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Abstract: In many multi-dimensional tracking problems, the quantities of interest are 
restricted to a manifold in observation space. Learning the manifold shape is a necessary 
step for dimensionality reduction, which in turn allows faster and more robust tracking 
performance. For manifolds with arbitrary topology, learning the shape from noisy 
scattered data is not trivial. This paper presents a geometric approach that is valid for 
arbitrary manifold dimension and topology. An approximation of the tangent bundle is 
computed by region growing, making it possible to estimate a set of manifold charts. A 
tracking algorithm which takes advantage of the geometric information thus found is also 
presented. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Many tracking problems in control and computer 
vision, involving observations in high-dimensional 
spaces, can have their complexity reduced by 
incorporating geometric information in the tracking 
approach. 
 
Assuming the observed trajectory to lie in a 
manifold, embedded in a high dimensional space, 
and to be corrupted by noise, the dimensionality 
reduction provided by using inherent geometric 
constraints is expected to result in higher robustness 
and smaller computational load (Marques et al., 
1999).  This paper presents a tracking algorithm 
which makes use of such geometric information. It is 
an extension of previous work on 1-D manifolds 
(Silva et al., 2000). 
 
The algorithm described here is exemplified for a 2-
torus in 3-D space, but it is valid for other topologies 
and higher dimensions, both of the manifold and the 
embedding space. The manifold is assumed to be 
orientable and compact, that is, to have a unit normal 

vector field and to allow covering by a finite number 
of charts. It may or not have a boundary. 
 
The tangent bundle of the manifold is the set of 
tangent hyperplanes at all manifold points (O’Neill 
1997). There are infinitely many such points and 
tangent hyperplanes. 
 
The main, novel idea contained in the present work is 
to use a region growing approach in the non-trivial 
task of approximating the tangent bundle of the 
manifold by a finite number of tangent hyperplanes, 
when the manifold has arbitrary topology. This 
simplifies estimation of the charts. 
 
An overview of the algorithm is given in the next 
section. The following sections describe the major 
steps in detail and present experimental results, as 
well as conclusions. 
 
 

2. OVERVIEW 
 
Beginning with a set of scattered, noisy points in 
observation space, used as a training set, it is 



intended to track trajectories that evolve in the same 
manifold as the training set. 
 
An example training set is shown in Figure 1, where 
several noisy observations lie on  a torus. 

 
Fig. 1. Example training set: noisy observations y on 

a torus. 
 
 
The steps involved in the algorithm are the 
following: 
 
• Approximating the tangent bundle of the 

manifold; 
• Finding local parametrizations and charts; 
• Performing tracking in the lower dimensional 

parametric domains. 
 
Each of these steps is addressed in detail in the 
following sections. 
 
The manifold M is modelled through a set of 
diffeomorphisms , where n is 
the manifold dimension, m is the dimension of the 
embedding space and the U  are open sets. These 
functions are charts of the manifold. Collectively, 
their overlapping images , also called 
patches, cover the manifold. Being diffeomorphisms, 
the charts also admit inverses, , which are called 
parametrizations. 
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First, the unit normal vector field of the whole 
manifold is estimated by computing, for each data 
point, the smallest eigenvectors of the local 
covariance matrix. 
 
Next, the set of overlapping patches is found.  This is 
done by region growing, until all data points belong 
to at least one patch. Each patch grows by appending 
all neighbouring points where the normal vector field 
does not deviate, in angle, more than a set threshold 
from the normal at the initial seed. In general, a 
given data point may belong to more than one patch. 
This yields local coordinate systems, by using using 
Principal Component Analysis (PCA) to find the best 
fitting hyperplane for each patch. 
 
Charts are then estimated by thin-plate spline 
approximation, using the coordinate systems found 
above. Since the normal was only allowed to change 

direction up to a specified angular limit, it is 
guaranteed that the charts are bijective. They are also 
differentiable, because of thin-plate spline properties, 
so they are diffeomorphisms, as intended. 
 
Tracking is then performed in the chart domains. The 
estimated trajectories can be lifted back to the 
embedding observation space by using the charts. 
 
 

3. TANGENT BUNDLE APPROXIMATION 
 
In this step, hyperplanes are found from scattered 
data points yi=(y1,…,ym), allowing locally flat 
descriptions of the manifold. 
 
When flattening a manifold with arbitrary topology, 
it is, in general, necessary to partition the manifold 
into more than one patch to avoid the so-called 
cartographer’s dillema, which is due to metric 
distortion. Note that in some situations, such as the 
torus example, which has zero Gaussian curvature, 
one single patch would be theoretically enough. 
However, the present algorithm is intended for a 
broader class of problems. 
 
Each patch can be associated to an hyperplane, and 
the collection of hyperplanes will be an 
approximation to the tangent bundle. The 
hyperplanes provide local coordinate systems valid in 
different regions. The best fitting hyperplane for each 
patch, in a least squares sense, is spanned by the the 
n largest  eigenvectors returned by the PCA 
procedure, performed on all patch member points.  
 
In order to make chart estimation easier, at a later 
stage, it is required for simple projection to give a 
one-to-one mapping between the hyperplane and the 
corresponding manifold region. This can be ensured 
by not allowing the hypersurface normal to vary 
more than a set threshold τ, in angle. It is thus 
necessary to compute the normals.  
 
Normals are computed by visiting all data points and, 
for each one, finding the m-n smallest eigenvectors 
(smaller than a threshold) of the covariance in a 
neighbourhood of radius ε, as shown in Figure 2. It is 
assumed that the data are sufficiently dense to leave 
no gaps greater than δ and observation noise has 
standard deviation nowhere greater than σ. The 
radius ε is chosen to account for both δ and σ. 

ε  
Fig. 2. Surface normal from PCA in a 

neighbourhood. 
 

     



Since the data points are noisy, the point of 
application of the normal is set to the mean of the 
neighbourhood, which is a form of low-pass filtering. 
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The eigenvectors thus returned have arbitrary 
orientations, so it would be necessary ro revisit all 
data points to maintain consistency between nearby 
normals, which is a NP-complete problem (Hoppe 
1994). However, since it is just necessary to compute 
angles, direction is all that matters and orientation 
can be discarded. After normals are found, region 
growing takes place as following: 

where p(x) is a polynomial term involving k of the aj 
coefficients, while the remaining l-k coefficients 
multiply the radial basis functions ψ, which are given 
by 
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with centres cj.  
 while M not covered 
Having previously partitioned the manifold M in p 
patches, it is possible to find p charts gi(x) in the 
form given by (4), followed by a translation and a 
rotation. 

 P = new patch 
 y0 = choose a new seed from data points not in  
         any patch 
 n0 = normal at y0 

  while NOT all points visited 
Figure 3 shows some of the charts estimated in this 
fashion. 

      y1 = choose nearest neighbor 
      n1 = normal at y1 
      if  angle(n0,n1) < τ  AND 

 

   distance(y0,y1) < ε 
          append y1 to P 
      end if 
  end while 
end while 
 
The end result is a covering of M by a finite number, 
p, of overlapping patches. Within each patch, the 
normal doesn’t deviate more than τ, and the distance 
test ensures that each patch is a connected set. 
 
 

4. CHARTS AND PARAMETRIZATION 
 
It is desirable that the manifold charts be 
diffeomorphisms, so that smoothness is ensured. 
There are many alternatives for non-linear function 
approximation that meet these requirements. The 
results presented here were obtained using thin-plate 
splines, which are described in (Duchamp 2002). 
 
In short, a thin-plate spline g is the function that 
minimizes the weighted sum 
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where ρ is a smoothing parameter and 
 

∑ −=
j

jj xgygE 2
~~

))(()(  (2) 

∫=
nR

ng dxdxHtrgR K1
2

~
)()(  (3) 

Fig. 3. Some of the charts obtained by thin-plate 
spline approximation. The graphs represent the 
functions, , which is this case are scalar, 
since they were obtained for a 2-torus embedded 
in 3-D space. 
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denote an error measure and a roughness measure, 

respectively.  is the Hessian of . The l-degree 
solution comes in the form 

gH
~
g

 
  
To summarize, with points y=(y1,…,ym) belonging to 
a given patch i, and having previously performed 

     



 PCA, a matrix Vi of eigenvectors and a mean vector 
µi are available. Projecting y on the hyperplane 
associated with patch i is a matter of computing 
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)   (6) where k denotes time, s is the state vector and the 
scalar w is dynamic noise. The observation equation 
is  
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where o is the observation vector (made equal to xk) 
and n is sensor noise. A white-noise acceleration 
model (Kalata, 1984) is followed, and the same 
dynamics are assumed for all patches. The A, B, C 
and D matrices are, therefore, constant. 

 
Equation (6) is an isometry, in this case, a translation 
followed by a rotation, while (7) describes simple 
projection.  

Finally, since the yk are projected onto p different 
hyperplanes, there are p different observations at 
time k. The problem of how to select the best 
hyperplane is solved by nearest neighbour 
classification. The training data point nearest to yk is 
found (a computationally expensive procedure) and, 
among the patches it may belong to, the one that 
yields the least squared reconstruction error, that is 

 
As for the the chart gi, which allows the inverse 
mapping of (7), it follows the expression 
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The remaining m-n components of , instead of 
being set to zero, which would yield a rough, 
piecewise linear approximation of M, are thus 
preserved. Locally, the manifold parametrization is 

~
x is selected. 

 
 

6. RESULTS 
 

 For the experiment described in this section, the 
purpose is two-fold: it is intended to approximate a 
synthetically generated manifold, and also to recover 
an experimental trajectory, generated on the same 
manifold and deliberately corrupted with additive 
Gaussian noise. 
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with  given by (4). 
~
g  

 The synthetic manifold is, in this case, a 2-torus. The 
learning dataset is a collection of points that lie on 
the surface as seen above, in Figure 1. 

5. TRACKING 
 
At this stage, an observed trajectory can be projected 
onto the previously found hyperplanes, and all 
tracking can be done in n-D instead of m-D. 

 
The results from the approximation step can also be 
seen above, in Figure 3. At this stage, the charts 
become available.  

In order to track the projected trajectories, dynamic 
models are needed. A linear, discrete state model is 
used that includes dynamic and observation noise, 
both assumed Gaussian for simplicity. 

 
The next step in the experiment is motion recovery. 
A synthetic trajectory was generated, independently 
from the training set, according to a simple dynamic 
behaviour:  

It must be stressed that, while the original, m-D 
observations yk are non-linear functions of xk, it is 
assumed that x itself is directly observed, by 
projection of y, so it is possible to use a linear 
observation model. 
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 including a constant velocity uk term and Gaussian 

dynamic noise wk. The trajectory, as illustrated in 
Figure 4, is a slightly noisy straight line in ( θ, φ ) 
space, which wraps around at angles –π and π. 

A time-varying Kalman filter is used to estimate the 
trajectory from the noisy observations, and lifting 
back to the manifold with charts g allows recovery of 
the m-D trajectory.   
 Through use of toroidal coordinates 
Motion is descibed by the following stochastic 
difference equation: 
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the synthetic trajectory was transported to the 
manifold, and Gaussian observation noise was finally 
also added. The time sequence of resulting data 
points, y=(x, y, z), constitutes the { y1 , …,  yk , …} 
experimental trajectory.  
 
Tracking was performed after projection of the 
observations on the appropriate planes, learned 
during tangent bundle approximation. The resulting 
projected motion is shown in Figure 5. 

Fig. 6. Tracking results in the observation space. The 
experimental and estimated trajectories are blue 
and red, respectively. 

 
  

 

 

 

Fig. 4. Synthetic trajectory in ( θ, φ ), - π < θ, φ < π. 
The φ period is six times shorter than the θ 
period.  

 
Fig. 7. Time plots of the (x,y,z) experimental 

trajectory coordinates (blue) and the estimated 
trajectory coordinates (red). Below, the index of 
the nearest hyperplane at each instant. 

After lifting to observation space (using the charts), 
the accurately estimated trajectory can be seen in 
Figures 6 and 7, overlayed on the experimental one. 
 

  
 

 

The dynamic model parameters for expressions (10) 
and (11), with 3-D data points being in this case 
projected onto 2-D planes, are 
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and the state vector is [ ]Tdxdxxxs 2121= , 
with dx1 and dx2 denoting the increments in the x1 
and x2 directions respectively, while the observation 
model parameters are 
 

[ ] 1,0011 == DC .  (15) 
 
 

Fig. 5. Parts of the experimental trajectory, projected 
into some of the estimated planes. 

7. CONCLUSIONS 
 
This paper presents a method for manifold learning, 
applicable to trajectory tracking in n-D manifolds 

     



embedded in m-D space, that relies on geometric 
information to reduce complexity. The manifold 
learning results are promising and make accurate 
trajectory tracking simpler to achieve. 
 
An important direction of future work is modelling 
non-linear dynamics, with possibly distinct 
behaviours in different manifold regions, instead of 
the present method of using the white-noise 
acceleration model in all patches. A non-linear 
observer approach is being considered, rather than  
any form of Extended Kalman Filtering. 
 
Also, a way to combine a probabilistic model with 
the current geometric model is being studied. This is 
needed in order to detect outliers and to select the 
best hyperplane for projection in a principled way, 
without having to use the computationally expensive 
nearest neighbour approach. One possible solution is 
to use mixtures of Gaussians on the hyperplanes, 
using Expectation-Maximization (EM) to estimate 
the parameters. This is simpler, both computationally 
and in terms of convergence, if done in the lower 
dimensional space, rather than directly in the 
observation space. 
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