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Abstract. The MAP method is a wide spread technique used in many
signal processing problems, e.g., image restoration, denoising and 3D
reconstruction. When there is a large number of variables to estimate,
the MAP method leads to an huge set of linear or non-linear equations
which must be numerically solved using time consuming algorithms.
This paper proposes a fast method to compute the MAP estimates in
large scale problems, based on the solution of a linear or linearized set of
equations by low pass filtering the ML solution. A family of space varying
IIR filters is derived from the MAP criterion with data dependent coef-
ficients. Other filter expressions can be derived by the same approach,
using different assumptions about the prior or other filter design strate-
gies. The filter approach proposed in this paper is much faster than the
calssic solution and provides additional insights about the structure of
the problem.
Experimental results are provided to assess the performance of the pro-
posed methods with Gaussian and non Gaussian noise models.

1 Introduction

The maximum likelihood (ML) method is widely used to estimate signals from
noisy data. In the image processing field, for instance, the ML method is often
used to solve problems of image restoration [1], denoising [2], deblurring [3] and
2D or 3D reconstruction [4].

The number of publications on medical imaging using statistical approaches
[5], e.g., the ML method, received much more attention after the work of Shepp
and Vardi [7] on emission tomography.

However, the estimated solutions, e.g. in reconstruction problems, tend to be
noisy and the estimation algorithms tend to converge slowly in the vicinity of
the solution [8]. This is often due to the ill-conditioned nature of the estimation
problem. In the case of 2D or 3D reconstruction the lack of data is the main
difficulty [10], since there is often less then one observation per unknown.

To overcome these difficulties the MAP method is often used since it regular-
izes the ML solution by smoothing it. By using a prior distribution containing
a prior knowledge about the unknowns variables, the MAP method introduces
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additional constraints on the solution, improving ill-conditioned nature of the
problem. It has been shown, by several authors, that this approach overcomes
the difficulties caused by the lack of data, producing a smoothing effect by inter-
polating the data. Furthermore, the smoothing also reduces the amount of noise
present in the ML estimates [9, 6].

Gibbs distribution have been traditionally used in MAP problems. This class
of priors leads to simple formulations of the estimation problem. The equiva-
lence with the Markov random fields allows to easily obtain the joint probability
distribution from a set of local distributions [11].

The Gibbs prior with quadratic potential functions are simple leading to a
simplified formulation of the MAP method. Furthermore, the recursive structure
of the resulting equations can be used to speed up the estimation algorithms.

In this paper the problem of MAP estimation of signals if formulated as a
filtering process. It is shown that the MAP estimate using a Gibbs prior with
quadratic potential functions, can be computed by filtering the ML estimation
with two IIR filters: a causal IIR filter and an anti-causal IIR filter, leading to
computational gains up to one order of magnitude. These filters are first order
IIR filters with space varying impulse response. It is shown, that the cutoff
frequencies of the proposed filters are adaptatively adjusted according to the
number of observations and some sufficient statistics.

In this paper, two models are considered: additive Gaussian noise and mul-
tiplicative modeled by a Rayleigh distribution. These are typical models which
can be used in a wide range of applications.

The formulation presented here can be applied to problems, like image restora-
tion, involving one observation per unknown or to problems, like 3D reconstruc-
tion, in which some unknown variables are not observed.

The approach described in this paper can be extended to derive other Gibbs
priors corresponding to higher order filters, more selective, performing better
at transitions. In fact, with this filtering approach it is clear why the MAP
estimation method using Gibbs prior with quadratic potential functions, does
not perform well in the transitions. Under this perspective, the algorithm is
filtering the ML with a first order filter, which in general tend to blur the abrupt
transitions.

2 Problem Formulation

Let X = {xi} be a sequence of N unknown variable to be estimated and Y = {yi}
a sequence of observations. Each element of Y , yn is, itself, a set of ni observations
of xi. In typical problems of image restoration ni = 1, which means that there is
one observation per pixel. On the contrary, in 3D reconstruction, the number of
observations per voxel varies from voxel to voxel. For instance, in free-hand 3D
ultrasound the number of observations associated to non inspected voxels is zero
(ni = 0). On the contrary if given voxel is intersected by several cross sections
ni > 1.



In this paper the MAP method is used to estimate X from the observations
Y . This method estimates X by maximizing an energy function,

X̂ = arg min
U

E(Y,X) (1)

where

E(X, Y ) = −l(X,Y )− log p(X) (2)

l(X, Y ) = log(p(Y |X) is the likelihood function, and p(X) is the a prior distri-
bution associated to the unknown variables.

For sake of simplicity let us assume that yi is normal distributed (later we
will consider other distributions), with p(yi) = N(xi, σ

2) corresponding to the
following observation model

yi = xi + wi (3)

with p(wi) = N(0, σ2). If the observations are independent, the log-likelihood
function is given by

l = C − β

2

∑

i,k

(yik − xi)2 (4)

where β = 1/σ2 and yik is the kth observation of the unknown xi.
The prior p(X) used in (2) plays an important role in the estimation process

when there is lack of information about the variables X (ni small), since the ML
estimates are very poor in this case [10].

In this paper we will consider that p(x) is a Gibbs distribution with quadratic
potential functions [13, 11]. This is equivalent to assuming that the vector X is
a Markov random field [12, 11]. Therefore

p(X) =
1
Z

e
P

i Vi(X) (5)

where Z is the partition function and Vi(X) is the potential function associated
to the i-th unknown. Assuming that X is a 1D signal and assuming that each
variable xi has two neighbors, xi−1, xi+1,

p(X) =
1
Z

e−
α
2

P
i (xi−xi−1)

2
(6)

The parameter α defines the strength of the links among neighbors and it is
pre-defined. Therefore, the energy function to be minimized is

E(Y, X) =
β

2

∑

i,k

(yik
− xi)2 +

α

2

∑

i

(xi − xi−1)2 (7)

The constants C and Z were discarded because they do not contribute to the
solution.



3 Optimization

To minimize (7) the following stationary conditions must be met

∂E(Y, X)
∂xi

= 0 (8)

which lead to the following set of linear equations

xi = (1− ki)xML
i + kix̄i i = 1, ..., N (9)

where xML
i is the maximum likelihood estimation of xi, ki is a parameter that

depends on the data and x̄i is the average value of the neighbors of xi

xML
i =

1
ni

ni∑

k=1

y2
ik

(10)

ki =
1

1 + βni

2α

(11)

x̄i =
xi−1 + xi+1

2
(12)

To minimize the border effects it is assumed that x0 = x2 and xN+1 = xN−1.
Taking this into account, (9) can be written as follows

Ax = b (13)

where

A =




1 −k1 0 0 0 ... 0 0 0 0
−k2/2 1 −k2/2 0 0 ... 0 0 0 0

0 −k3/2 1 −k3/2 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 ... −kN−2/2 1 −kN−2/2 0
0 0 0 0 0 ... 0 −kN−1/2 1 −kN−1/2
0 0 0 0 0 ... 0 0 −kN 1




and

b = [(1− k1)xML
1 , (1− k2)xML

2 , ..., (1− kN )xML
N ]T (14)

The estimation of (13) amounts to the solution of a linear system of equa-
tions which can be performed by using either iterative (e.g. Gauss elimination
method) or non iterative methods (e.g. Gauss-Seidel method). Since the number
of unknowns is often very large (e.g. on the order of a million) iterative methods
are preferred since they provide an approximate solution with acceptable com-
putational effort. In order to obtain an efficient solution the structure of A can
be considered.

In the next section we will show that the system (13) can be solved using
two space varying IIR filters, obtained from (9).



4 IIR filter

Equation (9)

xi = (1− ki)xML
i +

ki

2
(xn−1 + xn+1) (15)

defines a non causal recursive filter [17] with xML
i as input. Assuming that ki is

constant the filter impulsive response, gi, can be computed. The general form is

gi = Ca|i| (16)

where C and a are computed replacing (16) in (15) and making xML
i = δ(i)

{
Ca0 = (1− k) + k

2 (Ca|−1| + Ca|1|) i = 0
Cai = k

2 (Cai−1 + Cai+1) i 6= 0
{

C = 1−k
1−ak

a2 − 2
ka + 1 = 0

leading to {
a = 1±√1−k2

k

C = 1−k
−(±)

√
1−k2

Since 0 ≤ k ≤ 1 and C > 0, only one solution is feasible, i.e.,
{

a = 1−√1−k2

k

C = 1−k√
1−k2
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Fig. 1. Impulse response parameters.

Fig.1 shows the dependence of a and C on k ∈ [0, 1]. As it can be observed,
a is monotonic increasing with k and limited to the interval [0, 1].
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Fig. 2. Impulsive response computed from (13) (x) and from (16) (+).

Fig.2 shows the impulsive response (16) and the solution of (13) for several
values of k. As it can be seen, both solutions are identical, except for k close to
1 (k > 0.99). These differences are due to border effects. In fact, equation (15)
is not valid at n = 1 and n = N .

The impulsive response defined by (16) can not be used in a recursive way
because it is not wedge supported [17]. Therefore, we will decompose it as a sum
of two wedge supported impulsive responses, one causal and other anti-causal,
i.e., one depending only on past inputs and outputs and other depending only
on future inputs and outputs [18]. Therefore,

gn = g+
n + g−n (17)

where

g+
n =





Can n > 0
C
2 n = 0
0 n < 0

g−n =





0 n > 0
C
2 n = 0
Ca−n n < 0



where it was assumed g+
0 = g−0 to impose symmetry. Applying the Z transform

to the previous equation we obtain

G(Z) = G(Z)+ + G(Z)− (18)

G(Z)+ =
C

2
1 + aZ−1

1− aZ−1
(19)

G(Z)− =
C

2
1 + aZ

1− aZ
(20)

The solution of (13) is the sum of two terms

xi = x+
i + x−i (21)

where

x+
i = g+

i ∗ xML
i =

Ci

2
(xML

i + aix
ML
i−1 ) + aixi−1 (22)

is a causal space varying recursive filter and

x−i = g−i ∗ xML
i =

Ci

2
(xML

i + aix
ML
i+1 ) + aixi+1 (23)

is an anti-causal space varying recursive filter where




ai = 1−
√

1−k2
i

ki

C = 1−ki√
1−k2

i

The MAP estimates defined in (1) can be obtained as follows. First the
maximum likelihood estimates XML is computed. Then the ML estimate are
filtered with a causal filter G(Z)+ and with an anti-causal filter G(Z)−. The
solution is obtain by adding both results.

5 Frequency analysis

It is now clear that the regularization imposed by the prior is equivalent to
filtering the ML estimates with a first order low-pass filter that smoothes the
transitions, reducing the noise present in the maximum likelihood estimation.

The low-pass filters (19) and (20) present a 0.5 gain at d.c., a pole located
at a and a zero at −a (see Fig.3). The cutoff frequency, depending on the pole
position, depends on the data and on the parameter α of the prior as it can be
observed on (4) and (11)1(see Figs.3,4). Therefore, the following conclusions can
be stated:

1) since 0 ≤ a ≤ 1, the pole of the first order filter is always inside the unit
circle and the filter is always stable.

1 Note that a(k) is monotonic with k.
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Fig. 3. Pole and zero position of G(z).

2) the parameter k (parameter a) (see eq.(11)) decreases with the number of
data points ni, i.e., the bandwidth of the filter increases with the amount of
available data and decreases as the number of data points goes to zero. The
algorithm compensates the lack of confidence in the data by decreasing the
filter bandwidth (see Fig.4).

3) the bandwidth of the filter decreases when the regulatization parameter α
increases and when the variance of the data, σ2(x) = 1/β, increases.

4) the algorithm is implemented in such way that when there is no data, ni = 0,
k = 1 (a = 1). In this case xi = x̄i, i.e., the estimate depends only on the
average value of the neighbors.

Until this point we have been working with an additive Gaussian noise. How-
ever, the method can be used with other noise models. For instance, the Rayleigh
distribution is often used to model the multiplicative noise present in signals
obtained using coherent radiation, e.g., LASER [14], SAAR [16] or ultrasound
[15]. In a previous work, the authors have derived expressions similar to (15) in
the context of 3D ultrasound by using a Rayleigh model for the multiplicative
speckle noise present in the ultrasound images [21]. In the case of the Rayleigh
observations (15) is still valid with





xML
i = 1

2ni

∑
k (yk

i )2

ki = 1
1+

ni
2α(xML

i
)2

In this case ki depends on the number of observations, ni, as before, but it also
depends on the ML estimate. Therefore an additional property is valid.

5) the bandwidth decreases with the increase of xML
i , i.e., as stronger regular-

ization is applied for large values of xML
i than for smaller values (the noise

amplitude is larger in high intensity regions). This behaviour is a consequence
of the multiplicative type of noise associated to the Rayleigh distribution.
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Fig. 4. Bode diagrams of G(Z) for several different values of k.

As shown, the MAP estimation problem can be interpreted as a space varying
filtering process. Adopting a Gibbs prior with a quadratic potential the MAP
estimation process can be implemented by using two first order IIR filters. This
approach can also be used to derive other type of filters associated, for instance,
to higher order Gibbs priors, which allow the improvement of the estimation
performance at transitions (see [19]).

In the next section two examples of application are presented using synthetic
and real data.

6 Experimental Results

Experimental tests were performed to evaluate the algorithm in 1D and 2D signal
restoration, with synthetic and real data.

Each problem is solved using the standard MAP method and the fast algo-
rithm based on space-varying IIR filters proposed in this paper. Examples with
Gaussian and non-Gaussian (Rayleigh) noise are considered.

6.1 Synthetic data

Let us consider a synthetic signal defined as follows,

xi =

{
150 50 ≤ i ≤ 100
50 otherwise

The observation vector Y is obtained by adding Gaussian white noise ηi =
N(0, 202) to each sample (see Fig.5).



The MAP solution was computed by both methods, i.e, by solving (13) and
by low pass filtering using (21).

Both solutions are displayed in Fig.5. Since both curves coincide they can
not be distinguish. To minimize the border effects, the unknowns x0 and xN+1,
used in equations (22) and (23) respectively were defined as follows

x0 =
1

2w

w∑

i=1

xML
i (24)

xN+1 =
1

2w

N∑

i=N−w

xML
i (25)

i.e., x0 and xN+1 are initialized with half of the average value of the ML estimates
inside window with length w = 5.

The two solutions are not identical. However, their difference is so small that
can not be observed in Fig.5. The two solutions are almost identical within the
interval [0, 150], except in the vicinity of the boundaries.
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Fig. 5. Synthetic data: Noisy and filtered data for α = 1, 0.1, 0.001.

6.2 Ultrasound image

This example considers the problem of noise reduction in ultrasound images,
using a multiplicative model for the noise (Rayleigh model). The MAP estimates
of the original image was computed by both methods, i.e., by solving the linear
set of equations (13), obtained by linearization of the non linear cost function
(2), and by using the IIR filters defined in (21). XML and k are computed using
(5).

We have used the following separable filter to process the ultrasound image

G(Z1, Z2)2D = G(Z1)G(Z2) (26)



where G(Z) is given by (18). Separable filters allow fast filtering procedures based
on two steps: in the first step the filter G(Z) is applied to each column of the
ultrasound image and, in a second step G(Z) is applied to each row of the image
obtained in the previous step. Fig.6 shows an ultrasound image (left), and the
MAP estimates obtained by the IIR filter (right). The results achieved by solving
(13) are nor shown since they are similar. Fig.7 shows the matrix of coefficients
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Fig. 6. First column:ultrasound image, Second column: MAP estimates .

ki. As noted before, the Rayleigh distribution, corresponding to a multiplicative
type of noise, make the coefficients depend not only on the amount of data, but
also on the data itself (see (5)). Therefore, the lighter zones of Fig.7 correspond
to regions where the cutoff frequency of the IIR filter is smaller and consequently
the regularization effect imposed by the prior is higher. On the contrary, in the
darker regions, corresponding to the darker regions on the original ultrasound
image, the regularization effect imposed by the prior is smaller.

Fig.8 shows the image obtained by computing the absolute difference of the
images computed by the matrix inversion method and by the filtering method.
The difference is small, except at the transitions and at the borders. The signal
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Fig. 7. Matrix of coefficients ki.

Fig. 8. Error image(SNR = 43.64dB).



do noise ratio is SNR = SA − S∆ = 43.64dB. SA is the energy of the image
XA estimated using equation (13) and computed as SA = 10 log10(XA.X ′

A).
S∆ = 10 log10[(XA−XF )(XA−XF )′] is the energy of the error image displayed
in Fig.8. XF is the image estimated using equation (21). The largest difference
between XA and XF is observed at the origin due borders effect (as expected).

7 Conclusions
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