A 3D Ultrasound System for Medical Diagnosis
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Abstract. This paper presents a system for 3D ultrasound which aims
to reconstruct a volume of interest from a set of ultrasound images. A
Bayesian reconstruction algorithm has been recently proposed to perform
this task. However, it is too slow to be useful in practice. This paper de-
scribes several techniques to improve the efficiency of the reconstruction
procedure based multi-scale principles and based on the expansion of
the likelihood function in a Taylor series. This allows the use of suffi-
cient statistics which avoid processing all the images in each iteration
and leads to a space-varying recursive filter designed according to the
statistical properties of the data. Experimental results are provided to
assess the performance of the proposed algorithms in medical diagnosis.

1 Introduction

Ultrasound is a non ionizing, non invasive and cheap medical imaging technol-
ogy. Current systems, operating in B-scan mode, allow real time observation of
cross sections of the human body. Several attempts have been made to extend
ultrasound techniques in order to compute and visualize 3D representations of
the human organs leading to three dimensional ultrasound systems [1].

Three dimensional ultrasound has several advantages with respect to classic
ultrasound systems. First it provides new visual information since it allows the
observation of the organs surface, as well as cross sections of the human body
which can not be observed in B-scan mode, due to physical constrains. Second
it provides quantitative measurements of volumes which can not be accurately
obtained using standard B-scan mode. Both issues are important for medical
diagnosis.

Three dimensional ultrasound can be performed either by using special types
of probes, e.g. mechanical scanners which automatically sweep a region of inter-
est by varying the inspection plane in a predefined way, or by using free hand
scanning systems [1]. Mechanical scanners are simpler but they are more expen-
sive and can only reconstruct small regions of the human body, while free hand
scanners can be be used to reconstruct larger regions. They require complex
reconstruction algorithms though.

This paper describes a free-hand 3D ultrasound system. This system allows
the estimation of a volume of data from a sequence of ultrasound images, cor-
responding to non parallel cross sections of the human body. This is a difficult



task since we have to estimate the whole volume from a finite number of noisy
images, corrupted by speckle noise. The system must be able to perform noise
reduction, to interpolate the data in regions which are not observed and also to
compensate for the geometric deformations of the human organs during the data
aquisition process. Bayesian techniques have been recently proposed to address
these problems in a principled way but they are very time consuming [8] and
can not be directly used in practice.

This paper describes several techniques to improve the efficiency of the re-
construction procedure based on multi-scale principles and on the expansion
of the likelihood function in a Taylor series. This allows the use of sufficient
statistics which avoid processing all the images in each iteration, leading to a
space-varying recursive filter designed according to the statistical properties of
the data. Experimental results are provided to assess the performance of the
proposed algorithms in medical applications.

2 System Overview

This paper aims to reconstruct a volume of interest from a sequence of ultra-
sound images. The data acquisition system adopted in this work has three main
components (see Fig.1),

— a medical ultrasound equipment with an ultrasound probe operating at 1.7
MHz.

— a spatial location system used for real time measurement of the probe posi-
tion and orientation.

— a personal computer to capture the probe positions and ultrasound images
at 25Hz rate, and reconstruct the volume.
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Fig. 1. Acquisition system.
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During a medical exam a sequence of ultrasound images is provided, correspond-
ing to non parallel cross sections of the human body. The probe position and



orientation, associated to each image, are also available. This allows to estimate
the position of each pixel in 3D space, provided that we know the geometric
transformation from the image coordinates into the probe coordinate system.
This is estimated by a calibration procedure, similar to the single-wall calibra-
tion described in [13].

The volume of interest is reconstructed from the pixel intensities and posi-
tions, using a Bayesian reconstruction algorithm which is briefly described in
section 3. This algorithm manages to interpolate the observed data, filling the
gaps, and combines multiple observations to reduce the speckle noise. This is
performed by adopting a parametric model for the function to be estimated,
which depends on a large number of coefficients (many thousands), estimated
using Bayesian techniques.

Visualization techniques (re-splicing, ray casting and thresholding) are used
to display the results of the 3D reconstruction algorithm. All the software mod-
ules (data acquisition, sensor calibration, reconstruction and visualization) were
developed in C++ in a Windows 2000 platform.

3 3D Reconstruction

Let V = {(z,y):} the observed data after calibration, i.e., after the estimation
of the transformation that relates the image coordinate system with the patient
coordinate system. Each element of the vector V', contains the intensity, y; and
the corresponding 3D position, x;, of each observed pixel from all images that
form the sequence. This observed data is used to reconstruct the volume

Let consider the region to be estimated 2 € R? formed by a set of cubic cells
called voxels.

The scalar function f(x), describing the acoustic properties of the volume of
interest, is obtained, inside each voxel, by interpolating the values of its vertices,
ie.,

J(@) = 8(@)TU (1)

where @(z) = {¢1(x), p2(),...0,(z)} is a vector of interpolation functions and
U = {uy,us,.....,u,} a vector of intensity values associated to the grid nodes.
The estimation of the volume is performed by estimating the vector U.

Each interpolation function is a separable function of the form ¢;(z) =
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i .
otherwise

Using the MAP method, the estimation of U is obtained by minimizing an
energy function, i.e.

U=arg mUin E(Y,X) (3)



where E(Y, X) = —l(V,U) —log(p(U)). L(V,U) = log(p(V|U)) is the log likeli-
hood function and p(U) is the prior associated to the vector of nodes to estimate.
The prior plays two important roles. First it allows to interpolate the data in
points which were not observed, i.e., which do not belong to any observation
plane. Second it improves the numerical stability of the iterative reconstruction
algorithm.

Ultrasound images are very noisy being corrupted by multiplicative noise. A
Rayleigh model is used in this paper to describe the observations. This noise,
called speckle, is usually observed in process involving coherent radiation like
LASER or SAAR.

It is assumed that the elements of Y are i.i.d. (independent and identically
distributed) random variables with Rayleigh distribution ([2]),

(1) = e (1)

ply;) = e 2f(z;) 4
f(xi)

where y; denotes the amplitude of i-th pixel and f(z;) is the value of the function

f computed at position ;. The likelihood functions is generated by

UV,0) =3 log [051 = 05 (5)

The statistical independence of all elements of V' is assumed ([3]), despite
the PSF (point spread function) of the image acquisition system be, in general,
larger than the inter-pixel distance. In fact, it is not easy to estimate the PSF
of the acquisition system. This function depends, not only on the impulsive
response of the ultrasound probe and the associated electronics, but also on the
image processing performed by ultrasound equipment. In particular, the filtering
procedure that smoothes the original raw data by converting the polar grid of the
RF signal to grid the image in cartesian coordinates introduces correlation among
the pixels which is difficult to model. Furthermore, the improvement achieved
in the reconstruction results by considering the statistical dependence among
the pixels of the image is not relevant when compared with the computational
complexity introduced in the algorithm, as noted by [4].

To derive p(U) let us consider X as being a Markov random field. According
the Hammersley-Clifford theorem, p(U) is a Gibbs distribution. In this paper a
Gibbs distribution with quadratic potential function is used

1 o e —uS)2
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where Z is a partition function, N, is the number of neighbors of uy, a is a

parameter and uj is the s-th neighbor of u, (see details [7]). A 6-neighborhood

system is considered in this paper. Note, that only half of the neighbors are

considered in this summation to guarantee that each clique appears only once.
Using (5) and (6) leads to
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The minimization of (7) with respect of U is a difficult task. The number
of coefficients to estimate is of order of a million and E(V,U) is a non convex
function. To solve (3) the ICM algorithm, proposed by Besag is used [5]. In each
iteration, the ICM algorithm minimizes the energy function with respect to only
one variable, keeping all the others constant. To optimize (7) with respect to the
variable u,, the following condition must be met

IE(V,U)
ou, " ®)
which leads to
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where N, is the number of neighbors of u,, ¢,(x) is the interpolation function
associated to the n-th node and @,, = Niv Zj\]:”l (un); is the average value of the
neighboring nodes of wu,,.

This equation can be solved using the fixed point method leading to the next
recursion expression

1 2 _2f(x;
= 5, 2 f2(9{¢() i) + (10)

The solution of (3) using the ICM method leads to a set of non-linear equa-
tions, (9) which requires processing the pixels of the whole image sequence.
Therefore, the reconstruction algorithm is computationally demanding and slow.
To speed up the reconstruction process, several measures can be taken. In the
next section three methods are proposed to simplify and speed up the solution
of (10): i) a multi-scale approach, ii) the linearization of (10) allowing sufficient
statistics and iii) a IIR filter to efficiently compute the MAP estimation of the
volume.

4 Fast Algorithms

Three methods are considered to speed-up the reconstruction process. Detailed
descriptions of these methods are published in [9, 10, 12].

Multi-scale The propagation of the information along the lattice due the prior
is one of the main factors that slows down the convergence rate of the algo-
rithm described in section 3. To overcome this difficulty, a multi-scale version
is used. In this approach, coarse grids are used in the initial iterations being
progressively refined until the final resolution is achieved. In this way, the
long range interactions propagate fast in the first iterations speeding up the
global convergence rate. In the last iterations the algorithm only performs
small local adjustments. In this method the estimated volume obtained in
a given iteration is used as starting point for the next iteration, and the
resolution is doubled in consecutive iterations [9].



Linearization It is not possible to compute sufficient statistics associated to
eqn (10) since he can not factorize the pdf. To obtain sufficient statistics
a linearization of the likelihood function in the vicinity of the maximum
likelihood estimate is performed. With this method, a small set of statistics
computed in the initialization stage of the reconstruction algorithm and used
along the whole optimization process. Therefore, the observations only have
to be read from the disk and processed at the beginning. The observed data,
compressed into a smaller number of coefficients, speeds up the processing
time by more than one orders of magnitude [10]. The resulting equations are

Ty = (1 = kp)uME 4 kpaiy, (11)
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(13)

Filtering Equation (13) defines an IIR filter. This filter is not wedge supported
[11]. Each output depends on past and future outputs since it depends on
Up. Therefore, it is not possible to recursively compute the output in a sin-
gle iteration. To overcome this difficulty we consider a set of eight wedge
supported filters (see details on [12]), which can be recursively computed.
The reconstructed volume is obtained by averaging the outputs of the eight
wedge supported filters. This approach allows to improve the reconstruc-
tion time exploiting the computational efficiency of the recursive processing.
With this methodology, reduction up to 25 times in the processing time can
be achieved.

In this paper these three methods are used and combined into five different
reconstruction strategies. They will be compared, using three figures of merit:
the number of iterations, the processing time and the likelihood function. In
the case of experiments using synthetic data a fourth figure of merit is also
used: the signal to noise ratio. The methods considered in the experiments are

i) NLMAP-SS Non multi-scale and non linear base algorithm.
ii) NLMAP-MS Multi-scale and non linear base algorithm.

iii) LMAP-SS Non multi-scale and linear algorithm.

vi) LMAP-MS Multi-scale and linear algorithm.

v) IIRMAP Recursive algorithm.

5 Experimental Results

Experimental tests were carried out to evaluate performance of the five recon-
struction techniques with synthetic and medical data using several figures of
merit. Two examples are described in this section to illustrate the performance
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Fig. 2. Intensity profiles of the original and reconstructed volumes using i) NLMAP-SS
and NLMAP-MS (bold); ii) LMAP-SS and LMAP-MS (bold); iii) IIRMAP

of the system with synthetic and medical data. More tests were performed but
can not be included here due to space restrictions.

Synthetic Data This example considers the reconstruction of a binary func-
tion f defined as follows: f(x) = A,ifx € [-.5,.5]3, f(x) = B, otherwise. Volume
reconstruction is obtained from a set of 100 parallel cross-sections of the region
[—1,1] corrupted by Rayleigh noise according to (4).

Figure 2 shows the intensity profiles of the original and reconstructed volumes
along a given line. It is concluded that all the methods manage to estimate the
original object reasonably well, showing some distortion at the transitions (blur-
ring). The best transitions are obtained with the IIRMAP algorithm although
this algorithm has the worst performance in stationary regions.

Table 1 shows four figures of merit which allow an objective comparison of
several techniques in terms of SNR, final energy, iterations and computational
effort. All methods manage to minimize the energy function and provide similar
SNR results, except LMAP-MS which achieves worse results. The computational
time is strongly dependent on the reconstruction method, the fastest reconstruc-
tions being achieved by the IIRMAP algorithm. The multi-scale approaches also
achieve significant savings with respect to the single scale methods since they
reduce the number of iterations. The fast algorithms reduce the computational
effort of the NLMAP algorithm by 70 times (almost two orders of magnitude).

Synthetic Data Medical data
Method SNR| E Time |iterations E Time |iterations
(dB)|(x10%)| (s) (x19*)| (s)

NLMAP-SS |{20.1]8000.8 [1534.53 64 8990.5(1893.4 96

NLMAP-MS|[18.2]7999.5 | 403.32 17 8983.0| 737.7 37

LMAP-SS |/19.2|8000.8| 298.17 36 9013.4| 263.7 59

LMAP-MS ||16.6 |8002.5| 113.63 9 8982.9| 216.8 38

IIRMAP |{20.4|8020.1| 22.44 8 9156.3| 21.4 8
Table 1. Results with synthetic and medical data

Medical Data Reconstruction tests were performed using the experimental
setup described in section 2. This example shows the reconstruction of a gall



blader from a set of 100 images corresponding to non parallel cross sections of
the human body.

i) i)
-

Fig. 3. Results with medical data: original cross section (i) and reconstructed cross
sections obtained with i) NLMAP-SS; iii) NLMAP-MS: iv) LMAP-SS; v) LMAP-MS;
vi) IIRMAP; vii)Surface rendering of the gall bladder.

i)

¢

W)

Figure 3 shows a cross section of the human body and the reconstructed
results obtained by the five algorithms. These results are achieved by computing
f along the inspection plane. Acceptable reconstruction results are obtained
by all the algorithms. Table 1 shows the figures of merit associated to all the
algorithms. Similar energy functions are obtained by all the methods, the best
results being obtained by NLMAP-MS method.

Significant computational savings are achieved by using the fast algorithms,
the fastest reconstruction being obtained by the IIRMAP method. The IIRMAP
is 90 faster than the NLMAP algorithm. This can also be concluded from fig.
4 which displays the evolution of the energy during the optimization process as
a function of the number of iterations. The surface of the gall bladder obtained
with etdips 2.0 package is shown in Fig. 3.vii).

6 Conclusions

This paper considers the reconstruction of human organs from a set of ultra-
sound images, using five algorithms. A Bayesian approach is adopted in all these
algorithms, leading to the optimization of an energy function which depends on
a large number of variables (typically, a million variables). Two key ideas were
explored: i) the use of multi-scale techniques which use coarse grids in the first
iterations and finer grids afterwards and ii) a second order approximation of the
energy function using the Taylor series. The Taylor series approach allows to
reconstruct the volume of interest by low pass filtering the data with a space
variant IIR filter, reducing the computational effort by almost two orders of mag-
nitude. The best results were obtained by the IIRMAP method which provides
a good trade off between accuracy and computational time.
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Fig. 4. Convergence 3D reconstruction methods i) NLMAP-SS; ii) NLMAP-MS: iii)
LMAP-SS; iv) LMAP-MS; v) IIRMAP
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