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Abstract. Several computer vision applications require estimating a
rank deficient matrix from noisy observations of its entries. When the
observation matrix has no missing data, the LS solution of such problem
is known to be given by the SVD. However, in practice, when several
entries of the matrix are not observed, the problem has no closed form
solution. In this paper, we study two iterative algorithms for minimizing
the non-linear LS cost function obtained when estimating rank deficient
matrices from partial observations. In the first algorithm, the iterations
are the well known Expectation and Maximization (EM) steps that have
succeeded in several estimation problems with missing data. The sec-
ond algorithm, which we call Row-Column (RC), estimates, in alternate
steps, the row and column spaces of the solution matrix. Our conclusions
are that RC performs better than EM in what respects to the robustness
to the initialization and to the convergence speed. We also demonstrate
the algorithms when inferring 3D structure from video sequences.

1 Introduction

Recent approaches to several computer vision problems require determining lin-
ear or affine low dimensional subspaces from noisy observations. These problems
include object recognition [1, 2], applications in photometry [3–5], image align-
ment [6, 7], and the recovery of 3D rigid structure from video sequences [8–17].

In general, such low dimensional subspaces are found by estimating rank
deficient matrices from noisy observations of their entries. When the observa-
tion matrix is completely known, the solution to this problem is easily obtained
from its Singular Value Decomposition (SVD) [18]. However, in practice, the ob-
servation matrix may be incomplete, i.e., some of its entries may be unknown
(unobserved). Take as an example the recovery of 3D structure from video. The
observation matrix collects 2D trajectories of projections of feature points [8–13]
or other primitives [14–17]. In real life video clips, these projections are not vis-
ible along the entire image sequence due to the occlusion and the limited field
of view. Thus, the observation matrix is in general incomplete.
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In this paper, we address the problem of estimating a rank deficient matrix
from noisy observations of a subset of its entries. This problem hasn’t been much
addressed in the computer vision literature. References [8] and [19] propose sub-
optimal solutions. In [8], the missing values of the observation matrix are “filled
in”, in a sequential way, by using SVDs of observed submatrices. In [19], the au-
thor proposes a method to combine the constrains that arise from the observed
submatrices of the original matrix. A bidirectional optimization scheme was pro-
posed in [20]. In this paper, we study two distinct two-step iterative algorithms,
developed for this problem. The first algorithm is based in a well known method
to deal with missing data – the Expectation-Maximization (EM) [21]. Although
the authors don’t refer it, the bidirectional scheme in [20] is also an EM-based
algorithm. However, as detailed below, the EM algorithm we propose is more
general and computationally simpler than the one in [20]. Our second two-step
iterative scheme is similar to Wiberg’s algorithm [22] and related to the one used
in [23] to model polyhedral objects. It computes, alternately, in closed form, the
row space matrix and the column space matrix whose product is the solution
matrix. We call this the Row-Column (RC) iterative algorithm.

In the paper, we illustrate the behavior of both algorithms with simple cases
and evaluate their performance with more extensive experiments. In particular,
we study the impact of the initialization on the algorithm’s behavior. From
these experiments, we conclude that the RC algorithm is more robust than EM
in what respects to the sensibility to the initialization. Furthermore, the number
of iterations needed for good convergence and the computational cost of each
iteration are both smaller for RC than for EM. Obviously, the performances of
both EM and RC improve when the initial estimate provided to the algorithms
is more accurate. Any sub-optimal method, e.g. the ones in [8, 19], can be used
to compute such an initialization. Our experience shows that, with a simple
initialization procedure, even for high levels of noise and large amount of missing
data, both iterative algorithms converge: i) to the global optimum; and ii) in a
very small number of iterations.

We apply the EM and RC estimation algorithms to the problem of recovering
3D rigid structure from video sequences, when the observation matrix misses
entries due to occlusion. Our experiments show that fitting the rank deficient
matrix to the entire observation matrix (which misses several entries) leads to
better 3D reconstructions than those obtained by combining partial 3D models
estimated by fitting submatrices to smaller subsets of data (each corresponding
to a subset of features that were visible in a subset of frames). A preliminary
version of parts of this work was presented in [24]. MatLab c© implementations
of the algorithms we describe in this paper are available at [25].

Paper organization In Section 2, we introduce the Least Squares (LS) cost
function associated with the problem of estimating a rank deficient matrix from
noisy observations of a subset of its entries. Sections 3 and 4 describe the EM and
RC iterative algorithms that minimize the non-linear LS cost function. In Sec-
tion 5, we illustrate the behavior of the EM and RC algorithms with simple cases
that enable graphical representations and demonstrate their good performance



when dealing with arbitrary matrices. In Section 6 we apply our algorithms to
the problem of recovering 3D rigid structure from video sequences. Section 7
concludes the paper.

2 Problem Formulation

Given an observation W of a M×N rank deficient matrix W̃ , say rank R <

min(M,N), corrupted by white Gaussian noise, the ML estimate Ŵ of W̃ is

Ŵ = arg min
W̃∈SR

∥∥∥W − W̃

∥∥∥
F

, (1)

where ‖.‖F represents the Frobenius norm and SR denotes the space of the M×N

rank R matrices. The solution Ŵ of (1) is known – it is obtained from the SVD
of W =UΣV , after selecting the R largest singular values [18]. We denote this
optimal rank reduction operation, i.e., the projection onto SR, by W ↓SR:

Ŵ = W ↓SR = UM×R ΣR×R V R×N . (2)

When the observation matrix W misses a subset of its entries, the ML esti-

mation of W̃ leads to the minimization of a generalized version of (1),

Ŵ = arg min
W̃∈SR

∥∥∥
(
W − W̃

)
�M

∥∥∥
F

, (3)

where � represents the elementwise product, also known as the Hadamard prod-
uct, and the M×N matrix M is a binary mask that accounts for the known
entries of the observation matrix W , i.e., mij = 1 if wij is known and mij = 0
otherwise. The existence of unknown entries in W prevents us to use the SVD
of W as in (2) to minimize (3). In Sections 3 and 4 we introduce two iterative
algorithms that minimize the nonlinear cost function (3).

3 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) approach to estimation problems with miss-
ing data works by enlarging the set of parameters to estimate – the data that is
missing is jointly estimated with the other parameters. The joint estimation is
performed, iteratively, in two alternate steps: i) the E-step estimates the miss-
ing data given the previous estimate of the other parameters; ii) the M-step

estimates the other parameters given the previous estimate of the missing data,
see [21] for a review on the EM algorithm.

In our case, given an initial estimate Ŵ 0, the EM algorithm estimates in
alternate steps: i) the missing entries of the observation matrix W ; ii) the rank R

matrix Ŵ that best matches the “complete” data. The algorithm performs these



two steps until convergence, i.e., until the error measured by the Frobenius norm
in (3) stabilizes.

E-step – estimation of the missing data Given Ŵ k−1, the ML estimates of
the missing entries {wij : mij =0} of W are simply the corresponding entries ŵij

of Ŵ k−1. We then build a complete observation matrix W k, whose entry wij

equals the corresponding entry wij of the observation matrix W if wij was
observed or its estimate ŵij if wij is unknown,

wij =

{
wij if mij = 1
ŵij if mij = 0,

(4)

or, in matrix notation,

W k = W �M + Ŵ k−1 � [1−M ] . (5)

M-step – estimation of the rank deficient matrix We are now given the
complete data matrix W k with the estimates of the missing data from the E-

step. The ML estimate of the rank R matrix W̃ , i.e., the rank R matrix Ŵ k

that best matches W k in the Frobenius norm sense, is then obtained from the
SVD of W k, as in (2),

Ŵ k = W k ↓SR. (6)

In [20], the authors develop a bidirectional algorithm to factor out an obser-
vation matrix with missing data, in the context of recovering rigid SFM. Their
bidirectional algorithm is in fact an EM algorithm developed to the specific strat-
egy of treating the 3D translation separately. In opposition, the EM algorithm
just described is general, i.e, it solves any rank deficient matrix approximation
problem with missing data. Furthermore, our E-step in (5) is simpler than the
corresponding step of [20] that requires inverting matrices.

4 Row-Column Algorithm

We now describe the Row-Column (RC) algorithm – another iterative approach,
similar to Wiberg’s algorithm [22], to the estimation of a rank deficient matrix
that best matches an incomplete observation. From our experience, summarized
in Section 5, the RC algorithm is not only computationally cheaper than EM,
avoiding SVD computations and exhibiting faster convergence, but also more
robust than EM to initializations far from the solution.

For the RC algorithm, we parameterize the rank R matrix W̃ as the product

W̃ = ÃM×R B̃R×N ∈ SR, (7)

where Ã determines the column space of W̃ and B̃ its row space. The esti-

mate Ŵ of W̃ is obtained by minimizing the cost function in (3) with respect

to (wrt) the column space and row space matrices, i.e., Ŵ =AB, where

{A,B} = arg min
Ã,B̃

∥∥∥
(
W − ÃB̃

)
�M

∥∥∥
F

. (8)



By using this parameterization, we have mapped the constrained minimiza-

tion (3) wrt W̃ ∈SR into the unconstrained minimization (8) wrt Ã and B̃.
We minimize (8) in two alternate steps: i) the R-step assumes the column

space matrix A is known and estimates the row space matrix B; ii) the C-step

estimates B for known A. The algorithm is initialized by computing A from an

initial estimate Ŵ 0 and it runs until the value of the norm in (8) stabilizes.
When there is no missing data, i.e., when M =1M×N , the solutions for the

RC steps above are simply obtained by using the pseudoinverse [18],

Bk =
(
A

T
k−1Ak−1

)−1

A
T
k−1W , Ak = WB

T
k

(
BkB

T
k

)−1

. (9)

If we write steps R and C together as a recursion on one of the matrices A or B,
say, on the column space in A, we get

Ak = WW
T
Ak−1

(
A

T
k−1WW

T
Ak−1

)−1

A
T
k−1Ak−1, (10)

which shows that, in this simpler case, our RC algorithm is in fact implement-
ing the application of the power method [18] to the matrix WW

T (the factor
(AT

k−1WW
T
Ak−1)

−1A
T
k−1Ak−1 is the normalization). The power method has

been widely used to avoid the computation of the entire SVD when fitting rank
deficient matrices to complete observations. We will see that, even when there is
missing data, steps R and C admit closed-form solution and the overall algorithm
generalizes the power method in a very simple way.
R-step – estimation of the row space For known A, the minimization of (8)
wrt B can be rewritten in terms of each of the N columns {bn, n=1 . . . N} of B,

bn = arg min
b̃n

∥∥∥
(
wn −Ab̃n

)
�mn

∥∥∥
F

, (11)

where the lowercase boldface letters denote columns of the matrices with the
same uppercase letters. Exploiting the structure of the vector mn, we now rear-
range the minimization in (11) in such a way that its solution becomes obvious.
First, we note that the binary vector mn in (11) is just selecting the entries of

the error vector (wn−Ab̃n) that affect the error norm. Then, by making explicit
that selection in terms of the entries of wn that contain known data and the
corresponding relevant entries of A, we rewrite (11) as

bn = arg min
b̃n

∥∥∥wn �mn − (A�Mn) b̃n

∥∥∥
F

, (12)

where Mn is a M×R matrix with all R columns equal to mn, i.e., it is a short
notation for Mn =mn11×R.

The minimization in (12) is now a linear LS problem. Its solution bn is then
obtained by using the pseudoinverse of matrix A�Mn,

bn =
[
(A�Mn)

T
(A�Mn)

]−1

(A�Mn)
T

(wn �mn) , (13)



which is simplified by omitting repeated binary maskings,

bn =
[
A

T (A�Mn)
]−1

A
T (wn �mn) . (14)

The set of N estimates {bn, n = 1 . . . N} as in (14) generalizes the well known
pseudoinverse LS solution in (9) to problems with missing data.
C-step – estimation of the column space Given B, the estimate of each
row am of the column space matrix A is obtained by proceeding in a similar
way as in the R-step. We get, for each m=1 . . . M ,

am = (wm �mm) B
T

[
(B �Mm) B

T
]−1

, (15)

where in this case, for commodity, lowercase boldface letters denote rows rather
than columns, and Mm =1R×1mm.

5 Experimental Analysis

In this Section, we describe experiments that illustrate the behavior of the EM
and CR algorithms and demonstrate their good performance.
2×2 matrices We start by a simple case that allows an illustrative graphical

representation – estimating the 2 × 2 rank 1 matrix W̃ that best matches an
observation W that misses one of its entries. In this case, the estimation error
measured by the Frobenius norm in (3) and (8) can be expressed in terms of a

single parameter θ. In fact, let the 2 × 2 rank 1 matrix W̃ be written in terms
of its column and row spaces as in (7),

W̃ = a2×1b1×2 ∈ S1. (16)

Without loss of generality, impose that the row vector b has unit norm and write
it in terms of a row angle θ, b = [cos θ, sin θ]. Now denote the minimum of (8)
wrt the column space a for fixed row space b, i.e., for fixed θ, by a(W , θ), given
by (15). The estimation error in (3) and (8) is then rewritten as a function of θ,

error(θ) =
∥∥(

W − a(W , θ)
[
cos θ sin θ

])
�M

∥∥
F

. (17)

Note that for any set of three entries of a 2 × 2 matrix, there is always a value
for the forth entry that makes the rank of the matrix equal to one, i.e., there

is always a 2× 2 rank 1 matrix W̃ that fits exactly the observed entries of W .
Thus, we have min error(θ) = 0.

The following examples illustrate the impact of the initialization on the be-
havior of the algorithms with experiments that use the same observations,

W̃ =

[
−1 −1.95
2 3.9

]
∈ S1, M =

[
1 1
1 0

]
, W =

[
−1 −1.95
2 ?

]
, (18)

where “?” represents the unobserved entry w22 of the observation matrix W .



Typical good behavior of EM and RC Using the initial estimate

Ŵ 0 =

[
−1 −1.95
2 0

]
, (19)

we describe the evolution of the estimates Ŵ k of the rank 1 matrix W̃ by

plotting two equivalent representations of Ŵ k: i) its row space b = [b1, b2]; and
ii) the corresponding angle θ as defined above. The left plot of Fig. 1 shows
the level curves of the error function as function of the row vector b = [b1, b2],
superimposed with the evolution of the estimates of b for EM (dashed line) and
RC (solid line). In this plot, the dotted line (optimum) are the row vectors that
lead to zero estimation error. The right plot of Fig. 1 represents the same error
function, now as a function of θ, as defined in (17), (dotted line) superimposed
with the locations of the θ estimates for EM (dashed line) and RC (solid line).
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Fig. 1. Typical good behavior. Left: EM and RC trajectories. Right: error function.

From the left plot of Fig. 1, we see that both EM and RC trajectories start at
the same point (due to the equal initialization) and converge to points in the op-
timal line. As expected, the EM estimates of the row space vector have constant
unit norm (due to the normalization in the SVD) while the RC estimates don’t.
The good behavior of the algorithms is confirmed by the right plot of Fig. 1 that
shows that both algorithms converge to a value of θ that makes error(θ) = 0,
i.e., that minimizes error(θ).

To evaluate the convergence speed, we plot in Fig. 2 the evolution of the
estimation error along the iterative process for both algorithms (in the left,
in linear scale, in the right, in logarithmic scale). From Fig. 2, we see that RC
converges in a smaller number of iterations than EM. Our experience with larger
matrices in practical applications have confirmed the faster convergence of RC.
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Fig. 2. Typical good behavior. Left: estimation error. Right: the same in logscale.

Large entries in rows or columns that miss data We now illustrate a
drawback of the EM algorithm. Using the same data and the initial estimate

Ŵ 0 =

[
−1 −1.95
2 22

]
, (20)

we get the first 1000 iterations of Fig. 3, which is as described above for Fig. 1.
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Fig. 3. Large initialization. Left: EM and RC trajectories. Right:error function.

From the left plot of Fig. 3, we see that, while RC converges to the optimal
line, the estimates given by the EM almost doesn’t change along the iterative
process. This can also be seen in the right plot of Fig. 3, which shows that
RC converges to the θ such that error(θ) = 0, while EM, after 1000 iterations
is still far from arg min error(θ). The left plot of Fig. 4 shows the evolution of
the estimation errors. See that while the error of RC converges to zero in a few
iterations, the error of EM almost doesn’t decrease during the first 100 iterations.
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The bad behavior of EM is due to the large initial guess for w22 (note that
ŵ022

is large when compared with the known entries of W ). Remember that EM

starts by estimating the rank 1 matrix that best matches the initial guess Ŵ 0.

This rank 1 matrix is the matrix associated with the largest singular value of Ŵ 0,
which is highly constrained by the large spurious entry ŵ022

= 22 (note that while

the singular values of the solution matrix W̃ are σ1(W̃ )' 4.9 and σ2(W̃ ) = 0,

the singular values of the initial guess Ŵ 0 are σ1(Ŵ 0)'22.2 and σ2(Ŵ 0)'0.8
due to the large entry ŵ022

= 22). Then, EM replaces the known entries of W

in the new estimate (obtaining thus an estimate that is very close to the initial
guess) and repeats the process. To better illustrate this very slow convergence
of EM, we represent, in the right plot of Fig. 4, the evolution of the largest

singular value of the estimate Ŵ k for both algorithms. We see that while, as
expected, the largest singular value of the RC estimates converges to the largest

singular value of the solution W̃ , σ1(W̃ ) ' 4.9, the largest singular value of
the first 100 iterations of the EM estimates changes very slowly from its initial

value σ1(Ŵ 0)'22.2.

The behavior just described also happens in situations other than the initial
guesses of the unknown entries being too large when compared to the other en-
tries. In fact, we observed the same behavior in situations where the observation
matrix had large entries in rows or columns that contained missing entries. In
these situations, due to those large entries, even small values for initial guess of
the unknown entries had large impact on the row and column singular vectors
associated with the large singular values that determined the best rank deficient
approximations to the complete data matrices involved in EM. This lead to the
same kind of very slow convergence illustrated in Fig. 3 and Fig. 4.

Large matrices with random initialization We tested the algorithms with
noisy partial observations of rank deficient matrices. We used matrices with
dimensions ranging from 2×2 to 200×200 and rank from 1 to 6. The percentage



of missing entries ranged from 10% to 80%. We initialized both EM and RC with
random values for the unknown entries.

To illustrate the influence of the initialization on the convergence of the al-
gorithms, Fig. 5 shows the percentage of experiments that converged (to an
estimate close enough to the ground truth) in less than 100 iterations, as a
function of the mean value of the random guesses for the unknown entries. Al-
though representative for the entire range of experiments done, the results in the
plots of Fig. 5 were obtained with noisy observations of 24× 24 rank 4 matrices
that missed 70% of their entries. The left plot of Fig. 5 shows three lines, each
obtained by using EM with data generated with a ground truth matrix whose
elements had mean 0.001, 1, and 1000. The percentages of convergence for the
RC algorithm are in the right plot.
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Fig. 5. Percentage of convergent experiments as a function of the mean value of the
initial random guesses for the unknown entries. Left: results for the EM algorithm with
matrices whose entries have mean 10−3, 1, and 103. Right: results for the RC algorithm.

The left plot of Fig. 5 shows that the EM algorithm converges almost always
if the mean value of the initial guesses for the missing entries is smaller than
the mean value of the observed entries. When we increase the values of the
initial estimates of the missing entries, the percentage of convergence decreases
abruptly, becoming close to zero when those values become much larger than the
ones of the observed entries. This is in agreement with the behavior illustrated
in the example of Fig. 3. In opposition, the right plot of Fig. 5 shows that the
behavior of the RC algorithm is somewhat independent of the order of magnitude
of the initialization. The experiments that lead to a non-convergent behavior of
RC were such that the matrices whose inverse is computed in (15) and (14)
were close to singular. We thus conclude that it is very important in practical
applications to provide good initial estimates for both EM and RC algorithms.

Finally, we note that the relevance of a good initialization goes behind avoid-
ing non-convergent behavior. In fact, we observed that both the amount of miss-



ing data and the noise level have strong impact on the algorithm’s convergence
speed. Thus, when dealing with large percentages of missing entries and high lev-
els of noise, as it may arise in practice, a better initialization not only improves
the chance of a convergent behavior but also leads to a faster convergence.

Heuristic initialization We now use an initial guess Ŵ 0 obtained by combin-
ing the column and row spaces given by the SVDs of the known submatrices
of W [24]. In our tests, with this simple initialization procedure, 100% of the
runs of EM and RC converged to the ground truth matrix in a very small number
of iterations, typically less than 10, even for high levels of noise.

The plot of Fig. 6 represents the average entry estimation error, defined as

error(Ŵ ) = ‖(Ŵ − W̃ )�M‖F /
√∑

i,j mij , where
∑

i,j mij accounts for the

number of observed entries, after 20 iterations of EM and RC algorithms, for

noisy observations of a 24 × 24 rank 4 matrix W̃ , with 70% missing data, as a
function of noise standard deviation. We see that the average entry estimation
errors after 20 iterations are below 10−8 for noise standard deviation ranging

from 10−2.5 to 102.5 (the mean value of the entries of the ground truth matrix W̃

is 1). This shows that, with a simple initialization procedure, both EM and RC
algorithms converge to the optimal solution, even for very noisy observations.
Furthermore, we conclude that the main impact of the observation noise is on
the EM and RC convergence speeds – the slightly higher average error values
on the right region of the plot of Fig. 6 indicates that the estimates were still
converging to the optimal solution after 20 iterations.
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Fig. 6. Estimation errors for EM and RC as functions of the noise standard deviation.

Computational cost As referred above, the EM and RC algorithms converge
in a very small number of iterations when initialized by the heuristic procedure
in [24]. We now report an experimental evaluation of the computational costs of
each iteration of EM and RC as functions of the observation matrix dimension.

We used N × 24 observation matrices with missing data corresponding to a
(N − 4)× 20 submatrix. The plots in Fig. 7 represent the number of MatLab c©



floating point operations (FLOPS) and the computation time per iteration, as
functions of N . From the left plot, we see that the number of FLOPS per iteration
of the EM algorithm is larger than one of the RC algorithm. Furthermore, the
FLOPS count for EM increases exponentially with N (due to the SVD computa-
tion) while for RC it increases linearly with N . Thus, although the computation
times in the right plot of Fig. 7 are smaller for EM than for RC (the reason being
the very efficient MatLab c© implementation of the SVD), we conclude that RC
is computationally simpler than EM. RC is even as simple as the methods to
deal with complete matrices, since the most efficient way to compute the SVD
is to use the power method [18] of which RC is a simple generalization.
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Fig. 7. Computational cost of each iteration of EM and RC. Left: number of MatLab c©

floating point operations (FLOPS). Right: computation time.

6 Application: 3D Structure from Video Sequences

We illustrate the application of the matrix estimation algorithms to the problem
of recovering 3D rigid shape and 3D motion from video. As with the majority of
current approaches, we infer the 3D positions of a set of features points and the
3D motion of the camera by first determining the 2D trajectories of the feature
points on the image plane. Among the approaches to compute the 3D rigid
structure parameters from the 2D projections, we use the factorization method of
Tomasi and Kanade [8], now popular due to its robustness and simplicity. In this
method, the observed trajectories are collected in an observation matrix W that
is rank deficient in a noiseless situation. The parameters describing the 3D shape

and 3D motion are estimated from the factors of the rank deficient matrix W̃

that best matches W . In [8], the authors use the SVD to compute W̃ when W

is completely observed. In practice, however, due to the limited field of view and
the occlusion, the observation matrix W may miss several of its entries. We use

our algorithms to compute W̃ when W has missing data. This way, we take into



account the rigidity of the scene along the entire video sequence, leading to a
more constrained problem (and a more accurate solution) than the one obtained
by processing independently several small subsets of frames. We describe below
experiments with synthesized and real video sequences.
Synthetic data – cylinder We synthesized noisy versions of the 2D trajectories
of 372 feature points located on the 3D surface of a rotating cylinder. Then,
we simulated occlusion and inclusion by removing significant segments of those
trajectories. The left plot of Fig. 8 shows one of the 50 synthesized frames. The
small circles denote the noiseless projections and the points denote their noisy
version, i.e., the data that is observed. Note that only an incomplete view portion
of the cylinder is observed in each frame.
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Fig. 8. Cylinder sequence. Left: one synthetic frame. Right: estimates of the 3D posi-
tions of the features points.

The data from the cylinder sequence was then collected on a 100 × 372
observation matrix W with 9537 unknown entries (' 26% of the total num-

ber). We used the RC algorithm to estimate the rank deficient matrix W̃ that
best matched W and computed the 3D structure by using the factorization
method [8]. The right plot of Fig. 8 plots the final estimate of the 3D shape.
We see that the complete cylinder is recovered. Due to the incorporation of the
rigidity constraint, the 3D positions of the features points are accurately estimate
even in the presence of very noisy observations (compare the plots in Fig. 8).
Real video – ping-pong ball We used a real-life video clip available at [26].
This clip shows a rotating ping-pong ball with painted dots. The left image of
Fig. 9 shows the first of the 52 video frames of the ball sequence. We used simple
correlation techniques to track a set of 64 feature points. Due to the camera-ball
3D rotation, the region of the ball that is visible changes along time, leading to an
observation matrix with ' 41% missing entries. By proceeding as described for
the previous experiment, we estimated the 3D shape shown on the right image
of Fig. 9, which shows that our method succeeded in recovering the spherical
surface of the ball.



Fig. 9. Ping-pong ball video clip. Left: first frame. Right: estimated 3D shape.

Real video – Rubik’s cube This video clip – see two representative frames
on the left and middle images of Fig. 9 – shows a Rubik’s cube rotating around
a vertical axis. In the leftmost image of Fig. 9, we superimposed with the video
frame the visible features and the initial parts of their trajectories. Due to the
occlusion, feature points enter and leave the scene. To emphasize the advantages
of using the algorithms described in this paper, we first applied to a segment of
the Rubik’s cube video clip the factorization method of Tomasi and Kanade [8]
for complete data, obtaining the 3D shape represented on the left side of Fig. 11.
This model was obtained with 28 features and 18 frames.

Fig. 10. Rubik’s cube video clip. Left: frame with visible features and corresponding
partial trajectories. Middle: another frame. Right: binary mask matrix M representing
the incomplete data – black regions correspond to entries mij = 1 meaning that wij is
observed, i.e., feature j is visible in frame i; white regions represent the opposite.

We then collected the entire set of the visible parts of the trajectories of
64 features across 85 frames in a 170×64 incomplete observation matrix W . The
structure of the missing part of W is coded by the 170 × 64 binary mask M

represented on the right side of Figure 10. The number of missing entries in W

was about 62%. Since the 3D motion in this video clip is a 3D rotation, the
observation matrix would be rank 3 in a noiseless situation [8]. We used the RC
algorithm to estimate the rank 3 matrix that best matches the incomplete data
in W and then the factorization method to compute the 3D shape shown on



the right image of Fig. 11. This simple example illustrates how RC algorithm
trivializes the usually hard task of merging partial estimates of a 3D model. In
the right image of Fig. 11, the top face is missing because the position the cube
model is shown in that image was not seen in the original video clip.

Fig. 11. Texture mapped 3D shape recovered from the Rubik’s cube video clip. Left: in-
complete model obtained by using the factorization method of Tomasi and Kanade [1].
Right: complete shape recovered by our method – factorization with missing data.

The advantage of using RC or EM to recover 3D rigid structure is two-fold.
First, while recovering a complete 3D model by fusing partial models as the one
on the left side of Fig. 11 is a complex task, our method recovers directly the
complete model shown on the right side of Fig. 11. Second, rather than processing
subsets of the set of features and frames at disjoint steps, our method uses all
the information available in a global way, leading to more accurate 3D shapes
as illustrated by the 3D models in Fig. 11.

7 Conclusion

We developed two iterative algorithms, Expectation-Maximization (EM) and
Row-Column (RC), that estimate rank deficient matrices from partial obser-
vations. Our experiments showed that both algorithms converged to the correct
estimate whenever initialized by a simple procedure and that RC algorithm is
computationally cheaper and more robust than EM. We used RC to recover 3D
structure from video sequences with self-occluding objects.
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