exa
t time 
ontrollability point ofview if the following property holds: there exists an SM traje
tory 
onne
tingx1 2M to x2 2M in time T if and only if there exists a SN traje
tory 
onne
ting�(x1) 2 N to �(x2) 2 N also in time T . This property is 
learly reminis
ent oftimed-bisimulations [10℄.If we assume that the 
ontrol system is aÆne in the 
ontrol, that is, on lo
al
harts it 
an be written as:F (x; u) = f(x) + kXi=1 gi(x)ui (4)then we 
an 
hara
terize exa
t time 
ontrollability through the Lie algebra gen-erated by fg1(x); g2(x); : : : ; gk(x)g and denoted by Lieg(SM ).Theorem 2 ([7℄). An analyti
 
ontrol system SM aÆne in 
ontrol, as de�nedin (4), is exa
t time 
ontrollable if Lieg(SM (x)) = TxM for every x 2M .



We defer the reader to [6, 7℄ for further details regarding the various notions and
on
epts of 
ontrollability. The main theorem regarding 
ontrollability equiva-len
e of abstra
tions (see [13℄) 
an now be restated as follows:Theorem 3 (Exa
t Time Controllability Equivalen
e). Let SM and SNbe two analyti
 
ontrol systems on analyti
 manifolds M and N , respe
tively,and let N be an embedded submanifold of M . Let � : M �! N be an analyti
surje
tive submersion. If SN is 
anoni
ally �-related to SM andKer(��) � Lieg(SM ) (5)then SN is exa
t time 
ontrollable i� SM is.Equations (2,3) and Theorem 3 provide a 
onstru
tive way of building 
on-tinuous abstra
tions that propagate rea
hable sets, and in parti
ular exa
t time
ontrollability. When additional properties must be propagated, additional 
on-straints must be imposed on the abstra
ting maps.3 Hybrid Control Abstra
tionsAlthough hybrid abstra
tions follow the same 
on
eptual ideas of dis
rete and
ontinuous abstra
tions, their study is somewhat more involved due to the 
om-pli
ated nature of hybrid traje
tories. We start with a hybrid system model thatallows di�erent 
ontinuous spa
es in ea
h dis
rete lo
ation.De�nition 7 (Hybrid Control System). A hybrid 
ontrol system is a tupleH = (X;X0; S; Inv;R) with the following 
omponents:{ X is the state spa
e of the hybrid 
ontrol system and is given by a family ofsmooth manifolds X = fMqgq2Q indexed2 by a �nite set Q. Ea
h state thushas the form (x; q), where x 2 Mq is the 
ontinuous part of the state, andq 2 Q is the dis
rete part.{ X0 = fM0q gq2Q0 � X is the set of initial states.{ S: Q ! f(Uq; Fq) : (Uq ; Fq) is a 
ontrol system on Mqg assigns to ea
hdis
rete state q 2 Q a 
ontrol system (Uq ; Fq) whi
h governs the evolution ofthe 
ontinuous part of the state. Thus in dis
rete lo
ation q, the 
ontinuouspart of the state satis�es ddtx = f(x; q; u) with u 2 ��1(x; q).{ Inv: Q! 2X assigns to ea
h lo
ation q 2 Q an invariant set Inv(q) �Mq.{ R � X �X is a relation 
apturing the dis
rete jumps.Hybrid systems are typi
ally represented as �nite graphs with verti
es Q,and edges E de�ned byE = f(q; q0) 2 Q�Q j ((x; q); (x0; q0)) 2 R for x 2 Inv(q) and x0 2 Inv(q0)g:2 When all the manifolds Mq are equal, then the state spa
e X is X =M �Q.



With ea
h edge e = (q; q0) 2 E we asso
iate a guard set de�ned asGuard(e) = fx 2 Inv(q) j ((x; q); (x0; q0)) 2 R for some x0 2 Inv(q0)gand a set-valued reset mapReset(e; x) = fx0 2 Inv(q0) j ((x; q); (x0; q0)) 2 Rg:Traje
tories of the hybrid system H originate at any initial state (x; q) 2 X0 and
onsist of 
on
atenations of 
ontinuous 
ows and dis
rete jumps. Continuous
ows keep the dis
rete part of the state 
onstant at q, and the 
ontinuous partevolves over time a

ording to the 
ontrol system ddtx = f(x; q; u), as long as xremains inside the invariant set Inv(q). If during the 
ontinuous 
ow, it happensthat x 2 Guard(e) for some e = (q; q0) 2 E, then the edge e be
omes enabled.The state of the hybrid system may then instantaneously jump from (x; q) toany (x0; q0) with x0 2 Reset(e; x). Then the pro
ess repeats, and the 
ontinuouspart of the state evolves a

ording to the 
ontrol system ddtx = f(x; q0; u). Weshall therefore assume that a traje
tory of an hybrid 
ontrol system is a map3 �from a time set T to the state spa
e X = fMqgq2Q of H , that is:� : T �! fMqgq2Q� 7! (x(�); q(�)) (6)An abstra
ting map for hybrid systems 
an now be de�ned in the same way itwas de�ned for 
ontinuous systems.De�nition 8 (Abstra
tion Map). Let HX = (X;X0; SX ; InvX ; RX) andHY = (Y; Y0; SY ; InvY ; RY ) be two hybrid 
ontrol systems with X = fMqgq2Qand Y = fNpgp2P . A map � : X �! Y is 
alled an abstra
tion or aggregationmap i� for every traje
tory 
HX of HX , �(
HX ) is a traje
tory of HY .Even though, we are interested in general abstra
ting maps, we now fo
us ona sub
lass of abstra
ting maps that are suitable for preserving timed languages.3.1 Timed Language Generated by a Hybrid SystemIn this paper we shall fo
us on abstra
tions that render the original systemand its abstra
tion equivalent regarding the timed language they 
an generate.The timed string 
orresponding to a traje
tory �(�) = (x(�); q(�)) of an hybrid
ontrol system is simply given by q(t). Naturally q(t) 
an be regarded as a timedstring4 sin
e it 
an be written in the more usual form f(t; q(t))gt2R+0 . The timedlanguage generated by an hybrid 
ontrol system is therefore de�ned as:3 When multiple dis
rete jumps in zero time are allowed, a more 
omplex notion oftime is required to regard an hybrid traje
tory as a map, see for example [9℄.4 The string s = q(t) 
an be transformed to retain only the dis
rete states, and the�rst instan
e of time at whi
h the system has 
hanged dis
rete state. The resultspresented in this paper are however independent of that transformation.



De�nition 9 (Timed language of a hybrid system). Let H be a hybrid
ontrol system. The timed language generated by H and denoted by �H is givenby all the strings q(t), where q(t) is the dis
rete part of an hybrid traje
tory�(�) = (x(�); q(�)) of H.With this notion of timed language, timed language equivalen
e between twohybrid system requires the dis
rete behavior of the hybrid abstra
tion to be equalto the dis
rete behavior of the original system. Therefore aggregation 
an onlyhappen on the 
ontinuous part of the hybrid system. We will therefore restri
tthe 
lass of abstra
ting maps to the following form:� : fMqgq2Q �! fNqgq2Q�(x; q) = (�(x); q) (7)that is, if � is written as � = (�M ; �Q), then �Q is the identity map on Q = P .Even though for 
ontinuous systems we 
an always extra
t abstra
tions thatpreserve traje
tories, for hybrid 
ontrol systems additional 
onstraints must beimposed on the abstra
ting map to ensure timed language equivalen
e. This isbe
ause the dis
rete dynami
s rely heavily on 
ertain sets, su
h as the guardsand the invariants, and we have to ensure that these sets are abstra
ted 
orre
tlyat the higher level.3.2 Propagating Guards and InvariantsLet us zoom into a dis
rete state and 
onsider the relevant sets whi
h triggerthe dis
rete dynami
s, namely the guards and the invariants. Timed languageequivalen
e requires that these sets must be aggregated in a 
onsistent way.Figure 1 represents the state spa
e of the original system with the guardde�ned by a relation of the type x2 > 
onst. When performing an abstra
tionusing the map �(x1; x2) = x2, in the abstra
ted system it is still possible todetermine if the 
ontinuous part of the traje
tory belongs or not on the guard.No information required by the dis
rete dynami
s was lost in the abstra
tingpro
ess. However if the abstra
ting map is �(x1; x2) = x1 it is no longer possibleto determine if the 
ontinuous part of the traje
tory belongs or not to the guard,therefore it is not possible to generate the same timed language.The essential property to be propagated is therefore the ability to distinguishbetween sets �(A) and �(B) in the abstra
ted system if and only if it is possibleto distinguish between relevant sets A and B in the original system. The relevantsets 
an be en
oded in a partition of the state spa
e, where ea
h equivalen
e 
lassof the partition 
orresponds to a possible 
ombination of guards and invariants.The required partition 
an be modeled as a map 	M de�ned as:	M :M �! D (8)where D is a �nite set. We assume that the map 	M results in a topologi
allywell behaved partition5. Partition propagation 
an now be de�ned as:5 For example, the partition 
an be a subanalyti
 strati�
ation [8℄.
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Fig. 1. Dete
ting a guard.De�nition 10 (Partition Propagation). An abstra
ting map � : M �! Npropagates a partition 	M i� there exists a partition on N de�ned by a map	N : N �! D su
h that the following diagram 
ommutes.M N-�D	M����R 	N����	 (9)or equivalently i� 	M (x) = 	N Æ �(x).Note that propagating the partitions is stronger than preserving the partitionwhi
h only requires that 	M (x1) = 	M (x2) ) 	N Æ �(x1) = 	N Æ �(x2) andallows, for example, merging two 	M equivalen
e 
lasses into a single equivalen
e
lass in 	N . This is not a desirable situation sin
e the ability to distinguishbetween the two equivalen
e 
lasses is lost.Although De�nition 10 
aptures the fundamental property that the abstra
t-ing map should possess it does not 
hara
terize it dire
tly. A 
hara
terization isgiven in the following proposition:Proposition 1. An abstra
ting map � : M �! N propagates a partition 	Mi� the preimage under � of a point y 2 N is totally 
ontained in a single 	Mequivalen
e 
lass, equivalently, if for all y 2 N there exists one and only oned 2 D su
h that 	M Æ ��1(y) = fdg.Proof. (SuÆ
ien
y) We pro
eed by 
ontradi
tion. Suppose that 	M (x) = 	N Æ�(x) and there exist two di�erent elements a; b 2M that belong to two di�erent	M equivalen
e 
lasses, that is 	M (a) 6= 	M (b). Admit further that they aremapped into the same point in N , �(a) = �(b). We have that 	M (a) = 	N Æ�(a),but sin
e �(a) = �(b), 	N Æ�(a) = 	N Æ�(b) = 	M (b). Therefore 	M (a) = 	M (b),a 
ontradi
tion.



(Ne
essity) We de�ne expli
itly the map 	N as 	N (y) = 	M (x) for allx 2 ��1(y) whi
h is well de�ned sin
e ��1(y) is 
ontained in a single 	M equiv-alen
e 
lass. utProposition 1 states partition propagation 
onditions expli
ity on the ab-stra
ting map �, but they are very diÆ
ult to 
he
k in general. However it israther intuitive that a suÆ
ient 
ondition for partition propagation is symmetry,as expressed in the next proposition.Proposition 2. Suppose that the partition 	M on manifold M is invariant un-der the a
tion of a group G, then the abstra
ting map � de�ned as the proje
tionfrom the manifold M to the orbit spa
e M=G propagates the partition 	M .Proof. If the 	M equivalen
e 
lasses are invariant under G a
tion, then the orbitthrough the point x0, namely Ox0 = fx 2 M : x = gx0 8g2Gg is 
ontained ina 	M equivalen
e 
lass. Sin
e the preimages under � are pre
isely the sets Ox0the 
onditions of Proposition 1 are satis�ed. utIn fa
t, symmetry is also a ne
essary 
ondition when more stru
ture is im-posed on the setM and the map �. To study general nonlinear abstra
ting mapswe 
onsider that M and N are smooth manifolds and that the abstra
ting map� is a smooth surje
tive submersion. Resorting to this di�erentiable stru
ture,Proposition 1 spe
ializes to:Proposition 3. A smooth surje
tive submersion � : M �! N between smoothmanifolds propagates a partition 	M if and only if the partition equivalen
e
lasses are invariant under Ker(��).Proof. (SuÆ
ien
y) The ve
tors in Ker(��) span an involuntive distributionwhi
h has 
onstant rank at every x 2 M sin
e the map � is a submersion. ByFrobenius theorem [1℄ there exists an integrating manifold that 
an be des
ribedas the a
tion of Rp , with p = dim(K), on M given by 
 = �1(t1) Æ �2(t2) Æ : : : Æ�p(tp). Ea
h �i(ti) is the 
ow of the ve
tor �eld Zi from the generators of K, thatis K = SpanfZ1; Z2; : : : ; Zpg. The partition equivalen
e 
lasses are thereforeinvariant under this a
tion and by Proposition 2 the partition is propagated.(Ne
essity) The preimage of a point y 2 N by � is a smooth submanifold ofMwhen the derivative of �, is surje
tive, whi
h is the 
ase sin
e � is an submersion.The tangent spa
e of the submanifold ��1(y) is given by the ve
tors X 2 TMthat belong to Ker(��). Sin
e the partition is propagated the preimage of apoint y 2 N by � is totally 
ontained inside a partition equivalen
e 
lass andtherefore the partition equivalen
e 
lasses are invariant under Ker(��). utThe above 
hara
terizations of the abstra
ting maps are 
riti
al in order topropagate dis
rete traje
tories from the original hybrid 
ontrol system to theabstra
ted one while ensuring timed language equivalen
e.



3.3 Hybrid Abstra
tionsGiven a hybrid system, HX and an abstra
ting map �, we now present a 
on-stru
tion that generates an hybrid abstra
tion HY . The abstra
tion pro
ess de-pends on the observation that the 
ontinuous dynami
s in a parti
ular dis
retestate is essentially de
oupled from the 
ontinuous dynami
s in the other dis
retestate, the only link being given by the Reset map. It is therefore possible to usea di�erent abstra
ting map �q in ea
h dis
rete state q 2 Q of the hybrid systemHX . More formally:De�nition 11 (Constru
tion of hybrid abstra
tions). Consider hybrid
ontrol system HX = (X;X0; SX ; InvX ; RX) with X = fMqgq2Q and 
onsiderthe 
olle
tion of maps � = f�qgq2Q, �q : Mq �! Nq. The resulting hybrid ab-stra
tion HY = (Y; Y0; SY ; InvY ; RY ) is a tuple 
onsisting of:{ For all q 2 Q, Nq = �q(Mq), therefore the state spa
e is Y = fNqgq2Q.{ Y0 = fN0q gq2Q0 where N0q = �q(M0q ).{ SY is a fun
tion that maps ea
h q 2 Q to the minimal �q-abstra
tion of the
orresponding 
ontrol system SX(q) using the 
anoni
al 
onstru
tion (2,3).{ InvY (q) = �q(InvX (q)).{ RY = f�(y; q); (y0; q0)� 2 Y � Y : (y; q) = �q(x; q) ^ (y0; q0) = �q0(x0; q0) ^((x; q); (x0; q0)) 2 RXg. More spe
i�
ally we have� GuardY (e) = �qi (GuardX (e))� ResetY (e; xi) = �qj ÆResetX(e; ��1qi (xi)) for all e = (qi; qj) 2 E, x 2M .Therefore the dis
rete state spa
e remains unaltered and only the 
ontinuousstate spa
e is aggregated from Mq to Nq is ea
h dis
rete lo
ation q 2 Q, andsimilarly for the set of initial 
onditions. The 
ontinuous 
ontrol system SX(q)is repla
ed by its minimal �q-abstra
tion. The new invariant on ea
h lo
ationq 2 Q is the image of the initial invariant under �q , that is �q(InvX (q)). Thereset relation RY is the image of the reset relation RX by the abstra
ting mapresulting in the new guards being the image of the initial guards by the abstra
t-ing map. The reset maps ResetY are given by the image under �qj of the resetmaps ResetX evaluated at every point of the set valued map ��1qi . The mainresult relating hybrid abstra
tion 
onstru
ted through De�nition 11 and timedlanguage equivalen
e 
an now be stated as follows:Theorem 4 (Timed language equivalent hybrid abstra
tions). Let HXand HY be hybrid 
ontrol systems and suppose HY is obtained from HX usingDe�nition 11. If the family of maps � = f�qgq2Q is su
h that the invariants andguards in ea
h dis
rete lo
ation q 2 Q are invariant under Ker(�q�) then HY isa �-abstra
tion of HX .If furthermore Ker(�q�) � Lieg(SM (q)) for ea
h q 2 Q then HX and HYgenerate the same timed language.Proof. To show that HY is a �-abstra
tion of HX we need to show that for everytraje
tory 
HX = (x(�); q(�)), �(
HX ) is a traje
tory of HY . For any traje
tory(x(�); q(�)) of HX , (x(0); q(0)) 2 X0, therefore �(x(0); q(0)) = (�q(0); q(0)) 2 Y0
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ontrol system HX .sin
e N0q = �q(M0q ). As long as the traje
tory 
HX 
ows 
ontinuously on astate q 2 Q, x(�) is a traje
tory of SX(q), therefore y(�) is a traje
tory ofSY (q) sin
e SY (p) is �q-related to SX(q) and x(�) 2 InvX (q) implies y(�) 2InvY (q) by 
onstru
tion and partition propagation. When x(�) enters a guardGuardX (e), y(�) enters GuardY (e) by 
onstru
tion and partition propagation.If the hybrid 
ontrol system HX jumps from lo
ation qi to lo
ation qj then HY
an also take the same transition sin
e the �nite graphs of HY and HX are equaland the 
orresponding transitions be
ome enabled at the same time. After thejump x(�) 2 ResetX(e; x0) and therefore y(�) 2 ResetY (e; y0) by 
onstru
tionof ResetY . Sin
e the traje
tory 
HX is 
omposed of 
ontinuous 
ows and jumpsand HY simulates both, a �nite indu
tion argument on the number of jumps
on
ludes the proof.To show timed language equivalen
e it suÆ
es to show that hybrid 
ontrolsystem HX is 
apable of simulating the 
ontinuous part of every HY traje
torysin
e both systems have the same �nite graph. This is now a dire
t 
onsequen
eof using the minimal 
ontrol abstra
tion SN (q) of 
ontrol system SM (q) in ea
hdis
rete lo
ation q 2 Q as Theorem 3 asserts that both 
ontrol systems are exa
ttime 
ontrollability equivalent. ut4 ExampleWe illustrate our results by a simple example. Consider the hybrid 
ontrol systemHX displayed in Figure 2. Using as abstra
ting maps �q1 = x1x2 and �q2 = x1we extra
t the timed language equivalent abstra
tion presented in Figure 3. Dueto spa
e restri
tions, we shall present the details regarding state q2. We start bynoting that Inv(q2) is invariant under Ker(�q2�) = K = ��x2 sin
e K is every-where tangent to the surfa
es x1 = 
onst. The guard is given by the 
omplementof the invariant and is, therefore, also invariant under K. The next step is todetermine if �q2 satis�es Theorem 3 
onditions, but this is automati
ally truesin
e K = g1(x), and therefore K 2 Liegfg1(x)g = fg1(x)g. The new dynami
sin ea
h lo
ation 
an be determined through the 
onstru
tion (2, 3). Writing thedynami
s as _x = f(x) + g(x)u we 
ompute [K; f ℄ = X1 = ��x1 + 2x1x2 ��x2 and
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tion HY of the hybrid 
ontrol system HX .[K;X1℄ = X2 = 2x1 ��x2 . However X2 in linearly dependent on g so that:DM = ff; g;X1g (10)Computing the pushforward by �q2 of DM (x) we get:�q2 ��DM (x)� = f(x2 + x21) ��x1 ; ��x1 g (11)In N 
oordinates, (given by x0), x1 equals x0 and x2 is now regarded as a 
ontrolinput v. The new dynami
s is then given by _x0 = 1+x02+v and after introdu
ing anew 
ontrol input given by u0 = v+1+x02 we get �nally _x0 = u0. The invariant onN be
ames x1 = x0 < 0 and the guard reads x0 � 0. To determine the new resetmap one 
omputes ��1q2 (x0) = f(x1; x2) 2M : x1 = x0^x2 2 Rg. Using this datathe reset map of the hybrid automatonHX is x1 := �1�jx0j = �1�x0 (sin
e theguard is only enable for x1 � 0) and x2 := 1+ [0;+1[= [1;+1[. Aplying �q1 tothis reset maps gives the new reset map x0 := (�1�x0)([1;+1[) =℄�1;�1�x0℄.Note how in this 
ase the nonlinear dynami
s 
ould be simpli�ed in su
h away that HyTe
h [5℄ or other similar tool 
an be used to analyze the resultingabstra
tion. For a more 
ompli
ated example whi
h extra
ts a hybrid abstra
tionfrom a purely 
ontinuous system, the reader is referred to [14℄.5 Con
lusionsIn this paper, we have 
onsidered the problem of extra
ting hybrid abstra
tionsfrom hybrid 
ontrol systems while preserving timed languages. Generalizing theresults of this paper to more general abstra
ting maps and more general prop-erties is 
learly important. Di�erent properties may require di�erent 
onditionson the abstra
ting maps, as well as di�erent 
ompatibility 
onditions betweenthe abstra
ting maps and the guards, invariants, and 
ontinuous dynami
s.
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